Graph and Search at Linkedin

Swee Lim SIGIR Graph Search and Beyond SIGIR 2015

About Linkedin

Our Vision

Create economic opportunity for every member of the global workforce

Our Mission

Connect the world's *professionals* and make them more productive and successful

The Economic Graph

Identity

Network

Member's professional profile of record employment, education, ...

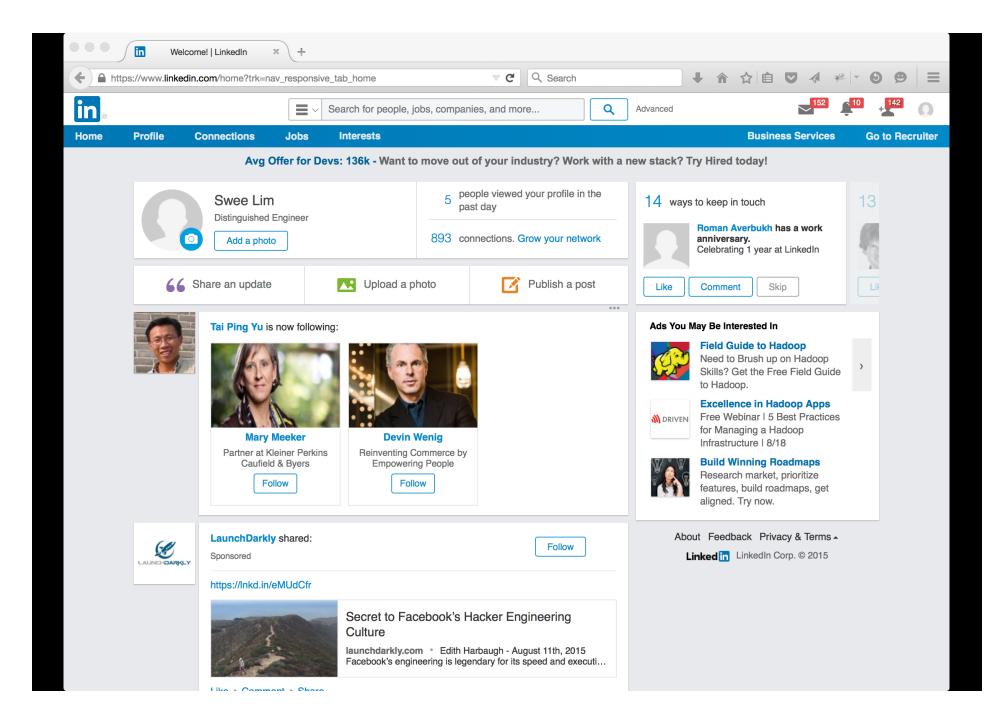
Entities

Connect, follow, Companies, Schools, Jobs, Skills, Articles, Locations, ...

For our members

Discover, Learn, Find and to be Found For our customers

Hire, Market, and Sell



How do we use the graph?

Graph is mostly implicit

It affects almost everything you see, e.g. feed, search, names, profiles

Online

- Most pages make multiple calls to the "online" graph
- For dynamic content, such as feed, search, profile (name) visibility

Offline

- Available in offline systems such as Hadoop tables
- For more "static" content, such as recommendations, such as *People You May Know (PYMK)*

Interesting Economic Graph Queries (answered online)

What to Pay Attention To

"The 10 most commonly followed entities by people in the industries of my most recent 2 employers and my second-degree network"

Database Tribes

"People who are connected and have worked on the same project at two or more jobs at least one of which in the database industry"

Marketing Jobs in Energy

"Senior marketing job postings at Bay Area companies relevant to the term 'energy' aggregated by month for the past year"

First-degree interconnections

"All interconnections between members of a person's first degree network"

What do these queries have in common?

Deep, complex join structure

Large fan-out

(Richard Branson has millions of followers)

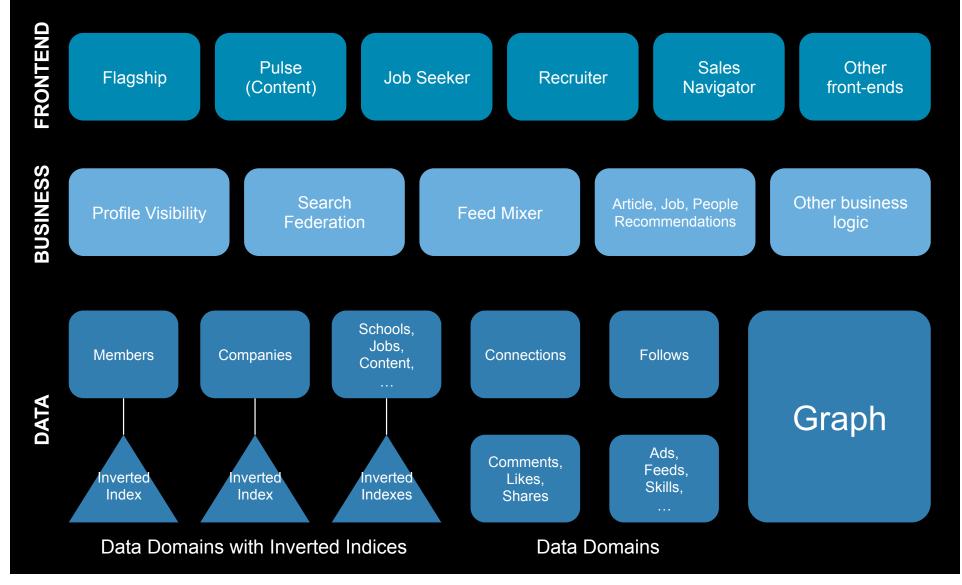
Skew

(Most have fewer followers)

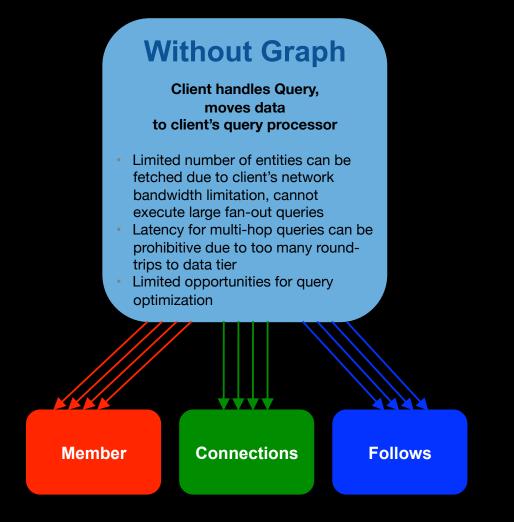
What do we need?

Fast and efficient joins

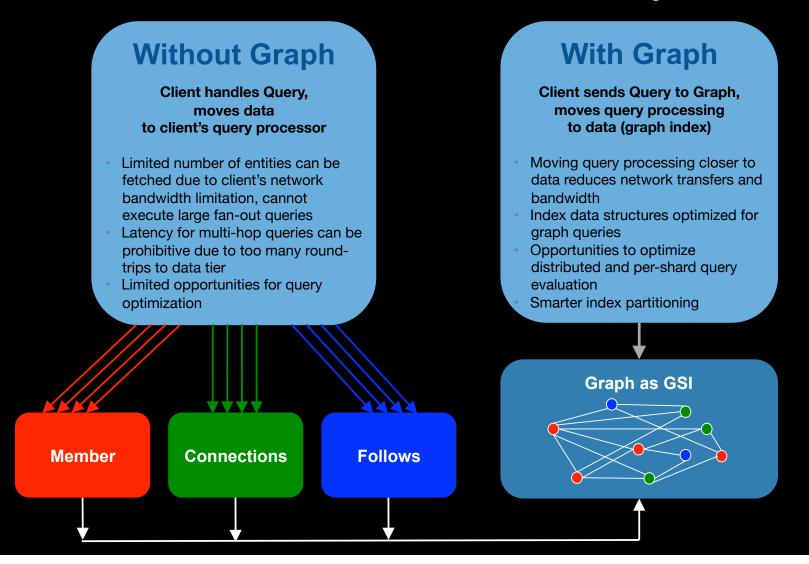
Linkedin Architecture



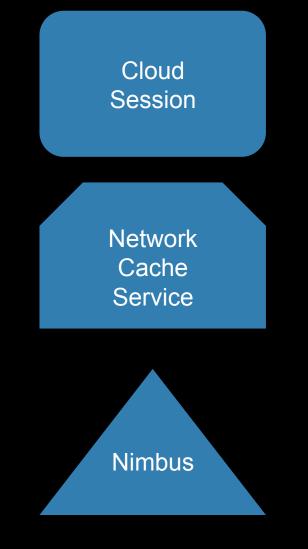
Why do we need Graph?



Graph is a Global Secondary Index (GSI) for fast and efficient cross domain joins



Current 3rd Generation Graph (~5 years old)



- Provides API end-point called by clients
- Specific operations for 1st degree, 2nd degree, network sizes, common entities, set operations, paths
- General queries using GQL highly restricted
- Extensive caching based on understanding of data for expensive queries, can be stale
- Member's 2nd degree connections
- Network sizes $> 1^{st}$ degree
- Influencer follower counts (e.g. Richard Branson)
- Term partitioned by source of relationship
- Sorted adjacency list (like an inverted index)
- Optimized to return 1st degree connections
- Example : Member connected to Member P3 : { 8 => 10, 42 } { 42 => 8, 77 } P7 : { 10 => 8 , 33 } { 77 => 42 }

Why build next generation Graph? Limitations of current generation Graph

- Initially only supported member to member connections, generalized later to support more node and edge types
- Optimized for current high volume queries, 1st degree operations
- Fixed number of bytes allocated to edge properties, fixed number and size of properties (no strings)
- No node properties
- Source and destination node types fixed for each edge type because of sorted adjacency list, e.g. cannot have generic member follow member, company, school (currently 3 different edge types)
- Cannot natively support more than 2-way relationships, e.g. member endorsed member for skill
- Common entities is not efficient due to term based partitioning scheme
- Query language and evaluation under developed, e.g. no composition, not declarative, no planning
- Old implementation assumptions, e.g. sizes of adjacency lists (fan-out for member to member connections much smaller than Richard Branson's followers)

Liquid : our next generation graph

Enable use cases not previously possible or efficient to execute in current system

N-way relationships Fast-joins Rich properties

Democratize adding and querying Graph data

No-cost schema evolution Graph-oriented query language

Liquid Key Desirable Properties

All relations are first class

O(k) navigation (required for fast joins)

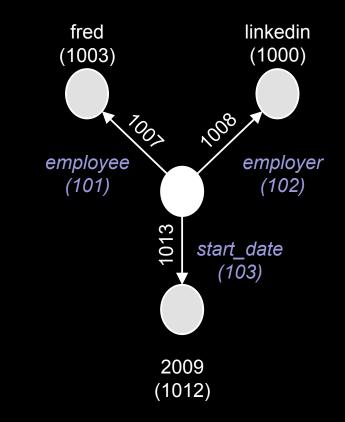
O(k) schema evolution (easy to add and evolve a live system)

Graph oriented query language

Representing a Graph as a log of Nodes and Edges

Predicates

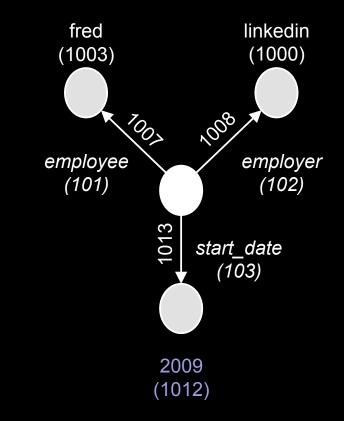
```
100: {"name"}
101: {"employee"}
102: {"employer"}
103: {"start date"}
. .
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {"Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: \{\}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: \{"2008"\}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: \{"2009"\}
1013: {A sub: 1006 pred: 103 obj: 1012}
```



Representing a Graph as a log of Nodes and Edges

Values

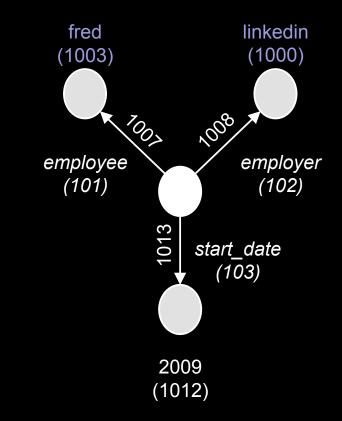
```
100: {"name"}
101: {"employee"}
102: {"employer"}
103: {"start date"}
. . .
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {"Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: \{\}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: \{"2008"\}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: \{"2009"\}
1013: {A sub: 1006 pred: 103 obj: 1012}
```



Representing a Graph as a log of Nodes and Edges

Entities

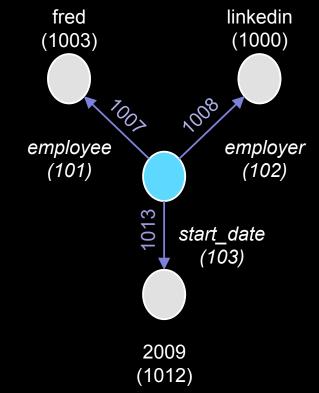
```
100: {"name"}
101: {"employee"}
102: {"employer"}
103: {"start date"}
. . .
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {"Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: \{\}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: \{"2008"\}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: \{"2009"\}
1013: {A sub: 1006 pred: 103 obj: 1012}
```



Representing a Graph as a log of Nodes and Edges *Relationships*

(subject, predicate, object)

```
100: {"name"}
101: {"employee"}
102: {"employer"}
103: {"start date"}
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {"Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: {}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: \{"2008"\}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: \{"2009"\}
1013: {A sub: 1006 pred: 103 obj: 1012}
```



Liquid Inverted Indexing for O(k) Navigation

```
100: {"name"}
101: {"employee"}
102: {"employer"}
103: {"start date"}
. . .
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {val: "Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: \{\}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: \{"2008"\}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: \{"2009"\}
1013: {A sub: 1006 pred: 103 obj: 1012}
```

S index

subject	count	predicate/object		
1003	1	1005 {p:100 o:1004}		
1006	5	1007 {p:101 o:1003}, 1008 {p:102 o:1000}, 1010 {p:103 o:1009}, 1011 {p:103 o:1009}, 1013 {p:103 o:1012}		

P (predicate), O (object) indices

as hash tables in memory

Liquid Inverted Indexing for O(k) Navigation

```
100: {"name"}
101: {"employee"}
102: {"employer"}
103: {"start date"}
. . .
1000: {"linkedin"}
1001: {"LinkedIn Corporation"}
1002: {A sub: 1000 pred: 100 obj: 1001}
1003: {"fred"}
1004: {val: "Fred M'Bogo"}
1005: {A sub: 1003 pred: 100 obj: 1004}
1006: \{\}
1007: {A sub: 1006 pred: 101 obj: 1003}
1008: {A sub: 1006 pred: 102 obj: 1000}
1009: \{"2008"\}
1010: {A sub: 1006 pred: 103 obj: 1009}
1011: {D sub: 1006 pred: 103 obj: 1009}
1012: \{"2009"\}
1013: {A sub: 1006 pred: 103 obj: 1012}
```

SP index

subject/ predicate	count	object
{s:1003 p:100}	1	1005 {o:1004}
{s:1006 p:101}	1	1007 {o:1003}
{s:1006 p:102}	1	1008 {o:1000}
{s:1006 p:103}	3	1010 {o:1009}, 1011 {o:1009}, 1013 {o:1012}

+ OP and SPO indices

Prologin (Datalog) Query Language

```
Edge("e1", "employee", "fred").
Edge("e1", "employer", "linkedin").
Edge("e1", "start_date", "2009").
```

```
Employment(p, c, d) :-
Edge(e, "employee", p),
Edge(e, "employer", c),
Edge(e, "start_date", d).
```

Employment("fred", "linkedin", "2009").

Employment("fred", "linkedin", _)?

Employment(_, "linkedin", "2009")?
Employment(_, _, "2009")?
Employment(_, "linkedin", _)?

Like(a, b) :-Edge(a, "like", b).

```
Like("e1", "a1").
```

EmployeeLiked(c, l) :Employment(e, c, _),
Like(e, l).

```
EmployeeLiked("linkedin", _)?
EmployeeLiked(_, "a1")?
EmployeeLiked("linkedin", "a1")?
```

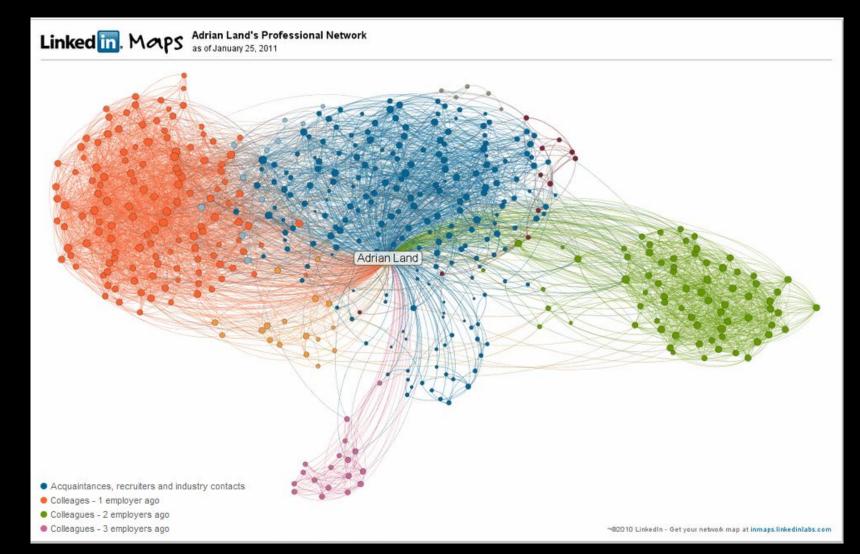
Datalog as core option to add other bindings such as SQL

Query Evaluation

Dynamic cost-based

Skew Aware

Community Sharding



Community Sharding (initial thoughts)

Streaming Graph Partitioning for Large Distributed Graphs

"Linear Deterministic Greedy" is competitive with METIS (current best offline algorithm), particularly so when the number of partitions is small, < 100 35% increase in PageRank performance relative to random

Liquid advantages:

- 1. We're not actually streaming
- 2. Special handling (random) for large fan-outs
- 3. Small number of partitions

Distributed Query Evaluation (initial thoughts)

Each node is a Liquid instance

Federated query evaluation

optimize for single node win if lose:

build small database

accumulate partial results from shards, D round trips issue final query against small database

Search at Linkedin

Already covered in SIRIP yesterday

- Multiple verticals people, jobs, companies, groups
- Query intent small set of likely intents, much easier to guess
- Architecture Conventional doc-sharded inverted index
- Graph influence on retrieval
 - Added 1st degree to people index
 - · 2nd degree comes from Graph

Should Graph and Search converge?

- Graph provides full and precise results, focus on traditional database query optimization (joins, multiple index structures)
- Search provides best effort results focus on relevance, traditional IR techniques
- A single Graph index for multiple domains (members, companies, jobs, schools, skills)
- · A Search index per domain
- . Graph N-way relations are 1st class
- Search 2-way relations are 1st class
- How about pre-materializing N-way relations as 2-way relations?
 Which combinations of 2 dimensions to materialize?
 Lists as payload, e.g. member endorsed member => list of skills

Likely Direction

Leverage best of what each system does best

Create query language and evaluator that leverages best of both

