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About Linkedin

Our Vision

Create economic opportunity for every member
of the global workforce

Our Mission

Connect the world’s professionals and make
them more productive and successful




The Economic Graph

|dentity Network Entities

Member’s Connect, follow, Companies, Schools,
professional employment, Jobs, Skills, Articles,
profile of record education, ... Locations, ...

Discover, Learn, Hire, Market, and Sell
Find and to be Found
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How do we use the graph?

Graph 1s mostly implicit

It affects almost everything you see,
e.g. feed, search, names, profiles

« Most pages make multiple
calls to the “online” graph

* For dynamic content, such
as feed, search, profile
(name) visibility

Available in offline systems
such as Hadoop tables

For more “static” content,
such as recommendations,
such as People You May
Know (PYMK)




Interesting Economic Graph Queries
(answered online)

What to Pay Attention To
“The 10 most commonly followed entities by people in the industries of
my most recent 2 employers and my second-degree network”

Database Tribes
“People who are connected and have worked on the same project
at two or more jobs at least one of which in the database industry”

Marketing Jobs in Energy
“Senior marketing job postings at Bay Area companies relevant to the term
‘energy’ aggregated by month for the past year”

First-degree interconnections
“All interconnections between members of a person’s first degree network”




What do these queries have in common?

Deep, complex join structure

Large fan-out

(Richard Branson has millions of followers)

Skew

(Most have fewer followers)

What do we need?

Fast and efficient joins
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Data Domains with Inverted Indices Data Domains




Why do we need Graph?

Without Graph

Client handles Query,
moves data
to client’s query processor

Limited number of entities can be
fetched due to client’s network
bandwidth limitation, cannot
execute large fan-out queries
Latency for multi-hop queries can be
prohibitive due to too many round-
trips to data tier

Limited opportunities for query
optimization

Connections Follows




Graph is a Global Secondary Index (GSI)
for fast and efficient cross domain joins

Without Graph

Client handles Query,
moves data
to client’s query processor

Limited number of entities can be
fetched due to client’s network
bandwidth limitation, cannot
execute large fan-out queries
Latency for multi-hop queries can be
prohibitive due to too many round-
trips to data tier

Limited opportunities for query
optimization

Connections Follows

! !

With Graph

Client sends Query to Graph,
moves query processing
to data (graph index)

Moving query processing closer to
data reduces network transfers and
bandwidth

Index data structures optimized for
graph queries

Opportunities to optimize
distributed and per-shard query
evaluation

Smarter index partitioning

Graph as GSI




Current 3" Generation Graph (~5 years old)

Cloud
Session

Network
Cache
Service

Nimbus

Provides API end-point called by clients
Specific operations for 15t degree, 2" degree,
network sizes, common entities, set
operations, paths

General queries using GQL highly restricted

Extensive caching based on understanding of
data for expensive queries, can be stale
Member’s 274 degree connections

Network sizes > 15t degree

Influencer follower counts (e.g. Richard
Branson)

Term partitioned by source of relationship
Sorted adjacency list (like an inverted index)
Optimized to return 1%t degree connections
Example : Member connected to Member
P3:{8=>10,42}{42=>8, 77}
P7:{10=>8,33}{77=>42}




Why build next generation Graph?
Limitations of current generation Graph

Initially only supported member to member connections, generalized later to
support more node and edge types

Optimized for current high volume queries, 1st degree operations

Fixed number of bytes allocated to edge properties, fixed number and size of
properties (no strings)

No node properties

Source and destination node types fixed for each edge type because of sorted
adjacency list, e.g. cannot have generic member follow member, company, school
(currently 3 different edge types)

Cannot natively support more than 2-way relationships, e.g. member endorsed
member for skill

Common entities is not efficient due to term based partitioning scheme

Query language and evaluation under developed, e.g. no composition, not
declarative, no planning

Old implementation assumptions, e.g. sizes of adjacency lists (fan-out for member
to member connections much smaller than Richard Branson’s followers)




Liquid : our next generation graph

Enable use cases not previously possible
or efficient to execute 1n current system

N-way relationships Fast-joins  Rich properties

Democratize adding and querying Graph data

No-cost schema evolution

Graph-oriented query language




Liquid Key Desirable Properties

All relations are first class

O(k) navigation
(required for fast joins)

O(k) schema evolution
(easy to add and evolve a live system)

Graph oriented query language




Representing a Graph
as a log of Nodes and Edges

Predicates

{“name”}
{"employee"}
{"employer"}
{"start _date"}

: {"linkedin"}

: {"LinkedIn Corporation"}

: {A sub: 1000 pred: 100 obj:

: {"fred"}

: {"Fred M'Bogo"}

: {A sub: 1003
: {}

: {A sub: 1006
: {A sub: 1006
: {"2008"}

: {A sub: 1006
: {D sub: 1006
: {"2009"}

: {A sub: 1006

pred:

pred:
pred:

pred:
pred:

pred:

obj:

obj:
obj:

obj:
obj:

obj:

linkedin
(1000)

employee employer

(101) (102)

Start_date
(103)




Representing a Graph
as a log of Nodes and Edges

Values

linkedin
(1000)

{“name”}
{"employee"}
{"employer"}
{"start_date"}

: {"linkedin"} employee employer
: {"LinkedIn Corporation"} (101) (102)
: {A sub: 1000 pred: 100 obj:
: {"fred"}
+ {"Fred M'Bogo™} . start _date
: {A sub: 1003 pred: obj: —
: () (103)
: {A sub: 1006 pred: obj:
: {A sub: 1006 pred: obj:
: {"2008"}
: {A sub: 1006 pred: obj:
: {D sub: 1006 pred: obj:
{"2009"}
: {A sub: 1006 pred: obj:




Representing a Graph
as a log of Nodes and Edges

Entities

linkedin

{“name”}
{"employee"}
{"employer"}
{"start_date"}

{"linkedin"} employee employer
: {"LinkedIn Corporation"} (101) (102)
: {A sub: 1000 pred: 100 obj:
: {"fred"}
: {"Fred M'Bogo"} _ start date
: {A sub: 1003 pred: obj: —
: () (103)
: {A sub: 1006 pred: obj:
: {A sub: 1006 pred: obj:
: {"2008"}
: {A sub: 1006 pred: obj:
: {D sub: 1006 pred: obj:
: {"2009"}
: {A sub: 1006 pred: obj:




Representing a Graph

as a log of Nodes and Edges

Relationships

(subject, predicate, object) inkedin
(1000)

“name” }
"employee"}
"employer"}
"start date"}

: {"linkedin"} enuﬂoyee enuﬂoyer
: {"LinkedIn Corporation"} (101) (102)

: {A sub: 1000 pred: 100 obj:
: {"fred"}

: {"Fred M'Bogo"}

: {A sub: 1003 pred: 100 obj: start_date

(103)

: {A sub: 1006 pred: 101 obj:
: {A sub: 1006 pred: 102 obj:
: {"2008"}

: {A sub: 1006 pred: 103 obj:
: {D sub: 1006 pred: 103 obj:
: {"2009"}

: {A sub: 1006 pred: 103 obj:




Liquid Inverted Indexing
for O(k) Navigation

{“name”}

{"employee"}
{"employer"}
{"start_date"} predicate/object

{"linkedin"} 1005 {p:100 0:1004}
{"LinkedIn Corporation"}

{A sub: 1000 pred: 100 obj:
{"fred"}

{val: "Fred M'Bogo"}

{A sub: 1003 pred: 100 obj:
{}

{A sub: 1006 pred: 101 obj:
{A sub: 1006 pred: 102 obj:
{"2008"} +

{A sub: 1006 pred: 103 obj: . . . .

(D sub: 1006 pred: 103 obj: P (predicate), O (object) indices
{"2009"}

{A sub: 1006 pred: 103 obj:

1007 {p:101 o0:1003},
1008 {p:102 o0:1000},
1010 {p:103 0:1009},
1011 {p:103 0:1009},
1013 {p:103 o0:1012}

as hash tables in memory




Liquid Inverted Indexing

{“name”}
{"employee"}
{"employer"}
{"start_date"}

{"linkedin"}

{"LinkedIn Corporation"}

{A sub: 1000 pred: 100
{"fred"}

{val: "Fred M'Bogo"}
{A sub: 1003 pred: 100
{}

{A sub: 1006 pred: 101
{A sub: 1006 pred: 102
{"2008"}

{A sub: 1006 pred: 103
{D sub: 1006 pred: 103
{"2009"}

{A sub: 1006 pred: 103

obj:

obj:

obj:
obj:

obj:
obj:

obj:

for O(k) Navigation

SP index

subject/
predicate

{s:1003 p:100}

{s:1006 p:101}

{s:1006 p:102}

{s:1006 p:103}

+ OP and SPO indices




Prologin (Datalog) Query Language

Edge (“‘el”, “employee”, “fred”).
Edge (‘el”, “employer”, “linkedin”).
Edge (“el”, “start date”, “20097).

Employment(p, c, d) :-
Edge (e, “employee”, p),
Edge (e, “employer”, c),
Edge (e, “start date”, d).

Employment (“fred”, “linkedin”, “2009”).

Employment (“fred”, "“linkedin”, )?

Employment(_, “linkedin”,
Employment(_, _, “20097)7
Employment(_, “linkedin”,

Like(a, b) :-
Edge (a, “like”, b).

Like(“el”, “al”).

Employeeliked(c, 1) :-
Employment(e, c, ),
Like(e, 1).

EmployeeLiked (“linkedin”,
EmployeeLiked(_, “al”)?
EmployeeLiked (“linkedin”,

“20097)?

2

e

\\alll) 2

Datalog as core
option to add other bindings
such as SQL




Query Evaluation

Dynamic cost-based

Skew Aware




Community Sharding

. . Adrian Land's Professional Network
Llnked' MaPS as of January 25, 2011




Community Sharding
(initial thoughts)

“Linear Deterministic Greedy” is competitive with METIS (current
best offline algorithm), particularly so when the number of partitions

is small, < 100
35% increase in PageRank performance relative to random

Liquid advantages:
1. We're not actually streaming

2. Special handling (random) for large fan-outs
3. Small number of partitions




Distributed Query Evaluation
(initial thoughts)

Each node is a Liquid instance

Federated query evaluation

optimize for single node win
if lose:

build small database

accumulate partial results from shards, D round trips
issue final query against small database




Search at Linkedin

Already covered in SIRIP yesterday

Multiple verticals — people, jobs, companies, groups
Query intent - small set of likely intents, much easier to guess

Architecture - Conventional doc-sharded inverted index

Graph influence on retrieval

Added 15t degree to people index
2nd degree comes from Graph




Should Graph and Search converge?

. Graph provides full and precise results, focus on traditional database
query optimization (joins, multiple index structures)

. Search provides best effort results focus on relevance, traditional IR
techniques

. A single Graph index for multiple domains (members, companies,
jobs, schools, skills)
. A Search index per domain

. Graph N-way relations are 1st class

. Search 2-way relations are 1t class

. How about pre-materializing N-way relations as 2-way relations?
Which combinations of 2 dimensions to materialize?

Lists as payload, e.g. member endorsed member => list of skills




Likely Direction

Leverage best of what each system does best

Create query language and evaluator that leverages best of both







