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his research is part of a larger effort to build machine-based tools for developing scientific

theories. In analogy with the research process in empirical research, we describe a logical cycle
of theory development: (1) starting with an informal version of a theory, (2) then moving to its
formal representation, (3) applying formal logic to investigate this representation, and (4) using
the results as feedback for the update / revision of the original theory. A central aspect of the logical
cycle is the detection of the (hidden) implications of a theory (called “partial deductive closure’’).
In this paper, we present an algorithm that performs the partial deductive closure for a relevant
class of theorems, while filtering out trivial results. The algorithm is applied to an important
organization theory, Organizational Ecology, and is shown to generate new theorems of interest.
(Organizational Ecology; Theory-Building; Logic Modeling; Automated Deduction; Artificial Intel-

ligence)

1. Introduction

Computer simulation has become a standard tool in
Management Science. A domain is represented in a for-
mal language, and the properties of the domain are in-
vestigated through the properties of the formal repre-
sentation (the “simulation model”).

Traditionally, such representations used equational
mathematics, e.g., numerical difference equations, as
the formal language (Forrester 1961, Cohen et al. 1972,
Burton and Obel 1984). Recent years, however, have
seen various efforts to use “qualitative’”” or ““declara-
tive” representation languages instead (Baligh et al.
1990, Glorie et al. 1990, Blanning 1992, Carley and Prie-
tula 1994, Péli et al. 1994, Kamps and Péli 1995). These
efforts are usually inspired by progress in Artificial
Intelligence—and by domains so complex that they
defy numerical representation. The researcher may not
know the numerical value of a variable, but still want
to incorporate this variable in the model. For this rea-
son, qualitative languages are an attractive alternative
for numerical languages.

With the advent of expert systems, a large variety of
qualitative languages became available. The common
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denominator of these languages is usually (a fragment
of) First Order Logic (FOL), the best known formal
logic. This commonality has focussed attention on the
use of formal logic as a representation language, both
in Management Science and elsewhere (Kimbrough and
Lee 1988a and 1988b, Kimbrough 1990, Masuch 1992,
Bhargava and Kimbrough 1994). As a logic, FOL has
considerable expressive power and has useful features
for developing better theories. For example, FOL pro-
vides precise criteria for theoretical consistency (is a the-
ory contradiction-free?), soundness (are the explanations
of a theory logically correct?) and contingency (is the the-
ory falsifiable?).

By testing a theory for these properties, the researcher
can develop better theories with the help of logic. The
researcher formulates his theory in a logical language,
and the computer investigates the logical properties of
this representation. The logical representation itself
could then play the role of a simulation model, where
the computation of the “outcome’ is done through log-
ical inferencing.

Now, if one wants to spell out the logical conse-
quences of a set of assumptions, then one is, technically
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speaking, working on the “deductive closure” of this
set ““under the rules of inference.” In formal logic, the
deductive closure of a theory is taken for granted—in
fact, the formal definition of a “theory” is a set of as-
sumptions closed under the rules of inference (Tarski
1956). In reality, however, it is impossible to generate
the complete deductive closure of a premise set, for the
resulting set is infinite (since it contains all tautologies,
i.e.,, expressions that are always true and hence follow
from any set). In consequence, the complete deduc-
tive closure of a premise set is neither realizable nor
desirable—only partial deductive closures provide use-
ful results.

In this paper, we present an algorithm that performs
an efficient partial deductive closure for an important
class of formulas. We call this class SPtSP, (“single
property to single property’); it comprises conditional
formulas that link one property of an object to another
property of an object. Examples include: if the size of an
organization increases, then its inertia increases; and if the
inertia of an organization increases, then its survival chance
increases. Statements of this form provide the backbone
of any empirical social science; arguably, it is the most
important class of empirical statements in the social sci-
ences.

In §2, we give an overview of the representation lan-
guage, FOL. Section 3 discusses the role of formal logic
in theory-building; in analogy to the cyclic research pro-
cess in empirical research, we describe a logical cycle of
theory development. Section 4 describes the algorithm.
The next two sections (5 and 6) show the algorithm in
action, working on the “inertia’ fragment of an impor-
tant organization theory, Organizational Ecology (Han-
nan and Freeman 1984 and 1989). As it turns out, our
algorithm generates more theorems than the original
discursive theory of organizational inertia made ex-
plicit, some of which are of theoretical interest. The last
section discusses some limits to our approach, regard-
ing both the algorithm and the use of FOL as a repre-
sentation language.

The research reported in this article is part of a larger
effort at the Applied Logic Laboratory (ALL) of the Uni-
versity of Amsterdam to develop a formal methodology
of theory analysis and theory building. This effort in-
cludes the application of standard logics to existing the-
ories in organization and management (Péli et al. 1994;
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Péli and Masuch 1997; Bruggeman 1997), the develop-
ment of “nonstandard’” logics especially suited for the
representation of action theories (Huang et al. 1996,
Masuch and Huang 1996, Pélos and Masuch 1995), and
the development of software that supports theory build-
ing using formal logic (O Nuall4in 1993).

2. Formal Machinery: First Order
Logic
The formal language used in this article is first order
logic (FOL; see Péli et al. 1994, Appendix A, or standard
textbooks, such as Jeffrey 1967, Gamut 1991, Gabbay
and Guenthner 1989). Developing from Aristotle’s
treatment of syllogisms, FOL is usually identified with
““classical’” logic, or even with the logic by the general
public. FOL is based on the idea that the domain con-
sists of objects (the “universe”’ of discourse) that have
certain properties, or that stand in certain relations with
each other. Objects are represented by symbols for con-
stants and variables; properties and relations are re-
ferred to by predicate symbols. More specifically, there
are:
Quantifiers: symbols that range over the domain, i.e.,
V “for all,”” and 3 ““exists.”
Variables: name slots for objects that allow the use of
quantifiers (roughly comparable to pronouns in Eng-
lish, we use lower case symbols, e.g., p, 4, x, x1, - * *).
Predicate constants: names for properties of, or rela-
tions between, objects (we use capitalized strings of
symbols, e.g., Size(o,, s1), or infix predicates, e.g., (s
> 55)).
Logical connectives: symbols that allow the building of
complex expressions from simple expressions (the five
standard connectives are negation (— “not”), disjunc-
tion (V “or”), conjunction (A “‘and”), conditional
(= “if-then’’), and biconditional (<~ “if-and-only-if"’)).
A first order language may also include constants
(fixed names for objects) and function symbols. Table 1
summarizes the logical symbols of first order logic, and
Table 2 is a truth table for the logical connectives. Here
are four examples of expressions in FOL. The first ex-
ample formally expresses transitivity of ‘“>"’; the next
three examples are from the formalization of Organi-
zational Ecology (further explained in §5):
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Table 1 Logical Symbols of First Order
Logic

Quantifiers v For All

3 Exists
Connectives —_ not

Y or

A and

- if-then

© if-and-only-if

e If x is larger than y and y is larger than z then x is
larger than z:

Vx,y,z((x > y) Ay >z) > (x > 2)).

e For every organization, there is some size that it
has:

Vx, t(O(x, t) — 3s(Size(x, s, t))).

(Read: For all x, t if x is an organization at time  then
there exists some size s that x has at time t.)

e If an organization exists at t; and at t, then this
organization exists between t; and t,:

vx/ t/ tl/ tz(o(x/ tl) A O(x/ tz)
A >1H) A >1)— 0K, ).

(Read: For all x, t, t, t, if x is an organization at time t;
and x is an organization at time f, and ¢ is a timepoint
between t; and t, (t; < t < t,) then x is an organization
at time ¢.)

¢ More complex organizations have longer reorgan-
ization periods than less complex organizations of the
same class during similar reorganizations:

Table 2 Truth Table for the Logical Connectives (‘7" symbolizes

true, “F”’ symbolizes false)
p q —p pvaq pPAG pq peq
F F T F F T T
F T T T F T F
T F F T F F F
T T F T T T T
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Vx,y,re, ¢, c1, o ta, by, 1(0(x, t,) A Oy, t,) A Oy, t,)
A Class(x, ¢, t,) A Class(y, c, t,) A Reorg(x, t,, t;)
A Reorg(y, t,, t.) A Reorg_type(x, re, t,)
A Reorg_type(y, re, t,) A Compl(x, ¢, t.)
A Compl(y, ¢, ) A (c2 > ¢1) = (£ > t)).

(Read: For all x, y, re, ¢, ¢1, ¢z, ti, by, t. if x and y are
organizations of the same class ¢ beginning the same
type of reorganization re at time t, with complexities ¢,
and c, respectively, and x finishes reorganization at t,,
and y finishes reorganization alive at time ¢., and c, ex-
ceeds ¢y, then t. exceeds t;,.)

Propositional systems can be represented in FOL as
sets of formalized statements ordered according to the
relation of logical consequence. Such an ordering distin-
guishes between premises and conclusions; conclusions
are justified if they are derivable from premises through
sound inference rules. Here is a classical example from
Aristotle’s collection of syllogisms (here Socrates is a
term constant):

All men are mortal Vx(Man(x) = Mortal(x))

Man(Socrates)
Mortal(Socrates)

Socrates is a man
Socrates is mortal

The first two statements are premises; the last statement
is a conclusion. The next example gives an invalid syl-
logism:

Some men are mortal Jx(Man(x) A Mortal(x))

Man(Socrates)
*Mortal(Socrates)

Socrates is a man
*Socrates is mortal

These premises do not justify the conclusion, since the
existential statement about mortality does not exclude
the possibility that some men are not mortal, and Soc-
rates may be an instance of the immortal group.

From a logical point of view, a theoretical explanation
coincides with derivability; the derivation “explains” the
conclusion in logical terms (Salmon 1989). The notion
derivability can be brought to bear upon the basic log-
ical properties of a set of propositions; if the set is in-
consistent, then it gives rise to contradictions, and hence
to the derivation of the falsum (a formula that is always
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Figure 1 The Logical Cycle
theoretical intermediate T partial new
expectations formalize theory consistent | conclusion
(TE) (m sound closure (NC)
IT
revise adequate
update / NC
P . ) vos transcend
revise TE
NC

overrule
TE

no

false). If the set is tautological (i.e., if the conjunction of
its elements is always true) then its negation (i.e., the
negation of the conjunction of its elements) gives rise to
the falsum. If the set is contingent (falsifiable in the terms
of standard epistemology), then neither the set itself nor
its negation can give rise to the falsum; that is to say, it
is neither necessarily true nor necessarily false.

3. Developing Theories with Logical

Tools
Theories can be seen as propositional systems, and
logic is traditionally used to order such systems. Logic
provides the rationale for theoretical explanations; ex-
planations, in turn, provide the justification for a the-
ory. In this view, the “implications’”” of a theory are
crucial for its justification: the better a theory, the better
its “predictions’””. The formal definition of a theory is
a set of statements “closed’” under the rules of infer-
ence (Tarski 1956), which would suggest that the logic
itself does the job of providing the implications. In
practice, however, the logical closure of a theory is not
a given; some agent is needed to make logic happen,
and to carry out the deductions. As a consequence, we
need to distinguish between a premise set (an explicitly
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stated set of premises), a complete theory (the premise
set closed under the rules of inference), and interme-
diate theories that represent the premise set plus some,
but not necessarily all, of its logical consequences. In
addition, we must recognize that theories are not al-
ways conceived as explicitly stated sets of formulas;
they can also be perceived as some kind of knowledge
of a theoretician regarding a domain, regardless how
this knowledge is represented. For want of a better
term, we call this kind of knowledge theoretical expec-
tation. Obviously, theoretical expectations depend on
their bearer and may change as the theory evolves
(Lakatos and Musgrave 1970).

Formal inferencing and theoretical expectations inter-
act. Conclusions that confirm earlier expectations
strengthen confidence in the theory and unearth new
ways to test it. Unexpected conclusions invite the the-
oretician to revise either his expectations or the original
theory. If the theory does not make the right predictions,
it must change, so finding out which conclusions are
implied by a theory is an important part of theory build-
ing. Much like the cyclic research process in empirical
research (problem identification; hypothesis formula-
tion; research design; data collection; data analysis; hy-
pothesis testing), there is a logical cycle in the interaction
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between theoretical expectations and formal infer-
encing.

The logical cycle can be described using the termi-
nology introduced above (Figure 1):

Theoretical expectations (TE) are formalized, yielding
an intermediate theory (IT). The intermediate theory
may or may not be consistent. If it is inconsistent, either
the formalization or the theoretical expectations require
revisions. If it is consistent, continued theorizing yields
a partial closure of the original IT. New conclusions
(NC) can (1) confirm the theoretical expectations, (2)
transcend the theoretical expectations, or (3) contradict
the theoretical expectation. In the first case, the partial
closure can continue; in the second case, the theoretical
expectations need to be updated; in the third case, either
the formalization of the original expectations or the ex-
pectations themselves need to be revised. The cycle is
never truly complete, since the deductive closure of any
set is infinite. But not all conclusions that are technically
derivable from a given set are of interest. For example,
tautologies are derivable from any set of premises. But
because they are always true, they tell us nothing about
the domain—they are true regardless of the structure of
the domain.

Although everybody agrees that theoretical labor is
an important part of a researcher’s work—thinking a
theory through, taking it to its logical conclusions, as-
certaining its consistency and coherence, and so on—
the logical cycle has received very little attention in the
literature. In the past, there was no method to guide the
researcher more systematically through a maze of po-
tential conclusions. With the advent of logical program-
ming, however, we can now automate a partial deduc-
tive closure of a given set of assumptions.

4. Deduction of Theorems

We can get a partial deductive closure of a set of prem-
ises by applying inference rules to deduce new expres-
sions (in technical terms ‘““well-formed formulas,” or
“formulas’” for short). In this section, we describe an
algorithm that performs a partial deductive closure of
an important class of theorems. Our algorithm focuses
on theorems that relate two properties of the domain.
We call this class of statements “’single property to sin-
gle property” (SPtSP); it comprises conditional formu-
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las that link one property of an object to another prop-
erty of an object, as noted above. The algorithm is called
PDC-1.

4.1. Informal Description of the Algorithm

The algorithm uses premises of the form SPtSP. An
SPtSP expression relates one quantifiable property to
another, such as higher inertia yields to higher survival
chances. Additionally, such an expression may have con-
straints that restrict it to certain types of objects, e.g., to
reorganization-free organizations: reorganization-free organ-
izations with higher inertia have higher survival chances. As-
sume that a domain is characterized by the following
premises:

Constraints; A Property; = Property,,
Constraints, A Property, — Propertys,
Constraints; A Property; — Propertys.

A theorem that relates Property; with Property, can be
deduced from these three premises by “cutting out”
Property, and Property;:

Constraints; A Constraints, A Constraints;
A Property; — Property,.

As cases in point, we take three premises from the do-
main of Organizational Ecology. The following notation
is used to represent SPtSP class expressions: [Con-
straints] A Property; — Property,. The Property; and
Property, are referring to two quantifiable properties of
the domain. The [Constraints] are the restricting con-
juncts (either one or more conjuncts). The square brack-
ets “[- - -] are used to differentiate the conjuncts of the
Constraints from Property; in the antecedent. These
brackets are added only to improve readability, and are
ignored by the formal machinery.

Assume we have the following premises (Assump-
tions 5, 3b, and 2a in §5, respectively):

* Larger organizations have higher inertia than
smaller organizations of the same class:

VC, il/ iZ/ 51, 52, tl/ t2/ X, y([o(x/ tl) A O(]// tZ)
A Class(x, ¢, t;) A Class(y, ¢, t,) A Size(x, sy, t1)
A Size(y, sy, t2) A Iner(x, iy, ;)

A Iner(y, ip, 1)1 A (5, > 81) = (ip > iy)).
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(Read: For all ¢, iy, iy, $1, 52, t1, tp, X, ¥ if x and y are
organizations of the same class c at time t; and f,, and
s; and i; are, respectively, the size and inertia of x at ;
and s, and i, are, respectively, the size and inertia of y
at t,, and s, exceeds s;, then i, exceeds i;.)

* Reorganization-free organizations with higher in-
ertia have higher reproducibility:

Vill iZ/ rpll rPZ/ tl/ t2/ X, }/([O(x, tl) A O(y/ t2)
A Reorg_free(x, t;, t;) A Reorg_free(y, t,, t,)
A Iner(x, iy, t1) A Iner(y, iy, t,) A Repr(x, rpy, t;)

A Repr(y, rpa, t)] A (i > i1) = (rp, > 1p1)).

(Read: For all iy, iy, rpy, 1p2, 1, ta, x, y if x and y are
organizations not in reorganization at time t; and t, re-
spectively, and i; and rp, are, respectively, the inertia
and reproducibility of x at ¢;, and i, and rp, are, respec-
tively, the inertia and reproducibility of y at t,, and i,
exceeds i; then rp, exceeds rp;.)

* Organizations with higher reproducibility have
higher reliability / accountability:

Vray, ray, tp1, P2, h, ta, X, Y([O(x, )
A Oy, t;) A Repr(x, rpy, t1) A Repr(y, rp,, ta)
A Relace(x, ray, t;) A Relacc(y, ra,, t,)]

A (rpy > 1py) = (ray, > ray)).

(Read: For all ray, ra,, rpy, tp2, b1, t2, X, y if x and y are
organizations at time t, and ¢, respectively, and rp; and
ra, are, respectively, the reproducibility and reliability /
accountability of x at ¢;, and rp, and ra, are, respectively,
the reproducibility and reliability / accountability of y at
t,, and rp, exceeds rp, then ra, exceeds ra,.)
These premises are used to create a new theorem relat-
ing size and reliability / accountability, by following the
same steps as in the abstract example. The set of con-
straints on this theorem is the superset of the constraints
on the individual premises. Identical conjuncts in this
set can be removed (since (p A p) © p). This leads to the
following new theorem:

* Larger reorganization-free organizations have
higher reliability /accountability than smaller organi-
zations of the same class:

1234

Ve, ray, 1z, 51, 52, b, ta, X, y([O(x, t1) A O(y, t,)
A Reorg_free(x, t;, t;) A Reorg_free(y, t,, t,)
A Class(x, ¢, t;) A Class(y, ¢, t,) A Size(x, sy, t;)
A Size(y, sy, t2) A Relacce(x, ray, t1)
A Relacc(y, ray, t2)] A (s, > 51) = (ra, > ray)).

(Read: For all ¢, ray, ray, s1, 52, 11, tp, %, y if x and y are
organizations of the same class ¢ and not in reorgani-
zational period at time points ¢, and t, respectively, and
s; and ra, are, respectively, the size and reliability /ac-
countability of x at ¢, and s, and ra, are, respectively,
the size and reliability /accountability of y at f,, and s,
exceeds s, then ra, exceeds ra,.)

4.2. Formal Specification
The partial deductive closure of a premise set is gener-
ated in three steps:

Filter premises: The premises of the domain are fil-
tered for SPtSP premises. Only these premises are used
to construct new theorems.

Deduce new theorems: The construction of new the-
orems. The algorithm uses the SPtSP premises to derive
new SPtSP theorems.

Filter new theorems: The set of constructed theo-
rems is refined by removing: (1) vacuously true theo-
rems, (2) weaker versions of other theorems in the set,
and (3) superfluous conjuncts.

Table 3 introduces the notation we use to refer to the
premise set and the derived theorems.

4.2.1. Filter Premises. The algorithm PDC-1 first
identifies the premises that are in SPtSP form, that is, of
the form:

[Constraints;] A Property; — Property,.

Table 3 Premise Sets and Theorems

Symbol Description

> The original premise set used as a starting point for the algorithm

>*  The original premise set X restricted to SPtSP premises

3’ The set of SPtSP theorems derived from =*

=*  The resulting set of premises and theorems = U ', i.e., a partial
closure of =
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Let X* denote the premise set X restricted to SPtSP
premises. Define X* as follows:
1. For every premise 0 € X:
(a) IF o belongs to the SPtSP class
THEN ¢ € Z*
ELSE o & X*
2. Nothing else is in X*

4.2.2. Deduce New Theorems. PDC-1 constructs
new theorems for each pair of properties described in
the SPtSP premises. The algorithm uses a depth-first,
forward-chaining strategy.

Let Z* denote the set of SPtSP premises and ® the set
of properties described in X*. Let o; denote an SPtSP
formula ([Constr;] A Prop, = Prop;). The deduced the-
orems are denoted by X', the set of SPtSP theorems de-
rived from X*.

Step 1. The algorithm constructs new theorems for each
pair {Prop,, Prop,} of properties in . Pairs of the same
properties {Prop,, Prop,} are excluded, since they would
yield tautologies like organizations with higher inertia have
higher inertia.

Step 2. For each pair of properties {Prop,, Prop,} the
algorithm uses a premise having Prop, in the antece-
dent:

[Constr;] A Prop, = Prop;,

to construct an initial formula o, which is refined step
by step. If there are no (more) premises that relate Prop,
to another property, there are no (more) theorems that
relate Prop, and Prop,. The algorithm terminates for
{Prop,, Prop,} and continues with the next pair of prop-
erties.

Step 3. The formula o, that relates Prop, and Prop;

[Constr;] A Prop, = Prop;,

is refined if the algorithm can find a premise that relates
Prop; and Prop;.::

[Constr;;1] A Prop; = Prop;.1.

This results in a formula o;.; that relates Prop; and
Prop;.1:

[Constr; A Constr;;] A Prop, = Prop;..

To avoid cycles in this refinement process, the algorithm
only considers premises that introduce a new property.
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For example, if an initial formula relating inertia and
reproducibility is found in Step 2, then a premise relating
reproducibility and inertia is not applied in Step 3, since
the property inertia was used before. This prevents the
construction of some tautologies (like organizations with
higher inertia have higher inertia).

If the formula o; cannot be further refined (there is no
(further) premise that relates Prop; and Prop;.), the al-
gorithm has reached a dead end. The algorithm retracts
the last refinement o; and attempts to construct other
refinements of o;_, (the previous version of ¢;).

Step 4. The refinement of formula o, is completed if a
theorem is constructed that relates Prop, and Prop, (in
other words Prop;. in Step 3 is the desired Prop;). The
new theorem o, is added to X', the set of deduced
SPtSP theorems. Since there may be more than one the-
orem that relates Prop, and Prop,, the algorithm retracts
041 after a successful theorem construction in Step 4 in
order to find formulas constructed using different com-
binations of premises. This allows for the construction
of theorems relating to different contexts, like the sur-
vival chance of reorganizing organizations decreases with
time and the survival chance of reorganization-free organi-
zations increases with time.

If Prop;, in Step 3 is not the desired Prop,, Step 3 is
repeated.

PDC-1 uses a standard algorithm for variable unifi-
cation (Robinson 1965) in Step 3. This variable unifica-
tion is necessary to determine that a formula, such as
Vo,, t,(O(04, t,)), can be made equal to another formula,
such as Vx, y(O(x, y)), because the variables can be uni-
fied, in this case x with 0, and y with ¢,.

4.2.3. Filter Theorems. We have three filters to re-
fine the set of constructed theorems. The first filter re-
moves vacuously true theorems, the second removes
weaker or identical versions of theorems, and the last
filter removes superfluous conjuncts in theorems. The
filters create a more concise set of theorems by removing
non-interesting theorems.

Vacuously True Theorems. Sometimes premises can-
not be combined directly, since different premises may
have incompatible constraints. If we construct a new
candidate theorem with incompatible premises, i.e.,
premises having contradictory constraints, for example,
we create a vacuously true theorem by combining
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premises for reorganizing organizations with premises
for reorganization-free organizations. A vacuously true
theorem has an antecedent that can never be fulfilled in
the context of the premises (there is no model that sat-
isfies both the antecedent and the premises). Recall that
the theorems have the form of an if-then statement: if
the antecedent holds then the consequent must hold.
Therefore, we can prove any consequent from the the-
orem’s antecedent if the antecedent never holds. In the
truth table for the logical conditional, Table 2, if p is false
then the conditional p — g is always true, regardless of
q’s truth value.

Suppose that the premise set contains the following
premise:

An organization cannot be reorganization-free and

reorganizing at the same time:
Vx, t1, t,(—(Reorg_free(x, t;, t,) A Reorg(x, t;, t))).

Assume that we have constructed a theorem with the
following constraints:

For all reorganization-free organizations

under reorganization . . .
Vx, ti, tp, - -([O(x, ) A Reorg_free(x, t;, t,)
A Reorg(x, t, t) A =+ T A oo = 00),

In this case, the antecedent of the theorem is inconsis-
tent with the premise set, and the theorem is true re-
gardless of the consequent (which may be even the
falsum).

In sum, if we can substitute the falsum for the conse-
quent in a theorem, and this theorem still holds, then
the theorem is vacuously true. Such a theorem only
holds because of the (hidden) contradiction in its ante-
cedent. Vacuously true theorems do not provide any
theoretical insights, therefore, their removal does not
affect the theory.

Filter Out Weaker Versions of a Theorem. Different
premises can lead to different theorems that relate the
same pair of properties. Sometimes these theorems are
complementary: for example, one theorem is restricted
to reorganizations, and another to reorganization-free
periods, like the survival chance of reorganizing organiza-
tions decreases with time and the survival chance of
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reorganization-free organizations increases with time. But in
other cases, one of them may subsume the other: for
example, if one theorem states that the inertia of organi-
zation x is larger than the inertia of organization y and an-
other theorem that the inertia of organization x is larger
than or equal to the inertia of organization y, the latter
theorem is weaker. In this case weaker versions of the
same theorem are removed. The filter evaluates for
every theorem whether it is the unique or strongest ver-
sion of the formula. Identical theorems and theorems
with weaker antecedents or stronger consequents are
removed. Identical or weaker versions of a theorem are
uninteresting because they can be derived from a
stronger version. For example,

[Org(o;) A Orglo,)]
A (Prop;(0;) = Prop;(0,)) = (Prop,(0;) > Prop,(0,)),
is preferable to
[Org(o;) A Org(o,) A Reorg(o;) A Reorg(o,)]
A (Propi(01) > Prop;(0,)) = (Prop,(0;) = Prop,(0,)),

since [Org(o;) A Org(oy)] is implied by [Org(o;)
A Org(o,) A Reorg(o;) A Reorg(o,)]; and (Prop;(o;)
= Prop;(0,)) is implied by (Prop;(0;) > Prop;(0,)); and
finally (Prop,(0;) > Prop,(0,)) implies (Prop.(o,)
= Prop,(02)).

Simplify Theorems. A constructed theorem may re-
quire the existence of ““intermediate’”” conjuncts. The for-
mula relating size and reliability / accountability derived
in the example of §4.1 would actually read:

V¢, iy, iy, 181, Tz, tP1, TP2, S1, S, b1, b, X, Y([O(x, t;)
A O(y, t,) A Reorg_free(x, t1, t;)
A Reorg_free(y, t,, t,) A Class(x, c, t;)
A Class(y, c, t2) A Size(x, sy, t1) A Size(y, s, t2)
A Inex(x, i, t;) A Iner(y, iy, t)
A Repr(x, tp1, ) A Repr(y, rp,, to)
A Relace(x, ray, t;) A Relacc(y, ra,, t,)]
A (8; > 81) = (ra, > ray)).

The inertia and reproducibility conjuncts must exist for
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the conditions of the premises to be fulfilled. If their
existence is postulated (as is the case in the formal in-
ertia theory), these conjuncts can be removed from the
constraints.

* For every organization, there is some inertia that it
has:

Vx, t(O(x, t) = Ji(Iner(x, i, ))).

* For every organization, there is some reproducibil-
ity that it has:

Vx, t(O(x, t) = Jrp(Repr(x, rp, t))).

The inertia and reproducibility conjuncts can now be de-
rived from the organization conjuncts. The set of con-
straints is simplified (this was tacitly done in §4.1):

V¢, ray, 1y, 51, 53, t, ta, X, y([O(x, £)
A O(y, t;) A Reorg_free(x, t;, t;)
A Reorg_free(y, t,, t,) A Class(x, c, t)
A Class(y, ¢, t2) A Size(x, s1, 1) A Size(y, s,, t,)
A Relace(x, ray, t1) A Relacce(y, ra,, t,)]
A (sy > 81) = (ra, > ray)).

This concludes the description of our algorithm for
the partial closure of SPtSP formulas. In the next two
sections, we show the algorithm in action; it is applied
to a fragment of an important organization theory, the
“inertia”” part of Organizational Ecology (OE). We first
give a brief account of OE, then provide a formalization
of the inertia part of OE, and finally show how the al-
gorithm performs the partial deductive closure of this
part.

5. Inertia Fragment of

Organizational Ecology

Most organizational theories regard organizations as
agents that adapt rationally to changing environments
(Thompson 1967, Mintzberg 1979). OE, in contrast, sees
organizational structures evolving through environ-
mental selection. When environmental conditions
change, new organizations emerge, and maladapted or-
ganizations die.

Organizational ecology employs analogies from bi-
ology. Genes determine the action repertoire of organ-
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isms, whereas organizations’ repertoires are fixed by
their core features. Organizations of the same form
make up a population (just as organisms of the same
form make up a species). Several factors inhibit the flex-
ibility and adaptation of organizations, such as sunk
costs, political coalitions, or the hazards of lost legiti-
macy.

Organizational ecology considers changes in the en-
vironment to be largely unpredictable. Organizations
are characterized by structural inertia—if they adapt,
they do so slowly. Contrary to the rational adaptation
approach, however, successful organizations are inert,
not flexible. Organizations must produce their products
or services reliably and account for their actions ration-
ally. To do so, they must be able to reproduce their
structures smoothly. But the factors that facilitate their
reproducibility make organizations resistant to change.
Thus, inertia is a byproduct of reproducibility.

Organizational ecology does recognize the possibility
of rational adaptation. To adapt, organizations must re-
organize. Organizations can change their structures to
a certain degree, but reorganizations typically involve
changes in core features. Such changes are dangerous;
they involve large resources, and organizational learn-
ing must start anew and higher up on the learning
curve. Even if an organization survives a major reor-
ganization, its environment may change in unexpected
ways and the reorganization might be in vain. So if or-
ganizations attempt to adapt, they are not likely to suc-
ceed. Inert organizations—those that resist the tempta-
tion to reorganize—may be less at risk than flexible or-
ganizations.

The inertia part of OE is originally described in Han-
nan and Freeman (1984). A formalization of this theory
in FOL has been published in Péli et al. (1994). We use
the formulas representing the premises of Péli et al.
(1994) as input, and let our algorithm derive the theo-
rems. The premises will be discussed in this section, and
the derivable theorems in §6. Table 4 characterizes the
relation symbols that are used in the formulas of the
inertia fragment.

As noted above, OE stipulates that inertia—not
flexibility—helps organizations to survive (Theorem 1),
the reason being that inertia is associated with reliability
and other features that help organizations to survive.
Assumptions 1-3 are put forward to justify Theorem 1
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Table 4 The Meaning of the Relation Symbols

Symbol Description
Class(x,c,f) Object x is a member of class c at time t
Comp(x.cp,t) Object x is characterized by complexity cp at time ¢
Iner(x,if) Object x has a value of inertia 7 at time t
O(x1) Object x is an organization at time t
Relacc(x,ra, ) Object x has a value of reliability/accountability ra at

time t

Reorg(x, t, ) Object x reorganizes between times t and 1,

Reorg_free(x,t;,t,) Object x has a reorganization-free period between
times t; and t,

Reorg_type(x,rt,f) Object tis in a reorganization of type rt at time ¢

Repr(x,rp,1) Object x has a value of reproducibility rp at time ¢
Sc(x,p,1) The chance of survival of object x is p at time ¢
Size(x,s,1) Object x has a size s at time t

Time(1) Object tis a time-point

x>y Value x is larger than value y

(the original justification in Hannan and Freeman 1984
is not sound, but one can derive the theorem by
strengthening the assumptions, as shown in Péli et al.
1994).

ASSUMPTION 1. Organizations with higher reliability
and accountability have higher survival chance:

vplr P2/ ray, rds, tl/ t2/ X, ]/([O(X, tl) A O(]/, t2)
A Relacce(x, ray, t1) A Relace(y, ray, t) A Sc(x, py, t)

A Sc(y, po, 1)1 A (ray > ray) = (pa > p1)).

ASSUMPTION 2a. Organizations with higher reproduci-
bility have higher reliability and accountability:

vrulr ra,, rplr sz, tlr t?./ X, y([o(x, tl) A O(}/, tz)
A Relacc(x, raq, t;) A Relacc(y, ra,, t,)
A Repr(x, rpy, t1) A Repr(y, rp,, t,)]

A (rp2 > 1py) = (ray > ray)).

ASSUMPTION 2b. Organizations with higher reliability
and accountability have higher reproducibility:

Vray, ray, rps, P2, B, B, X, Y([O(x, ) A O(y, t,)
A Relacc(x, ray, t1) A Relacc(y, ra,, t,)
A Repr(x, rp, t1) A Repr(y, rp,, t5)]

A (rag > ray) = (rpy > 1py)).
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ASSUMPTION 3a. Reorganization-free organizations with
higher reproducibility have higher inertia:

Viy, iy, P1, P2, t, b2, %, Y([O(x, 1) A Oy, t2)
A Reorg_free(x, t,, t;) A Reorg_free(y, t,, t»)
A Repr(x, rp;, t1) A Repr(y, rps, t) A Iner(x, iy, t;)
A Iner(y, iz, t2)]1 A (rpy > rpy) = (i > 7).

ASSUMPTION 3b. Reorganization-free organizations with
higher inertia have higher reproducibility:

Yiy, i, 1, P2, b1, b2, %, y([O(x, 1) A O(y, to)
A Reorg_free(x, t;, t;) A Reorg_free(y, t,, t,)
A Repr(x, rpy, t1) A Repr(y, rpa, t2) A Iner(x, iy, t)
A Iner(y, iz, t2)1 A (iy > iy) = (rpa > 1p1)).

The next two theorems spell out the consequences of
environmental selection through time: (surviving) or-
ganizations will tend to become increasingly inert (The-
orem 2), so their survival chances increase (Theorem 3).
Justifying these theorems requires the assumption that
“reproducibility of structure increases monotonically
with age” (Assumption 4).

AsSSUMPTION 4. The reproducibility of reorganization-
free organizations increases with time:

Vrp, tpa, t, ta, x([Time(t;) A Time(t,) A O(x, t1)
A O(x, t,) A Reorg_free(x, ti, t,)
A Repr(x, rpy, t1) A Repr(x, rp,, t,)]
A (ty > ty) = (rps > rp)).

Under the heading of “reorganization,” Theorem 4
covers organizational change: organizations may at-
tempt structural change, but such change puts the or-
ganization more at risk than inertia. Hannan and Free-
man (1984) claim that Theorem 4 relies on the assump-
tions that reorganization lowers the reliability of
organizational performance (Assumption 6), and that
the structural inertia of an organization increases with
size (for organizations belonging to the same class; As-
sumption 5).

ASSUMPTION 5. Larger organizations of the same class
have higher inertia:
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Ve, i1, iz, 51, 82, 1, ta, %, Y([O(x, t1) A O(y, t,)
A Class(x, ¢, t;) A Class(y, ¢, t2) A Size(x, sy, t1)
A Size(y, S5, t2) A Iner(x, iy, t) A Iner(y, iy, t2)]
A (55> 51) = (iy > iy)).

ASSUMPTION 6. The reliability and accountability of re-
organizing organizations decreases with time:

Vray, tay, t, to, x([Time(t;) A Time(t,)
A O(x, t) A O(x, t,) A Reorgl(x, ty, t5)
A Relace(x, ra;, t;) A Relace(x, ra,, t5)]
A (t, > 1) = (ra, > ray)).

The last and fifth theorem of the inertia fragment
states that “complexity increases the risk of death due
to reorganization.” To simplify the setup, the fifth the-
orem is added as a premise (Assumption 7); this gives
a total of seven assumptions.

AsSUMPTION 7 (Theorem 5). More complex organiza-
tions of the same class have lower survival chances after re-
organizations of the same type:

Ve, ¢, €y Py Prs P2s 1€, e b, b, x, y([O(x, ) A Oy, t,)
A O(x, t.) A Oy, t.) A Class(x, c, t,)
A Class(y, ¢, t,) A Sc(x, p, t.) A Sc(y, p, ta)
A Reorg(x, t,, t,) A Reorg(y, t,, t.)
A Reorg_type(x, re, t,) A Reorg_type(y, re, t,)
A Reorg_free(x, ty, t.) A Sc(x, p1, t.) A Sc(y, p2, t.)
A Compl(x, ¢;, t,) A Compl(y, ¢, t,)]

Ay > )~ (p1 > Pz))

! The fifth theorem is a kind of meta-theorem. It takes as an assumption
that complexity causes longer reorganization periods. Due to the fact that
survival chance increases during reorganization-free periods (Theo-
rems 3) and decreases during reorganization (Theorem 4), it concludes
that complexity decreases the survival chance due to reorganization.
This meta-reasoning requires a slightly more complex form of the al-
gorithm than the version presented in this article. We treat the original
fifth theorem as an assumption (Assumption 7), which enables us to
use the simpler version of the PDC-1 algorithm and still derive the
same number of theorems.
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In addition, the premise set contains twelve premises
that formulate the necessary background knowledge,
e.g., organizations are either reorganizing or not reor-
ganizing. These premises are implicitly used in the orig-
inal text (Meaning Postulates 1-12).

MEANING POSTULATE 1. Reorganization-free from t; to
t, means reorganization-free at t; and at t,:

Vx, t, t(Reorg_free(x, t;, t,)
— Reorg_free(x, t;, t;) A Reorg_free(x, t, t;)).

MEANING POSTULATE 2.  Something that is equal cannot
be larger, and something that is larger cannot be smaller:

Vx, y(—=((x > y) Alx =) A —=((x >y) A (y > x))).

MEANING POSTULATE 3. If x is larger than y and y is
larger than z, then x is larger than z:

Vx,y, z((x > y) A (y > z) > (x > 2)).
MEANING POSTULATE 4. A reorganization takes time:
vx/ tar tb(Reorg(X, ta/ tb) - (tb > ta))

MEANING POSTULATE 5. An organization cannot be
reorganization-free and reorganizing at the same time:

Vx, t;, ta(—(Reorg_free(x, t;, t,) A Reorg(x, t;, t2))).

MEANING POSTULATE 6. An organization cannot
change its class without reorganizing:

vxl t]/ t2/ Cl/ CZ(O(x/ t]) A O(x/ t2)
A Reorg_free(x, t;, t,) A Class(x, ¢y, t;)
A Class(x, ¢, 1) = (¢ = ¢3)).

MEANING POSTULATE 7. If an organization exists at t,
and at t,, then this organization exists between t, and t:

vx/ t/ tl/ tz(o(x/ tl) A O(x/ t2)
A@E>H) A >1) 0@, ).

MEANING POSTULATE 8. For every organization, there
is some reliability and accountability that it has:

Vx, t(O(x, t) = Fra(Relacc(x, ra, t))).

MEANING POSTULATE 9. For every organization, there
is some reproducibility that it has:

Vx, t(O(x, t) = Arp(Repr(x, rp, 1))).
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MEANING POSTULATE 10. For every organization, there
is some survival chance that it has:

Vx, t(O(x, t) = Ap(Sc(x, p, 1))).

MEANING POSTULATE 11.  For every organization, there
is some inertia that it has:

Vx, t(O(x, t) = Ji(Iner(x, i, 1))).

MEANING POSTULATE 12. For every organization, there
is some class to which it belongs:

Vx, t(O(x, t) = Jc(Class(x, c, t))).

6. Application of PDC-1 to the

Inertia Fragment

This section exemplifies the results of the PDC-1 when
applied to the inertia part of OE. Starting with the seven
assumptions and twelve background assumptions
listed in §5, PDC-1 generates a total of seventeen
theorems—twelve more than are presented in the orig-
inal text. Several of the new theorems are theoretically
important. The first five theorems coincide with the the-
orems of the original text; their theoretical importance
has been justified in Hannan and Freeman (1984).

THEOREM 1. Reorganization-free organizations with
higher inertia have higher survival chances:

Viy, i, p1, Pas t, ta, x, y([Reorg_free(x, t1, t;)

A Reorg_free(y, t,, t,) A Iner(x, iy, t;)

A Iner(y, iz, tz) A O(x, tl) A O(y, t2) A SC(x, P, tl)

A Sc(y, pa, )] A (i > i7) = (p2 > p1)).

THEOREM 2. The inertia of reorganization-free organi-
zations increases with time:

Viy, iz, t, t2, x([Time(#;) A Time(?,)
A Reorg_free(x, t1, t) A O(x, t;) A O(x, t,)
A Reorg_free(x, t;, t;) A Reorg_free(x, t,, t,)
A Iner(x, i1, t;) A Iner(x, 15, t,)]
A (k> 1) = (i, > 1y)).

THEOREM 3. The survival chance of reorganization-free
organizations increases with time:
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Vb1, P2ty b2, Y(USc(y, p1, 1) A Scly, pa, t2)
A Time(t;) A Time(t,) A O(y, ;)
A O(y, t;) A Reorg_free(y, t,, t2)]
A (ty > 1) = (2 > p1)).

THEOREM 4. The survival chance of reorganizing organ-
izations decreases with time:

V1, pas ta, ta, Y(ISc(y, p1, t1) A Scly, pa, ta)
A Time(t;) A Time(t;)) A O(y, t,) A Oy, t)
A Reorg(y, to, t1)1 A (t > 1) = (p2 > p1)).

THEOREM 5. (Assumption 7.) More complex organi-
zations of the same class have lower survival chances after
reorganizations of the same type:

Ve, ¢, 2 Py Prs Pos 1€, ta, by, te, X, y(LO(x, t) A Oy, )
A O(x, t) A O(y, t.) A Class(x, c, t,)
A Class(y, ¢, t,) A Sc(x, p, t.) A Scly, p, to)
A Reorg(x, t,, t,) A Reorg(y, t,, t.)
A Reorg_typel(x, re, t,) A Reorg_type(y, re, t,)
A Reorg_free(x, t,, t.) A Sc(x, p1, t.) A Sc(y, pa, t.)
A Compl(x, ¢y, t,) A Compl(y, c,, t,)]
A (62> ¢) = (p1 > p)).

Theorems 6 and 7 are straightforward extensions of As-
sumptions 4 and 6.

THEOREM 6. The reliability and accountability of
reorganization-free organizations increases with time:

Vray, tay, t, t, y([Relacc(y, ray, t1) A Relacc(y, ra,, t,)
A Time(t;) A Time(t,) A O(y, t1) A O(y, £)
A Reorg_free(y, t;, )] A (82 > 1) = (ray > ray)).

THEOREM 7. The reproducibility of reorganizing organ-
izations decreases with time:

Vrpy, 1P, t, to, x([Time(t;) A Time(t,) A Reorg(x, t, t,)
A O(x, 1) A O(x, 1) A Repr(x, rp;, )

A Repr(x, rpa, t)1 A (8 > 1) = (rp2 > 1p1)).
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The first important new theorem, Theorem 8, says
that organizational size has a positive impact on
survival chance. It hinges on Assumption 5, and con-
firms the theoretical expectation regarding the con-
text of environmental selection. It helps build confi-

dence in the premise set as an adequate representa-
tion of OE.

THEOREM 8. Larger reorganization-free organizations of
the same class have higher survival chances:

Y¢, p1, Pa, $1, 52, h, ta, %, y([Class(x, c, t1)
A Class(y, c, t2) A Size(x, s1, t1) A Size(y, sy, t2)
A Reorg_free(x, t;, t;) A Reorg_free(y, t,, t,)
A O(x, t) A Oy, t2) A Sc(x, p1, 1) A Scly, pa, t2)]
A (52> 51) = (p2 > p1)).

Theorems 9 and 10 follow from Theorem 8 on the basis
of the reasoning leading to Theorem 1. They are exten-
sions of Theorem 8.

THEOREM 9. Larger reorganization-free organizations of
the same class have higher reproducibility:

V¢, rp1, P2, 51, 2, t, ta, X, Y([Reorg_free(x, t, t;)
A Reorg_free(y, t,, t,) A Repr(x, rpy, t1)
A Repr(y, rp2, t) A O(x, t1) A Oy, t,)
A Class(x, ¢, t) A Class(y, c, t,) A Size(x, s1, t1)
A Size(y, sy, £)] A (52 > 51) = (rpa > 1p1)).

THEOREM 10. Larger reorganization-free organiza-
tions of the same class have higher reliability and account-
ability:

V¢, ray, 1y, 51, S2, b1, ta, x, Y([Class(x, ¢, t;)
A Class(y, ¢, t,) A Size(x, sy, t1) A Size(y, s, to)
A Reorg_free(x, t;, t;) A Reorg_free(y, t,, t,)
A O(x, 1) A O(y, t2) A Relace(x, ray, t1)
A Relacc(y, ray, t2)]1 A (s, > 51) = (ra, > ray)).

Theorem 11, however, is unexpected: the normal ex-
pectation is that organizations can decrease in size with-
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out reorganizing. Theorem 11 points either to a weak-
ness in the premise set as the formal representation of
OE, or to a limitation of OE itself. On closer inspection,
the premise set appears to provide an adequate repre-
sentation of the theory’s assumptions (fortunately, the
original text, Hannan and Freeman 1984, gives an ex-
plicit list of both assumptions and theorems). So we
may conclude that Theorem 11 points to a limitation of
OE. OE appears less general than expected, or, to put it
more formally, its apparent class of models is smaller
than expected. In fact, OE appears to imply a dichotomy
between (1) organizations under “normal” conditions
and (2) organizations under reorganization. OE’s theo-
retical setup dictates that any decrease in size requires
reorganization, so Theorem 11 gives a different mean-
ing to the term “reorganization,” or, rather points out
how general the meaning of this term is in the theory
of OE.

THEOREM 11. The size of reorganization-free organiza-
tions of the same class does not decrease with time:

V¢, 81, 82, 1, to, x([Time(t;) A Time(t,)
A Reorg_free(x, t, t;) A Reorg_free(x, t,, t,)
A Reorg_free(x, t;, t1) A O(x, t,) A O(x, ;)
A Class(x, ¢, t,) A Class(x, c, t;) A Size(x, s,, t,)

A Size(x, s1, t)] A (t, > t) = —(s; > 5,)).

Theorems 12 through 13 are expected, but they, too,
show in subtle ways the limits of OE by demonstrating
the equivalence of inertia, reliability, and reproducibil-
ity. This equivalence is not intended by the original text,
but is required to establish the soundness of Theorem 1
(as argued in Péli et al. 1994). By implication, Theorems
12-13 reiterate a problem in the explanatory structure
of the original theory.

THEOREM 12. Organizations with higher reproducibility
have higher survival chance:

vpl/ p2/ rpl/ 7P2/ tl/ t2/ X, y([Repr(x/ rpl/ tl)
A Repr(y, rpa, 1) A O(x, 1) A Oy, t,) A Sc(x, pi, t)
A Sc(y, pa, t)1 A (rpy > 1p1) = (P2 > p1)).

THEOREM 13a. Reorganization-free organizations with
higher inertia have higher reliability and accountability:
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Viy, iy, 14y, 1y, t1, by, x, y([Reorg_free(x, t;, t;)
A Reorg_free(y, t,, t,) A Iner(x, iy, t;)
A Iner(y, iy, t) A O(x, t;) A O(y, t,)
A Relace(x, ra,, t;) A Relacc(y, ra,, t,)]
A (iy > iy) = (ray, > ray)).

THEOREM 13b.  Reorganization-free organizations
with higher reliability and accountability have higher in-
ertia:

Viy, iy, 14y, 1y, t, ta, x, y([Reorg_free(x, t;, t;)
A Reorg_free(y, t,, t,) A Iner(x, iy, t;)
A Iner(y, ip, £) A O(x, 1) A O(y, t,)
A Relacc(x, ray, t;) A Relacc(y, ra,, t,)]
A (ra, > raq) = (i, > ip)).

The next three theorems, Theorems 14-16, point
out some implications of Theorem 5, and so does
Theorem 17, but Theorem 17 unexpectedly points to
a specific relationship between complexity and size
under conditions of reorganization.

THEOREM 14. More complex organizations of the
same class have lower or equal reliability and account-
ability after reorganizations of the same type:

Ve, c1,C,p, 101,182, 1€, by, by, b, x, y([O(x, t) A Oy, t,)
A Class(x, ¢, t,) A Class(y, c, t,) A Sc(x, p, t.)
A Scly, p, t,) A Reorg(x, t,, t,) A Reorg(y, t,, t.)
A Reorg_type(x, re, t,) A Reorg_type(y, re, t,)
A Reorg_free(x, t,, t.) A Compl(x, ¢y, t,)
A Compl(y, cz, t.) A O(x, t.) A Oy, t.)
A Relacc(x, ray, t.) A Relacc(y, ray, t.)]
A (e > ¢1) = —(ra, > ray)).

THEOREM 15. More complex organizations of the same
class have lower or equal reproducibility after reorganizations
of the same type:
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Ve, ¢, €, P, 1€, TP1, TP, ta o, by X, y([O(x, £,)
A O(y, t) A Class(x, c, t,) A Class(y, c, t,)
A Sc(x, p, t,) A Sc(y, p, t.) A Reorg(x, t,, t,)
A Reorg(y, t,, t) A Reorg_type(x, re, t,)
A Reorg_type(y, re, t,) A Reorg_free(x, t,, t.)
A Compl(x, ¢y, t,) A Compl(y, c,, t.) A Olx, t.)
A O(y, t.) A Repr(x, rpy, t) A Repr(y, rp,, t.)]
A (2 > ¢1) = —(rp, > rp1)).

THEOREM 16. More complex organizations of the same class
have lower or equal inertia after reorganizations of the same type:

V¢, ¢, €, 0n, 00, P, 16, ta, o, b, X, y([O(x, £,)
A O(y, t,) A Class(x, ¢, t,) A Class(y, c, t,)
A Sc(x, p, t.) A Scly, p, t.) A Reorg(x, t,, t,)
A Reorg(y, t,, t.) A Reorg_type(x, re, t,)
A Reorg_type(y, re, t,) A Reorg_free(x, t,, t.)
A Compl(x, ¢;, t,) A Compl(y, ¢z, t,) A O(x, 1)
A O(y, t.) A Reorg_free(x, t, t.)
A Reorg_free(y, t., t.) A Iner(x, iy, t.) A Iner(y, i,, t.)]
A (e > 1) = —(i; > iy)).

THEOREM 17.  More complex organizations of the same class
have lower or equal size after reorganizations of the same type:

V¢, ¢, ¢, new_c, p, e, 1,52, ta, to, te, %, y([O(x, t,)
A O(y, t,) A Class(x, ¢, t,) A Class(y, c, t,)
A Sclx, p, t,) ASc(y, p, t.) A Reorg(x, t,, t)
A Reorg(y, t,, t.) A Reorg_typel(x, re, t,)
A Reorg_@pe(y, re, t,) A Reorg_free(x, t,, t.)
A Compl(x, c1, t,) A Compl(y, c,, t,)
A Reorg_free(x, t., t.) A Reorg_free(y, t., t.)
A O(x, t.) A Oy, t.) A Class(x, new_c, t.)
A Class(y, new_c, t.) A Size(x, s, t.)

A Size(y, Sy, tc)] AN (C2 > C])_)_'(Sz > S])).
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In sum, the partial closure through PDC-1 has im-
proved the theory. Theorems 6 through 10 confirm the
theoretical expectations. Theorem 11 is unexpected, and
contradicts the theoretical expectation. Since the inter-
mediate theory appeared to be adequate, we revised the
theoretical expectations instead. The consequence is that
the apparent class of models of the theory is reduced.
Theorems 12-13 are expected (given the revised theo-
retical expectations). The next three theorems, Theo-
rems 14-16, strengthen the original theoretical expec-
tations, but the last, Theorem 17, is also unexpected and
forces an update of the theoretical expectations.

The premises of the inertia fragment and the theo-
rems derived by PDC-1 are shown in Figure 2. The
nodes represent the theorems (a theorem relates the top-
node with the node); the arrows denote the premises
that constitute the theorems.

7. Discussion and Conclusions

We have argued that formal logic helps researchers to
improve a theory in various ways. In a static perspec-
tive, logic can help them to answer questions of consis-
tency and explanatory soundness. In a dynamic per-
spective, logic can help to discover hidden implications
of a given theory, or, more precisely, implications of a
formal representation of the theory in logical terms. As
the logical cycle demonstrates, the partial closure can
advance a theory in various ways, either by reinforcing
original theoretical expectations about a domain, or by
suggesting a modification of those expectations. Con-
versely, if there is no reason to modify the expectations,
the partial closure can point out weaknesses in the for-
mal representation of the theory.

PDC-1 has its limits, of course.

First, the algorithm works only on a fragment of FOL,
namely on formulas that we called “single property to
single property.” This fragment is arguably important—
important enough to allow for a formalization of the
inertia part of OE—but it does not have the full expres-
sive power of FOL.

Second, FOL itself has its limits. There has been a
lively debate in philosophy about the use of FOL as a
tool for formalizing scientific theories (Ayer 1959).
Many scientific theories involve notions that FOL can-
not handle directly, such as counterfactual conditions
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and intensional constructs. One could even argue that
scientific laws are not material implications as provided
by FOL. Because of this, there is a broad agreement that
FOL on its own is too weak to formalize all scientific
theories. However, our goals are more modest; we focus
on theories that do not transcend the expressive bound-
aries of FOL. Even if scientific laws are not material im-
plications they do imply material implications (as was
kindly pointed out to us by one reviewer), and it re-
mains of interest to generate implicit consequences
thereof. Organizational ecology, the domain theory ex-
amined in this article, is restricted to object-related state-
ments about properties and relations. But action theories,
an important class of theories in the social sciences, do
involve opaque contexts that are created by actions; for
such theories, modal action logics appear more appro-
priate. Evidence on the formalization of J. D. Thomp-
son’s Organization in Action (Masuch and Huang 1996)
shows, for example, that extending FOL with modal (in-
tensional) operators facilitates the formal representation
of an action theory considerably.

Third, FOL is not necessarily the most elegant or ef-
ficient language. Once a representation in FOL has been
generated for a specific domain, simpler, or more par-
simonious representations may suggest themselves
(Newell and Simon 1972, Brachman and Levesque
1985). But the general experience in natural language
representation points to a trade off between specificity
and flexibility. For specific domains, specialized lan-
guages may appear more appropriate, but such lan-
guages are not easily generalizable to other domains.
Conversely, a general language may not give the most
efficient representation for a particular domain, but it
carries over more easily to other domains; because of
this, a general language is more appropriate for a ge-
neric application for theorem-finding. Using FOL has
one additional, very important advantage: its formal
properties are well-understood. The formal properties
of specialized ad hoc languages are, as a rule, not
known. For example, without a formal semantics, one
has no criteria for soundness; without a proof theory,
one has no machinery for derivations.

Fourth, PDC-1 is restricted to finding the logical im-
plications of a given set of premises. It cannot generate
new conclusions in a logical sense. In fact, once the logic
plus a set of premises are fixed, no deductive procedure
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Figure 2 The Assumptions (An) and Theorems (Tn) of the Inertia Fragment
Time Size Compl
Ay _— T (A6) “s) | Any
Repr (A4) Relacc (A6) Iner (A5) Sc (T5/A7)
(A33) (A2a) (A1), N (A2b) (A3D) | (A1) |
Iner (T2) Relacc (T6) Sc (T4) Repr (T7) Repr (T9) Relacc (T14)
“s)y Ay (hza) | (Azp) |
Size (T11) Sc (T3) Relacc (T10) Repr (T15)
A1) | (A3a) |
Sc (T8) Iner (T16)
Iner (A5)
(A3b) | Size (T17)
Repr (A3b) Repr Relacc
(A2a) | (A3a), " N (A2a) (A2b), " (AT
Relacc (T13a) Iner (A3a) Relacc (A2a) Repr (A2b) Sc (A1)
A1) | AN | (A3a) |
Sc (T1) Sc (T12) Iner (T13b)

can generate logically new conclusions; logically new
conclusions require new premises or a new logic. The
motivation for this research was to generate theorems
that are “new”” in an empirical sense: implied by thelogic
but (perhaps) unknown to the researcher. Such conclu-
sions may or may not be of particular interest—in this
sense the choice to focus on SPtSP formulas is of a heu-
ristic nature. There is no guarantee that PDC-1 (or more
general algorithms, for that matter) will always gener-
ate interesting (empirically) new theorems. In our case
study the algorithm does generate interesting theorems,
but more cases are needed to settle this empirical
matter.

The usefulness of PDC-1 was demonstrated for an im-
portant organization theory, Organizational Ecology;
the algorithm generated a set of new theorems, includ-
ing some of real theoretical importance, notably Theo-
rem 11. The fact that the theory implies that organiza-
tions cannot decrease in size under normal conditions
is clearly important for gauging the OE’s scope and
setup. Of course, the algorithm’s job could also have
been done “‘by hand.” In fact, some of the new theorems
had already been detected by hand, as reported in Péli
et al. (1994); but then, some had not.

Our tool can also be used during the original formal-
ization of the theory. Recall that the algorithm also iden-
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tified all previously known theorems from the premises,
so it could have been used to check the soundness of
the original theory. In fact, the investigation of the in-
ertia fragment by our method would have revealed sev-
eral more or less serious flaws in the explanatory struc-
ture of the original presentation of the theory. In partic-
ular, it would have pointed out that the derivation of
Theorem 1 (selection favors inertia), arguably the most
important theorem of the inertia part, is unsound, and
that a sound derivation requires additional qualifica-
tions that reduce the scope of the original theory quite
considerably; see Péli et al. (1994). Furthermore, the al-
gorithm can help to enlarge the scope of the theory by
helping the theoretician to find out “what would hap-
pen if”” he would add new assumptions to the original
premise set. In this way, PDC-1 makes an important
step towards an application for logical simulation.

As a direct follow-up of the reported research, we
want to extend the PDC-1 algorithm to other classes of
theorems. Taking into account that a complete deduc-
tive closure will comprise infinitely many theorems
(most of them completely uninteresting), extending the
PDC-1 algorithm should be done with care. The job of
the algorithm is not only to derive a particular class of
theorems, but also to ensure that nothing else is de-
rived.?
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