Graph and Search at Linkedin

Swee Lim
SIGIR Graph Search and Beyond
SIGIR 2015

Linked in

About Linkedin

Our Vision

Create economic opportunity for every member
of the global workforce

Our Mission

Connect the world’s professionals and make
them more productive and successful

The Economic Graph

|dentity Network Entities

Member’s Connect, follow, Companies, Schools,
professional employment, Jobs, Skills, Articles,
profile of record education, ... Locations, ...

Discover, Learn, Hire, Market, and Sell
Find and to be Found

i Welcome! | Linkedin x \ +

@ https://www.linkedin.com/home?trk=nav_responsive_tab_home ¢ | | Q search ¥ A wB O 4 # © & | =

m = v | Search for people, jobs, companies, and more... @ Advanced ﬁ ﬂ +£E

Profile Connections Jobs Interests Business Services Go to Recruiter

Avg Offer for Devs: 136k - Want to move out of your industry? Work with a new stack? Try Hired today!

people viewed your profile in the

Swee Lim past day 1 4 ways to keep in touch

Distinguished Engineer

Roman Averbukh has a work
Add a photo 893 connections. Grow your network anniversary.

Celebrating 1 year at Linkedin

66 Share an update Upload a photo @Q Publish a post [Like H Comment H Skip ‘

Tai Ping Yu is now following: Ads You May Be Interested In

Field Guide to Hadoop

Need to Brush up on Hadoop
Skills? Get the Free Field Guide
to Hadoop.

Excellence in Hadoop Apps
Moriven Free Webinar | 5 Best Practices

) ‘ R . for Managing a Hadoop
Mary Meeker Devin Wenig Infrastructure | 8/18
Partner at Kleiner Perkins Reinventing Commerce by i .
Caufield & Byers Empowering People Build Winning Roadmaps

o Research market, prioritize
y features, build roadmaps, get

aligned. Try now.

LaunchDarkly shared: About Feedback Privacy & Terms «
- ollow
@ Sponsored Linkedﬁﬂ LinkedIn Corp. © 2015

https://Inkd.infeMUdCfr

Secret to Facebook’s Hacker Engineering
Culture

launchdarkly.com ° Edith Harbaugh - August 11th, 2015
Facebook’s engineering is legendary for its speed and executi...

How do we use the graph?

Graph 1s mostly implicit

It affects almost everything you see,
e.g. feed, search, names, profiles

« Most pages make multiple
calls to the “online” graph

* For dynamic content, such
as feed, search, profile
(name) visibility

Available in offline systems
such as Hadoop tables

For more “static” content,
such as recommendations,
such as People You May
Know (PYMK)

Interesting Economic Graph Queries
(answered online)

What to Pay Attention To
“The 10 most commonly followed entities by people in the industries of
my most recent 2 employers and my second-degree network”

Database Tribes
“People who are connected and have worked on the same project
at two or more jobs at least one of which in the database industry”

Marketing Jobs in Energy
“Senior marketing job postings at Bay Area companies relevant to the term
‘energy’ aggregated by month for the past year”

First-degree interconnections
“All interconnections between members of a person’s first degree network”

What do these queries have in common?

Deep, complex join structure

Large fan-out

(Richard Branson has millions of followers)

Skew

(Most have fewer followers)

What do we need?

Fast and efficient joins

Linkedin Architecture

Pulse Sales Other

Flagship (Content) Job Seeker Recruiter Navigator front-ends

FRONTEND

)
7]
T
<=
n
)
01}

Schools,
Jobs,

Content, Connections Follows

Members Companies

Ads,
Feeds,
Skills,

Comments,
Inverted Inverted Inverted Likes,
Index Index Indexes Shares

Data Domains with Inverted Indices Data Domains

Why do we need Graph?

Without Graph

Client handles Query,
moves data
to client’s query processor

Limited number of entities can be
fetched due to client’s network
bandwidth limitation, cannot
execute large fan-out queries
Latency for multi-hop queries can be
prohibitive due to too many round-
trips to data tier

Limited opportunities for query
optimization

Connections Follows

Graph is a Global Secondary Index (GSI)
for fast and efficient cross domain joins

Without Graph

Client handles Query,
moves data
to client’s query processor

Limited number of entities can be
fetched due to client’s network
bandwidth limitation, cannot
execute large fan-out queries
Latency for multi-hop queries can be
prohibitive due to too many round-
trips to data tier

Limited opportunities for query
optimization

Connections Follows

! !

With Graph

Client sends Query to Graph,
moves query processing
to data (graph index)

Moving query processing closer to
data reduces network transfers and
bandwidth

Index data structures optimized for
graph queries

Opportunities to optimize
distributed and per-shard query
evaluation

Smarter index partitioning

Graph as GSI

Current 3" Generation Graph (~5 years old)

Cloud
Session

Network
Cache
Service

Nimbus

Provides API end-point called by clients
Specific operations for 15t degree, 2" degree,
network sizes, common entities, set
operations, paths

General queries using GQL highly restricted

Extensive caching based on understanding of
data for expensive queries, can be stale
Member’s 274 degree connections

Network sizes > 15t degree

Influencer follower counts (e.g. Richard
Branson)

Term partitioned by source of relationship
Sorted adjacency list (like an inverted index)
Optimized to return 1%t degree connections
Example : Member connected to Member
P3:{8=>10,42}{42=>8, 77}
P7:{10=>8,33}{77=>42}

Why build next generation Graph?
Limitations of current generation Graph

Initially only supported member to member connections, generalized later to
support more node and edge types

Optimized for current high volume queries, 1st degree operations

Fixed number of bytes allocated to edge properties, fixed number and size of
properties (no strings)

No node properties

Source and destination node types fixed for each edge type because of sorted
adjacency list, e.g. cannot have generic member follow member, company, school
(currently 3 different edge types)

Cannot natively support more than 2-way relationships, e.g. member endorsed
member for skill

Common entities is not efficient due to term based partitioning scheme

Query language and evaluation under developed, e.g. no composition, not
declarative, no planning

Old implementation assumptions, e.g. sizes of adjacency lists (fan-out for member
to member connections much smaller than Richard Branson’s followers)

Liquid : our next generation graph

Enable use cases not previously possible
or efficient to execute 1n current system

N-way relationships Fast-joins Rich properties

Democratize adding and querying Graph data

No-cost schema evolution

Graph-oriented query language

Liquid Key Desirable Properties

All relations are first class

O(k) navigation
(required for fast joins)

O(k) schema evolution
(easy to add and evolve a live system)

Graph oriented query language

Representing a Graph
as a log of Nodes and Edges

Predicates

{“name”}
{"employee"}
{"employer"}
{"start _date"}

: {"linkedin"}

: {"LinkedIn Corporation"}

: {A sub: 1000 pred: 100 obj:

: {"fred"}

: {"Fred M'Bogo"}

: {A sub: 1003
: {}

: {A sub: 1006
: {A sub: 1006
: {"2008"}

: {A sub: 1006
: {D sub: 1006
: {"2009"}

: {A sub: 1006

pred:

pred:
pred:

pred:
pred:

pred:

obj:

obj:
obj:

obj:
obj:

obj:

linkedin
(1000)

employee employer

(101) (102)

Start_date
(103)

Representing a Graph
as a log of Nodes and Edges

Values

linkedin
(1000)

{“name”}
{"employee"}
{"employer"}
{"start_date"}

: {"linkedin"} employee employer
: {"LinkedIn Corporation"} (101) (102)
: {A sub: 1000 pred: 100 obj:
: {"fred"}
+ {"Fred M'Bogo™} . start _date
: {A sub: 1003 pred: obj: —
: () (103)
: {A sub: 1006 pred: obj:
: {A sub: 1006 pred: obj:
: {"2008"}
: {A sub: 1006 pred: obj:
: {D sub: 1006 pred: obj:
{"2009"}
: {A sub: 1006 pred: obj:

Representing a Graph
as a log of Nodes and Edges

Entities

linkedin

{“name”}
{"employee"}
{"employer"}
{"start_date"}

{"linkedin"} employee employer
: {"LinkedIn Corporation"} (101) (102)
: {A sub: 1000 pred: 100 obj:
: {"fred"}
: {"Fred M'Bogo"} _ start date
: {A sub: 1003 pred: obj: —
: () (103)
: {A sub: 1006 pred: obj:
: {A sub: 1006 pred: obj:
: {"2008"}
: {A sub: 1006 pred: obj:
: {D sub: 1006 pred: obj:
: {"2009"}
: {A sub: 1006 pred: obj:

Representing a Graph

as a log of Nodes and Edges

Relationships

(subject, predicate, object) inkedin
(1000)

“name” }
"employee"}
"employer"}
"start date"}

: {"linkedin"} enuﬂoyee enuﬂoyer
: {"LinkedIn Corporation"} (101) (102)

: {A sub: 1000 pred: 100 obj:
: {"fred"}

: {"Fred M'Bogo"}

: {A sub: 1003 pred: 100 obj: start_date

(103)

: {A sub: 1006 pred: 101 obj:
: {A sub: 1006 pred: 102 obj:
: {"2008"}

: {A sub: 1006 pred: 103 obj:
: {D sub: 1006 pred: 103 obj:
: {"2009"}

: {A sub: 1006 pred: 103 obj:

Liquid Inverted Indexing
for O(k) Navigation

{“name”}

{"employee"}
{"employer"}
{"start_date"} predicate/object

{"linkedin"} 1005 {p:100 0:1004}
{"LinkedIn Corporation"}

{A sub: 1000 pred: 100 obj:
{"fred"}

{val: "Fred M'Bogo"}

{A sub: 1003 pred: 100 obj:
{}

{A sub: 1006 pred: 101 obj:
{A sub: 1006 pred: 102 obj:
{"2008"} +

{A sub: 1006 pred: 103 obj:

(D sub: 1006 pred: 103 obj: P (predicate), O (object) indices
{"2009"}

{A sub: 1006 pred: 103 obj:

1007 {p:101 o0:1003},
1008 {p:102 o0:1000},
1010 {p:103 0:1009},
1011 {p:103 0:1009},
1013 {p:103 o0:1012}

as hash tables in memory

Liquid Inverted Indexing

{“name”}
{"employee"}
{"employer"}
{"start_date"}

{"linkedin"}

{"LinkedIn Corporation"}

{A sub: 1000 pred: 100
{"fred"}

{val: "Fred M'Bogo"}
{A sub: 1003 pred: 100
{}

{A sub: 1006 pred: 101
{A sub: 1006 pred: 102
{"2008"}

{A sub: 1006 pred: 103
{D sub: 1006 pred: 103
{"2009"}

{A sub: 1006 pred: 103

obj:

obj:

obj:
obj:

obj:
obj:

obj:

for O(k) Navigation

SP index

subject/
predicate

{s:1003 p:100}

{s:1006 p:101}

{s:1006 p:102}

{s:1006 p:103}

+ OP and SPO indices

Prologin (Datalog) Query Language

Edge (“‘el”, “employee”, “fred”).
Edge (‘el”, “employer”, “linkedin”).
Edge (“el”, “start date”, “20097).

Employment(p, c, d) :-
Edge (e, “employee”, p),
Edge (e, “employer”, c),
Edge (e, “start date”, d).

Employment (“fred”, “linkedin”, “2009”).

Employment (“fred”, "“linkedin”,)?

Employment(_, “linkedin”,
Employment(_, _, “20097)7
Employment(_, “linkedin”,

Like(a, b) :-
Edge (a, “like”, b).

Like(“el”, “al”).

Employeeliked(c, 1) :-
Employment(e, c,),
Like(e, 1).

EmployeeLiked (“linkedin”,
EmployeeLiked(_, “al”)?
EmployeeLiked (“linkedin”,

“20097)?

2

e

\\alll) 2

Datalog as core
option to add other bindings
such as SQL

Query Evaluation

Dynamic cost-based

Skew Aware

Community Sharding

. . Adrian Land's Professional Network
Llnked' MaPS as of January 25, 2011

Community Sharding
(initial thoughts)

“Linear Deterministic Greedy” is competitive with METIS (current
best offline algorithm), particularly so when the number of partitions

is small, < 100
35% increase in PageRank performance relative to random

Liquid advantages:
1. We're not actually streaming

2. Special handling (random) for large fan-outs
3. Small number of partitions

Distributed Query Evaluation
(initial thoughts)

Each node is a Liquid instance

Federated query evaluation

optimize for single node win
if lose:

build small database

accumulate partial results from shards, D round trips
issue final query against small database

Search at Linkedin

Already covered in SIRIP yesterday

Multiple verticals — people, jobs, companies, groups
Query intent - small set of likely intents, much easier to guess

Architecture - Conventional doc-sharded inverted index

Graph influence on retrieval

Added 15t degree to people index
2nd degree comes from Graph

Should Graph and Search converge?

. Graph provides full and precise results, focus on traditional database
query optimization (joins, multiple index structures)

. Search provides best effort results focus on relevance, traditional IR
techniques

. A single Graph index for multiple domains (members, companies,
jobs, schools, skills)
. A Search index per domain

. Graph N-way relations are 1st class

. Search 2-way relations are 1t class

. How about pre-materializing N-way relations as 2-way relations?
Which combinations of 2 dimensions to materialize?

Lists as payload, e.g. member endorsed member => list of skills

Likely Direction

Leverage best of what each system does best

Create query language and evaluator that leverages best of both

