
Graph and Search at Linkedin

Swee Lim
SIGIR Graph Search and Beyond

SIGIR 2015

About Linkedin

Our Mission

Connect the world’s professionals and make
them more productive and successful

Our Vision

Create economic opportunity for every member
of the global workforce

The Economic Graph

Identity

Member’s
professional

profile of record

Network

Connect, follow,
employment,
education, …

Entities

Companies, Schools,
Jobs, Skills, Articles,

Locations, …

For our members

Discover, Learn,
Find and to be Found

For our customers

Hire, Market, and Sell

How do we use the graph?

Online
•  Most pages make multiple

calls to the “online” graph

•  For dynamic content, such
as feed, search, profile
(name) visibility

Offline
•  Available in offline systems

such as Hadoop tables

•  For more “static” content,
such as recommendations,
such as People You May
Know (PYMK)

Graph is mostly implicit

It affects almost everything you see,
e.g. feed, search, names, profiles

Interesting Economic Graph Queries
(answered online)

What to Pay Attention To

“The 10 most commonly followed entities by people in the industries of
my most recent 2 employers and my second-degree network”

Database Tribes

“People who are connected and have worked on the same project
at two or more jobs at least one of which in the database industry”

Marketing Jobs in Energy

“Senior marketing job postings at Bay Area companies relevant to the term
‘energy’ aggregated by month for the past year”

First-degree interconnections

“All interconnections between members of a person’s first degree network”

What do these queries have in common?

Deep, complex join structure

Large fan-out
(Richard Branson has millions of followers)

Skew
(Most have fewer followers)

What do we need?

Fast and efficient joins

Linkedin Architecture

Graph
Inverted

Index
Inverted

Index
Inverted
Indexes

Data Domains with Inverted Indices Data Domains

Members Companies

Schools,
Jobs,

Content,
…

Connections Follows

Comments,
Likes,

Shares

Ads,
 Feeds,
Skills,
…

D
AT

A

Feed Mixer Search
Federation Profile Visibility Article, Job, People

Recommendations
Other business

logic

B
U

SI
N

ES
S

Flagship Pulse
(Content) Recruiter Sales

Navigator
Other

front-ends Job Seeker

FR
O

N
TE

N
D

Why do we need Graph?

Member Connections Follows

Without Graph

Client handles Query,
moves data  

to client’s query processor

•  Limited number of entities can be
fetched due to client’s network
bandwidth limitation, cannot
execute large fan-out queries

•  Latency for multi-hop queries can be
prohibitive due to too many round-
trips to data tier

•  Limited opportunities for query
optimization

Graph is a Global Secondary Index (GSI)
for fast and efficient cross domain joins

Member Connections Follows

Without Graph

Client handles Query,
moves data  

to client’s query processor

•  Limited number of entities can be
fetched due to client’s network
bandwidth limitation, cannot
execute large fan-out queries

•  Latency for multi-hop queries can be
prohibitive due to too many round-
trips to data tier

•  Limited opportunities for query
optimization

Graph as GSI

With Graph

Client sends Query to Graph,
moves query processing  

to data (graph index)

•  Moving query processing closer to
data reduces network transfers and
bandwidth

•  Index data structures optimized for
graph queries

•  Opportunities to optimize
distributed and per-shard query
evaluation

•  Smarter index partitioning

Current 3rd Generation Graph (~5 years old)

Nimbus

•  Term partitioned by source of relationship
•  Sorted adjacency list (like an inverted index)
•  Optimized to return 1st degree connections
•  Example : Member connected to Member

P3 : { 8 => 10, 42 } { 42 => 8, 77 }
P7 : { 10 => 8 , 33 } { 77 => 42 }

Network
Cache
Service

•  Extensive caching based on understanding of
data for expensive queries, can be stale

•  Member’s 2nd degree connections
•  Network sizes > 1st degree
•  Influencer follower counts (e.g. Richard

Branson)

Cloud
Session

•  Provides API end-point called by clients
•  Specific operations for 1st degree, 2nd degree,

network sizes, common entities, set
operations, paths

•  General queries using GQL highly restricted

Why build next generation Graph?
Limitations of current generation Graph

▪  Initially only supported member to member connections, generalized later to
support more node and edge types

▪  Optimized for current high volume queries, 1st degree operations
▪  Fixed number of bytes allocated to edge properties, fixed number and size of

properties (no strings)
▪  No node properties
▪  Source and destination node types fixed for each edge type because of sorted

adjacency list, e.g. cannot have generic member follow member, company, school
(currently 3 different edge types)

▪  Cannot natively support more than 2-way relationships, e.g. member endorsed
member for skill

▪  Common entities is not efficient due to term based partitioning scheme
▪  Query language and evaluation under developed, e.g. no composition, not

declarative, no planning
▪  Old implementation assumptions, e.g. sizes of adjacency lists (fan-out for member

to member connections much smaller than Richard Branson’s followers)

Liquid : our next generation graph

Enable use cases not previously possible
or efficient to execute in current system

N-way relationships Rich properties

Democratize adding and querying Graph data

No-cost schema evolution

Graph-oriented query language

Fast-joins

Liquid Key Desirable Properties

All relations are first class

O(k) navigation
(required for fast joins)

O(k) schema evolution

(easy to add and evolve a live system)

Graph oriented query language

Representing a Graph
as a log of Nodes and Edges

100: {“name”}
101: {"employee"}
102: {"employer"}
103: {"start_date"}
...
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {"Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: {}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: {"2008"}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: {"2009"}
1013: {A sub: 1006 pred: 103 obj: 1012}

fred
(1003)

linkedin
(1000)

2009
(1012)

employee
(101)

employer
(102)

start_date
(103) 10

13

Predicates

Representing a Graph
as a log of Nodes and Edges

100: {“name”}
101: {"employee"}
102: {"employer"}
103: {"start_date"}
...
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {"Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: {}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: {"2008"}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: {"2009"}
1013: {A sub: 1006 pred: 103 obj: 1012}

fred
(1003)

linkedin
(1000)

2009
(1012)

employee
(101)

employer
(102)

start_date
(103) 10

13

Values

Representing a Graph
as a log of Nodes and Edges

100: {“name”}
101: {"employee"}
102: {"employer"}
103: {"start_date"}
...
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {"Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: {}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: {"2008"}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: {"2009"}
1013: {A sub: 1006 pred: 103 obj: 1012}

fred
(1003)

linkedin
(1000)

2009
(1012)

employee
(101)

employer
(102)

start_date
(103) 10

13

Entities

Representing a Graph
as a log of Nodes and Edges

100: {“name”}
101: {"employee"}
102: {"employer"}
103: {"start_date"}
...
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {"Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: {}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: {"2008"}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: {"2009"}
1013: {A sub: 1006 pred: 103 obj: 1012}

fred
(1003)

linkedin
(1000)

2009
(1012)

employee
(101)

employer
(102)

start_date
(103) 10

13

Relationships
(subject, predicate, object)

Liquid Inverted Indexing
for O(k) Navigation

100: {“name”}
101: {"employee"}
102: {"employer"}
103: {"start_date"}
...
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {val: "Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: {}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: {"2008"}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: {"2009"}
1013: {A sub: 1006 pred: 103 obj: 1012}

subject count predicate/object

1003 1 1005 {p:100 o:1004}

1006 5 1007 {p:101 o:1003},
1008 {p:102 o:1000},
1010 {p:103 o:1009},
1011 {p:103 o:1009},
1013 {p:103 o:1012}

S index

+
P (predicate), O (object) indices

as hash tables in memory

Liquid Inverted Indexing
for O(k) Navigation

100: {“name”}
101: {"employee"}
102: {"employer"}
103: {"start_date"}
...
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {val: "Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: {}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: {"2008"}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: {"2009"}
1013: {A sub: 1006 pred: 103 obj: 1012}

subject/
predicate

count object

{s:1003 p:100} 1 1005 {o:1004}

{s:1006 p:101} 1 1007 {o:1003}

{s:1006 p:102} 1 1008 {o:1000}

{s:1006 p:103}

3 1010 {o:1009},
1011 {o:1009},
1013 {o:1012}

SP index

+ OP and SPO indices

Prologin (Datalog) Query Language

Edge(“e1”, “employee”, “fred”).
Edge(“e1”, “employer”, “linkedin”).
Edge(“e1”, “start_date”, “2009”).

Employment(p, c, d) :-
 Edge(e, “employee”, p),
 Edge(e, “employer”, c),
 Edge(e, “start_date”, d).

Employment(“fred”, “linkedin”, “2009”).

Employment(“fred”, “linkedin”, _)?

Employment(_, “linkedin”, “2009”)?
Employment(_, _, “2009”)?
Employment(_, “linkedin”, _)?

Like(a, b) :-
 Edge(a, “like”, b).

Like(“e1”, “a1”).

EmployeeLiked(c, l) :-
 Employment(e, c, _),
 Like(e, l).

EmployeeLiked(“linkedin”, _)?
EmployeeLiked(_, “a1”)?
EmployeeLiked(“linkedin”, “a1”)?

Datalog as core
 option to add other bindings

such as SQL

Query Evaluation

Dynamic cost-based

Skew Aware

Community Sharding

Community Sharding
(initial thoughts)

Streaming Graph Partitioning for Large Distributed Graphs
“Linear Deterministic Greedy” is competitive with METIS (current
best offline algorithm), particularly so when the number of partitions
is small, < 100
35% increase in PageRank performance relative to random

Liquid advantages:
1.  We’re not actually streaming
2.  Special handling (random) for large fan-outs
3.  Small number of partitions

Distributed Query Evaluation
(initial thoughts)

Each node is a Liquid instance

Federated query evaluation

optimize for single node win
if lose:
build small database
accumulate partial results from shards, D round trips
issue final query against small database

Search at Linkedin

Already covered in SIRIP yesterday

•  Multiple verticals – people, jobs, companies, groups
•  Query intent - small set of likely intents, much easier to guess
•  Architecture - Conventional doc-sharded inverted index
•  Graph influence on retrieval

•  Added 1st degree to people index
•  2nd degree comes from Graph

Should Graph and Search converge?

•  Graph provides full and precise results, focus on traditional database
query optimization (joins, multiple index structures)

•  Search provides best effort results focus on relevance, traditional IR
techniques

•  A single Graph index for multiple domains (members, companies,
jobs, schools, skills)

•  A Search index per domain

•  Graph N-way relations are 1st class
•  Search 2-way relations are 1st class
•  How about pre-materializing N-way relations as 2-way relations?

Which combinations of 2 dimensions to materialize?
Lists as payload, e.g. member endorsed member => list of skills

Likely Direction

Leverage best of what each system does best

Create query language and evaluator that leverages best of both

