Semantics of Query Rewriting Patterns in Search Logs

Sumio Fujita¹ Georges Dupret² Ricardo Baeza-Yates³

¹Yahoo! JAPAN Research

²Yahoo! Labs

³Yahoo! Research

November 2, 2012 / ESAIR'12

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Semantics of query rewriting patterns

- Boldi *et al.* pointed out that the typically useful recommendations are either specializations or topic shifting, which they refer to as "parallel moves".
- Specialization reformulations might be observed less frequently than topic shifting depending on the search contexts.
- Topic shifting occurs especially when users engage in complex tasks like researching for a new vehicle and comparing competing candidate models.
- For example, in our logs, the most frequent queries after "toyota" are "honda", "nissan" and "lexus".
- The most frequent query after "driver's license renewal" is "slight violence of traffic laws", which may jeopardize renewing their driver's license.

Figure: Schematic view of semantic relations of related queries.

- Since most useful recommendations are either specializations or parallel moves, better to use distinct methods to cover both types.
- In the semantic hierarchy of information needs, locating the original user query at the center, specialization queries in the lower part are useful as specialization queries: co-click and co-topic based methods can identify such relations.
- The neighbouring queries in the semantic hierarchy are generally useful as the parallel moves: a co-session based method can identify such relations.
- Too close queries are not useful as recommendations.

Queries in Best Rank Directed Co-Click Relations (CCQs)

$$CCQ_q \equiv \bigcup_{u \in UC_q} \operatorname*{arg\,min}_{q' \in QC_u} \operatorname{rank}_u(q').$$

- where, the URL cover UC_q of a query q is the set of URLs clicked in response to query q,
- the query cover of URL u, QC_u is the set of queries for which URL u is clicked.
- CCQs are the queries that rank some clicked URLs at the best positions,
- mostly specialization queries but also some are web jargon like queries.
- They share some clicked URLs but may not share any keywords.

Queries in Best Rank Directed Co-Click Relations (CCQs)

$$P_{CC}(q_2|q_1) = \sum_{u \in UC_{q_1}} P(q_2|u) \cdot P(u|q_1)$$
$$= \sum_{u \in UC_{q_1}} \frac{P(u|q_2) \cdot P(q_2)}{P(u)} \cdot P(u|q_1)$$

with

$$P(u) = \frac{cnt(u)}{\sum_{q \in Q} cnt(q)}, P(q) = \frac{cnt(q)}{\sum_{q' \in Q} cnt(q')}, \text{ and}$$
$$P(u|q) = \frac{cnt(u,q)}{cnt(q)}.$$

Queries in Co-topic Relations (CTQs)

- Commercial search engines commonly use expansions of input queries in logs as recommendations, such as,
- "curry" vs "curry recipe", "curry restaurant",...
- CTQs are queries expanded by additional keywords,
- mainly representing specialization rewriting.
- They share some keywords but may not share any clicked URLs.

$$P_{CT}(q_2|q_1) = \frac{cnt(q_2)}{cnt(q_1) + \sum_{q_{2'} \in CTQ_{q_1}} cnt(q_{2'})}$$

Queries in Co-Session Relations (CSQs)

- CSQs are the queries submitted consecutively from the same user in a time interval no longer than 5 minutes,
- directly representing some users rewriting activities.
- CSQs include not only the reformulation or rewriting of queries, such as in the co-topic relation, but also queries that reflect a shift in information needs.
- They may not share neither keywords, nor clicked URLs.

$$P_{CS}(q_2|q_1) = \frac{cnt(q_2, q_1)}{cnt(q_1)}$$

Query Similarity Measures

 Baeza-Yates and Tiberi [2007] evaluated semantic relations between queries connected by an edge of their click cover graph:

$$Sim_{prefix}(D, D') = |P(D, D')| / max\{|D|, |D'|\},$$

where P(D, D') is the longest common prefix of the category paths D and D' where the queries q and q' belong to respectively, referring to the search directory. We slightly revised this as follows:

 $Sim_{substring}(D, D') = |C(D, D')| / max\{|D|, |D'|\},\$

 where C(D, D') is the number of common sub-parts of two category paths, referring to the Yahoo! JAPAN Category hierarchy. Table: Examples of extracted queries by three methods. Queries are translated from Japanese.

Original query: "ANA" (an airline company in Japan)					
Rank	Co-click	Co-topic	Co-session		
1	ANA skyholiday	ANA time schedule	JAL		
2	ANA mileage club	ANA steak-holder's	Skymark		
		benefit coupon			
3	airplane	ANA wallpapers	JR		
4	ANA domestic airline	ANA mileage	JTB		
5	ANA timetables	ANA tour	HIS		

Results

- Average similarities of original query extracted query pairs by category matching.
- The CCQs showed slightly higher similarities than the CTQs because co-click relations assure semantically close relationship by the existence of co-clicked URLs.
- Clearly, the CSQ pairs are semantically less close to each other due to the topic shifting patterns.

Sim. func.	CCQ	CTQ	CSQ
Prefix	0.8217	0.8198	0.7785
Substring	0.8474	0.8355	0.7936
Avg.	0.8346	0.8277	0.7861

Topological relations in Hierarchy

- Ratio of the topological relations in the semantic hierarchy of query pairs(%).
- Semantically close relationship is observed in the CCQ and CTQ pairs.

Relation type	CCQ	CTQ	CSQ
C_1 and C_2 are Identical	1.12	1.24	0.43
C_1 and C_2 are Sibling	1.32	1.41	1.00
C_2 is descendant of C_1	1.02	1.76	0.45
C_1 is descendant of C_2	0.58	0.58	0.36
C_1 and C_2 share some hyper layers	32.08	36.39	23.62

Conclusions

- We examined three methods to explore query rewriting patterns from the search logs.
- The first method exploits the clicked document positions in the ranking and selects queries, which may return a higher rank for the clicked document.
- The second method is based on the observation that users often refine their queries by adding some terms.
- The third method uses the query sequences in search sessions and identifies some typical topic shifts from the query.
- We evaluated semantic relations of extracted query pairs by using a large scale semantic hierarchy of Japanese web page annotations.
- Our experiments showed that the semantic relations of the query pairs reflect the characteristics of each method that extracted rewriting patterns.