Enterprise internal corpora do not correspond to external taxonomies

- Enterprises generate their own internal unstructured text corpora
- R&D teams write documents, conduct experiments, present results, create
- Language and taxonomies are internal

Problem Statement

Can we somehow extract information from the corpus itself (without recourse that could be used in lieu of external annotations?

Research Question

Can we extract information-theoretic measures of importance of terms from a to self-annotate?

Datasets

- 125 queries from the topic distillation category of TREC 2003 and 2004
- total of 110,229 documents (about 1.85G) occur in the top-1000 **BM25** lists

Design

- static clustering (k = 200,
- query-specific clustering (
- use top 20 terms (in inform
- A increased from 0 to 1 in

Takeaway and Future Work

• Loss of precision seen in our information-gain augmented IR schemes should be seen in light of previous studies, which too showed negative results for cluster-based retrieval. In cluster-based retrieval, while studies have shown some evidence for the cluster hypothesis, finding the clusters that have many relevant documents is very hard to do automatically. • (analogously) Is there a set of terms such that annotating relative to these terms will increase precision; yet finding the set of terms automatically is hard? • (suggested future work by reviewer) Investigation of this technique in use cases other than plain search, for example, interactive query negotiation or navigation browsing, or other tasks for which a coarse

- grained clustering or classification structure is helpful.

Can Corpus Similarity-Based Self-Annotation Assist Information Retrieval?

Vinay Deolalikar

Groupon, Inc. Research (Work done when author was at Hewlett-Packard Labs)

	Approach
prototypes, etc.	 When we cluster a corpus, terms that are "important around them Terms that are informative with respect to cluster matrix
	Using this importance in our retrieval system would
	BM25 does not use the similarity structure of a corp
to any external means)	by weighting a term higher if it is more informative in
	Contrast to other approaches in IR
	In our scheme, documents within a cluster will not n
a corpus, and use these	We do not use a cluster as a unit of retrieval
	Do not directly use cluster hypothesis

	Augmenting document scores
	Computing document score from clustering Define the score $score_{tw}(D)$ of a document D as follows. $I[i, j]$ as the mut
	D_i and $I_{j,D}$. $N(*,*)$ is term inequency. $score_{tw}(D) = \sum_{t \in D} I[i,j](1 + \log(N))$
	Next, we restrict the scoring to contributions from terms that appear in the (\mathbf{R})
	$score_{twq}(D) = \sum_{t_j \in D \land t_j \in Q} I[i, j](1 + \log Q)$
	Combining into convex combination
	Define two parametric families of convex combinations. A is parameter.
er	 combine score_{BM25}(·) with score_{tw}(·): score_{tw,BM25}(D, A) = A · score combine score_{BM25}(·) with score_{twq}(·): score_{twq,BM25}(D, A) = A · sc

	Results and Conclusions
500)	Two patterns emerge
k = 20) nation gain) for each cluster steps of 0.1	 For both score_{tw,BM25}(·, A) and score_{twq,BM2} proportion A of the information gain that is used The precision of score_{tw}(·) is consistently high

nt" in the corpus lead to the formation of clusters

nembership are important constitute a form of "self-annotation" pus in its term weighting We will augment **BM25** in the clustering

necessarily be ranked close to each other

ual information between the random variables
((<i>t_j</i> , <i>D</i>))). (1)
query Q . g(N(t _j , D))). (2)

 $e_{BM25}(D) + (1 - A) \cdot score_{tw}(D)$ $\operatorname{core}_{\mathsf{BM25}}(D) + (1 - A) \cdot \operatorname{score}_{\mathsf{twq}}(D)$

 $\mathbf{f}_{5}(\cdot, \mathbf{A})$, the precision falls monotonically with the d in document scoring. er than that of $score_{twa}(\cdot)$.