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Abstract

The merits of representing scientific theories
in formal logic are well-known. Expressing a
scientific theory in formal logic explicates the
theory as a whole, and the logic provides for-
mal criteria for evaluating the theory, such as
soundness and consistency. On the one hand,
these criteria correspond to natural questions
to be asked about the theory: is the theory
contradiction-free? (is the theory logically
consistent?) is the theoretical argumenta-
tion valid? (can a theorem be soundly de-
rived from the premises?) and other such
questions. On the other hand, testing for
these criteria amounts to making many spe-
cific proof attempts or model searches: re-
spectively, does the theory have a model? can
we find a proof of a particular theorem? As a
result, testing for these criteria quickly defies
manual processing. Fortunately, automated
reasoning provides some valuable tools for
this endeavor. This paper discusses the use of
first-order logic and existing automated rea-
soning tools for formal theory building, and
illustrates this with a case study of a social
science theory, Hage’s axiomatic theory of or-
ganizations.

1 INTRODUCTION

The theory building methodology outlined in this pa-
per is by no means a new one. The use of formal logic
to represent scientific theories dates, at least, back to
the logical positivists (Ayer 1959). What is novel in
our approach is the extensive use of automated rea-
soning tools. One of the reasons for the demise of
positivism was the inability to put philosophy into

practice. The formalization of scientific theories re-
quires a huge amount of tedious calculations that ex-
ceed manual processing capabilities. The use of com-
putational tools allows us to transcend these limita-
tions, and bring much of the positivist philosophy to
life.

It is part of the research plan at the Applied Logic Lab-
oratory (ALL) to revive formal theory building in the
social sciences by using formal logics and by taking ad-
vantage of the available computational support. Social
scientists usually agree that theories should be logical,
but they rarely address the issue, eschewing the diffi-
culties of investigating the logical structure of ‘discur-
sive theories’ (theories expressed in natural language,
the standard representation in the social sciences).
Rather than engaging ourselves in abstract, philosoph-
ical deliberations,1 we focus on applied case studies.
That is, we ‘formalize’ actual social science theories
by rationally reconstructing them and expressing them
in logical form. The resulting formalizations are then
tested using logical criteria, a task greatly facilitated
by the availability of computational tools.

In Section 2 we will explain the value of formalization
in the explication of scientific theories and the role
tools from automated reasoning can play in this pro-
cess. In Section 3 we present a case study that shows
how this can be applied in the social sciences, and we
end in Section 4 by summarizing our experiences and
drawing conclusions.

2 FORMAL THEORY BUILDING

The principal reason for formalizing scientific theories
is to clarify and explicate them. Until a scientific the-
ory is expressed in a formal and unambiguous manner,

1See for example Adorno et al. (1969) for interesting
arguments in favor of, and against the use of formal logic
in the social sciences.



it remains open to many interpretations. Provided
they can interpret the formalism, a formal exposition
of a scientific theory allows readers to understand the
theory, to distinguish between alternative readings, to
gauge its boundaries, and to compare it with alterna-
tives (Suppes 1968).

We use the classical, axiomatic-deductive notion of a
theory. The premises of a theory consist of univer-
sal statements (universal laws or empirical generaliza-
tions, possibly supplemented with definitions). The
theory itself is the deductive closure of the set of
premises (Tarski 1956). Theoretical explanations and
predictions correspond to deductions from the set of
premises (Popper 1959).

We prefer to use this strict notion of a theory over
more liberal ones.2 The reason for this is simple: our
main interest is the justification of theories, and we
are therefore interested in strict criteria that can be
objectively evaluated. This position has clear limita-
tions; many other aspects of theory building require
creativity and insight (activities with which logic is
rarely associated). Especially the discovery of theories
requires different methods than formal logic and de-
duction. Most of the research in the social sciences is
directed at empirical surveys, and the main theme of
all methodology textbooks is how to perform such em-
pirical research. Our efforts do not replace, but rather
complement this empirical research. As soon as a (ten-
tative version of) a theory is formulated, we have some
powerful tools for evaluating it. There are several logi-
cal criteria available for evaluating a theory formalized
in a logical language, such as the consistency of the
theory or soundness of a derivation.

Many of these logical criteria correspond to natural
questions which we would like to ask about a scientific
theory:

Is the theory contradiction-free? In logical
terms, is the theory logically consistent? An inconsis-
tent theory has an empty domain: empirically testing
an inconsistent theory is futile. If we can construct a
model of the premise set then the theory is logically
consistent. One may want to include the (spelled-out)
theorems, but as long as these are soundly derivable
from the premises they cannot make the theory incon-
sistent.

To establish that a theory is inconsistent, we use a
complementary approach: showing that it leads to an

2Although this conception of theory is mainly inspired
by theories in mathematics and physics, it is applicable to
all empirical sciences, including the social sciences (Rudner
1966; Popper 1969).

absurdity. An inconsistent theory is a trivial theory,
in the sense that any statement (and its negation) is
derivable from it. If we can derive a contradiction from
some subset of the premises, the theory is inconsistent.

Is the argumentation of the theory valid? Can
a given theorem be soundly derived from the premises?
If we can prove a given theorem from the premises, the
argumentation is sound. That is, if we consider cases
in which the premises hold, then the theorem must also
hold (i.e, the theorem is a prediction). Conversely, if
we consider cases in which the theorem holds, then the
premises give an explanation for the theorem (there
may be other explanations, although these must satisfy
the same soundness criterion).

For proving the fallaciousness of an argument we use a
complementary approach: looking for a counterexam-
ple. If we can construct a model in which the premises
hold but the conjecture does not hold, we have refuted
the conjecture. Many scientific theories have, when
taken in a literal sense, fallacious argumentation. The
severity of such a flaw depends on the following two
questions:

(a) What unstated background knowledge is
necessary? In any exposition of a theory, a certain
amount of background must be ‘taken for granted’,
that is to say, it is assumed to be indisputable as com-
mon knowledge. But such information must be ex-
plicitly added to a formalization. For example, the
author of a theory which describes how properties of
organizations vary over time will hardly find it neces-
sary to explicitly state that the before relation between
time-points is transitive and anti-symmetric, but this
axiom may be necessary to formally derive some of
the conclusions of the theory. In this case, counterex-
amples to such a theorem are ‘non-intended’ models.
For example, a counterexample might be a model in
which time-points t1 < t2 < t3 < t1 (a model with
a circular notion of time, whereas time is conceived as
linear). Finding this counterexample will immediate
reveal the cause, in this case a missing axiom on the
before relation.

(b) What assumptions has the author neglected
to make? In contrast to the common knowledge of
the previous point, occasionally the formalization of a
theory reveals a genuine hiatus in the theory. This may
have been due to an oversight by the author or per-
haps a failure to consider all possible configurations
of his/her assumptions. It can also occur that the
author expresses him/herself somewhat infelicitously.
In this case, counterexamples cannot be as easily dis-



carded: we have to deal with a genuine counterex-
ample. This may necessitate either strengthening the
premises, weakening the conjecture, or even discard-
ing the conjecture altogether. Examining the coun-
terexample(s) provides useful information for deciding
between options for refining the theory.

Is the theory falsifiable? Are the theorems logi-
cally contingent? If no state of affairs can possibly
falsify a theory, then it is a waste of time to empirically
test the theory. Falsifiability is an essential property of
a scientific theory (Popper 1959). If we can construct
a model (disregarding all premises) where a theorem
of the theory is false, then this theorem is falsifiable.
If we can prove a theorem from an empty premise set,
the theorem is not falsifiable. A theory that contains
at least one falsifiable theorem (and therefore at least
one falsifiable premise) is falsifiable.

If we can also construct a model in which the theorem
holds (which is always the case for soundly derivable
theorems in a consistent theory), then this theorem is
satisfiable too. A theorem that is both satisfiable and
falsifiable, is contingent: the validity of the theorem
is strictly determined by the premises—it is neither a
tautology nor a contradiction.

What is the domain that the theory describes?
What do the models of the theory look like? A model
generator can be used to provide candidate models for
exploration. This gives insight into the domain which
the theory describes.

In practice, testing for logical criteria requires many
derivations involving large sets of formulas. In this
endeavor, automated reasoning provides some invalu-
able tools. At ALL we use the following:

Automated theorem provers are programs de-
signed for finding proofs of conjectures. For the
case study of this paper, we used Otter (Mc-
Cune 1994b), a resolution-style theorem prover
for first-order logic with equality. This theorem
prover can find inconsistencies in the set of input
formulas. Its principal use is to construct refu-
tation proofs of conjectures, by feeding it a (con-
sistent) premise set together with the negation of
a conjecture. If the program derives an inconsis-
tency, then we have, in fact, proved the conjecture
(because the conjecture must hold in all models
of the premises).

Automated model generators are programs that
can enumerate the finite (small) models of a the-
ory. For the case study of this paper, we used

Mace (McCune 1994a), a model generator for
first-order logic with equality, based on a Davis-
Putnam procedure for propositional satisfiability
testing. This model generator can find small mod-
els of the set of input formulas (for example to
prove the consistency of the theory). It can also
be used to find counterexamples to a conjecture,
by feeding it a premise set together with the nega-
tion of the conjecture.

There are many other automated theorem provers and
model generators available. We choose here to use
Otter and Mace because they are companion pro-
grams that can read the same input format. This is a
great advantage for our work, since we want to switch
between theorem proving and model generation, de-
pending on which type of tool is most suitable for the
specific proof/disproof attempt at hand. In the next
section, we will explain the use of these tools for formal
theory building in detail.

3 A SOCIAL SCIENCE CASE
STUDY

Several case studies of formalization using automated
reasoning support tools have been performed. These
case studies include the following social science the-
ories: Mintzberg’s Contingency Theory (Glorie et al.
1990), Thompson’s Organizations in Action (Kamps
and Pólos 1998), and Hannan and Freeman’s Orga-
nizational Ecology including their theory of organiza-
tional inertia (Péli et al. 1994), life history strate-
gies (Péli and Masuch 1997), niche width (Bruggeman
1997; Péli 1997), and age dependence fragment (Han-
nan 1997).3 These and most other social science the-
ories are stated in natural language. As a result, the
main obstacle for formalizing such a discursive the-
ory is their rational reconstruction: interpreting the
text, singling out important concepts, distinguishing
assumptions and theorems from other parts of the text,
and reconstructing the argumentation. This motived
our choice for the theory we want to formalize as a
case study in this paper: Hage (1965) An Axiomatic
Theory of Organizations. Although this is not a formal
theory in the sense that it uses natural language exclu-
sively, it is an axiomatic theory in which axioms and
theorems are clearly outlined.4 This greatly facilitates

3Some fragments of the resulting formalizations are in-
cluded in the TPTP (Thousands of Problems for Theorem
Provers) Problem Library (Sutcliffe et al. 1994).

4Note that this is an exceptional case; only few social
scientists state carefully formulated propositions, and even
fewer authors attempt to make their underlying assump-
tions explicit. It is also possible to reconstruct less explicit



the rational reconstruction of the theory, and allows
us to focus on the actual formalization of the theory
and the role automated reasoning tools can play in this
process.

3.1 HAGE’S AXIOMATIC THEORY OF
ORGANIZATIONS

Hage’s axiomatic theory of organizations postulates
seven axioms based on the theoretical writing of We-
ber, Barnard, and Thompson and predicts 21 derived
theorems. The theory concerns interrelations between
eight organizational variables: complexity, centraliza-
tion, formalization, stratification, adaptiveness, pro-
duction, efficiency, and job satisfaction. Hage (1965,
p.293) lists two ‘indicators’ for each of the eight vari-
ables:

Complexity Number of occupational specialties.
Level of training required.

Centralization Proportion of jobs that participate
in decision making. Number of areas in which
decisions are made by decision makers.

Formalization Proportion of jobs that are codified.
Range of variation allowed within jobs.

Stratification Differences in income and prestige
among jobs. Rate of mobility between low- and
high-ranking jobs.

Adaptiveness Number of new programs a year.
Number of new techniques a year.

Production Number of units produced per year.
Rate of increase in units produced per year.

Efficiency Cost per unit of output per year. Amount
of idle resources per year.

Job satisfaction Satisfaction with working condi-
tions. Rate of turnover in job occupants per year.

The first four variables are organizational means, and
the second four variables are organizational ends.

Hage (1965) postulates seven axioms that interrelate
the eight organizational variables. According to Hage,
there are 21 theorems derivable from these seven natu-
ral language axioms. Table 1 reprints the 7 axioms and
21 corollaries used in (Hage 1965, p.300). We will re-
construct Hage’s theory by formalizing it in first-order
logic.

theories, especially if the original authors can be consulted.
A case in point is (Péli and Masuch 1997).

3.2 A FIRST FORMALIZATION

We represent the eight organizational variables by
unary functions, i.e., comp(x), cent(x), form(x),
stra(x), adap(x), prod(x), effi(x), and jobs(x) respec-
tively. For example, ‘cent(O1)’ denotes the centraliza-
tion of organization O1. In this way, we can represent
the fact that the centralization of O1 is higher than
that of O2 by ‘cent(O1) > cent(O2)’ (using a strict
ordering ‘>’). Now, the fact that the higher the cen-
tralization, the higher the production (A.1) can be rep-
resented by:

∀x, y [ cent(x) < cent(y) → prod(x) < prod(y) ]

Table 2 contains a first-order formalization of the ax-

Table 2: The Formal Assumptions.
F.1 ∀x, y [ cent(x) < cent(y) → prod(x) < prod(y) ]

F.2 ∀x, y [ form(x) < form(y) → effi(x) < effi(y) ]

F.3 ∀x, y [ cent(x) < cent(y) → form(x) < form(y) ]

F.4 ∀x, y [ stra(x) < stra(y) → jobs(x) > jobs(y) ]

F.5 ∀x, y [ stra(x) < stra(y) → prod(x) < prod(y) ]

F.6 ∀x, y [ stra(x) < stra(y) → adap(x) > adap(y) ]

F.7 ∀x, y [ comp(x) < comp(y) → cent(x) > cent(y) ]

ioms in Table 1. We can verify the consistency of the
theory by attempting to generate a model of it. Mace
can generate a model of F.1 through F.7 using domain
size 2 (see Table 3). It is easy to verify that the as-

Table 3: A Model Of Assumptions F.1 Through F.7.
cent prod form effi stra jobs adap comp

O1 0 0 1 0 0 1 1 1
O2 0 1 1 0 1 0 0 1

sumptions hold in this model: F.1–F.3 hold vacuously,
F.4–F.6 hold, and F.7 holds again vacuously. Conse-
quently, theory F.1–F.7 is consistent.5 In fact, Mace
can derive 5398 models on a domain of size 2.

But what about theorems? Hage (1965) derives 21
theorems “. . . by applying the simple rules of the syl-
logism” (p.299) to the seven axioms. We use Otter
to test whether the theorems can be soundly derived
from the axioms F.1 through F.7. For example, C.2

5One can argue that theories consisting solely of uni-
versally quantified conditional statements are by definition
consistent, since one can construct numerous models in
which none of the conditions is satisfied, making all ax-
ioms vacuously true. Nevertheless, it is comforting that we
can construct a less trivial model of the theory.



Table 1: The Assumptions (A.1–A.7) And Derived Theorems (C.1–C.21).
A.1 The higher the centralization, the higher the production.
A.2 The higher the formalization, the higher the efficiency.
A.3 The higher the centralization, the higher the formalization.
A.4 The higher the stratification, the lower job satisfaction.
A.5 The higher the stratification, the higher the production.
A.6 The higher the stratification, the lower the adaptiveness.
A.7 The higher the complexity, the lower the centralization.
C.1 The higher the formalization, the higher the production.
C.2 The higher the centralization, the higher the efficiency.
C.3 The lower the job satisfaction, the higher the production.
C.4 The lower the job satisfaction, the lower the adaptiveness.
C.5 The higher the production, the lower the adaptiveness.
C.6 The higher the complexity, the lower the production.
C.7 The higher the complexity, the lower the formalization.
C.8 The higher the production, the higher the efficiency.
C.9 The higher the stratification, the higher the formalization.
C.10 The higher the efficiency, the lower the complexity.
C.11 The higher the centralization, the lower job satisfaction.
C.12 The higher the centralization, the lower the adaptiveness.
C.13 The higher the stratification, the lower the complexity.
C.14 The higher the complexity, the higher job satisfaction.
C.15 The lower the complexity, the lower the adaptiveness.
C.16 The higher the stratification, the higher the efficiency.
C.17 The higher the efficiency, the lower job satisfaction.
C.18 The higher the efficiency, the lower the adaptiveness.
C.19 The higher the centralization, the higher the stratification.
C.20 The higher the formalization, the lower job satisfaction.
C.21 The higher the formalization, the lower the adaptiveness.



states that the higher the centralization, the higher the
efficiency. A formal version of the second theorem
would read:

∀x, y [ cent(x) < cent(y) → effi(x) < effi(y) ]

This theorem, T.2, is derivable from axiom F.3 and
F.2 using the input-file:

set(auto).
formula_list(usable).
% F.1
all x y (form(x)<form(y) -> effi(x)<effi(y)).
% F.3
all x y (cent(x)<cent(y) -> form(x)<form(y)).
% negation of T.2
-( all x y (cent(x)<cent(y) -> effi(x)<effi(y)) ).
end_of_list.

Otter’s resolution-style proofs require the theorem
to be negated in the input-file. If now the theorem (in
its original form) is indeed derivable, we will have a
contradiction (by reductio ad absurdum).

Surprisingly, we can only derive a small fraction of the
claimed theorems, namely the three theorems T.2, T.6,
and T.7 in Table 4.6

Table 4: Theorems Derivable From F.1 Through F.7.
T.2 ∀x, y [ cent(x) < cent(y) → effi(x) < effi(y) ]

T.6 ∀x, y [ comp(x) < comp(y) → prod(x) > prod(y) ]

T.7 ∀x, y [ comp(x) < comp(y) → form(x) > form(y) ]

Why are we unable to derive the other theorems? Let
us examine in detail one of Hage’s theorems that we
cannot derive. The first theorem discussed in the text
is the higher the centralization, the higher the stratifi-
cation (C.19), supposedly derivable using A.1 and A.5
(p.299/300). In our formal set-up this theorem, T.19,
would read:

∀x, y [ cent(x) < cent(y) → stra(x) < stra(y) ]

Otter cannot derive this theorem (neither from F.1
and F.5, nor from the total set of axioms). Since we fail
to prove this conjecture, we can attempt to disprove
it.

We use the automated model generator to look for
counterexamples, that is, models in which the axioms
hold, but the conjecture is falsified. Using Mace we
can construct counterexamples to T.19 using input-file
(w.l.o.g., we use only F.1 and F.5):

6The converse of T.10, ∀x, y [ comp(x) < comp(y) →
effi(x) > effi(y) ], is also derivable.

set(auto).
formula_list(usable).
% F.1
all x y (cent(x)<cent(y) -> prod(x)<prod(y)).
% F.5
all x y (stra(x)<stra(y) -> prod(x)<prod(y)).
% negation of T.19
-( all x y (cent(x)<cent(y) -> stra(x)<stra(y)) ).
end_of_list.

Note that both Otter (when trying to prove a con-
jecture) and Mace (when trying to disprove it) use
exactly the same input-file!

After running Mace using a domain size 2 (for exam-
ple -n2 -p -m10) we find the four counterexamples of
Table 5. In the counterexamples, F.1 is satisfied, F.5

Table 5: Counterexamples To T.19.
cent prod stra

O1 0 0 0
O2 1 1 0
O1 0 0 1
O2 1 1 1
O1 1 1 0
O2 0 0 0
O1 1 1 1
O2 0 0 1

holds vacuously, but the claimed theorem, T.19, is fal-
sified. This proves that the claimed theorem is not
derivable. Is the claimed theorem a false conjecture?
Or has something gone wrong when we translated the
natural language axioms into first-order logic?

3.3 A SECOND FORMALIZATION

From a logical perspective, three options present them-
selves:

1. Discard the intended theorem as a false conjec-
ture.

2. Rescue the intended theorem by weakening it suf-
ficiently such that it becomes derivable.

3. Rescue the intended theorem by qualifying these
models as an unintended one, and strengthening
the premises such that these models are excluded.

Option 1 basically means that we stick to the for-
malization F.1 through F.7 and limit the explanatory
power of the theory from 21 ‘theorems’ to just the
three theorems T.2, T.6, and T.7. This seems like an
outcome we would like to avoid.

For option 2 we need to transform the counterexam-
ples to T.19 into examples, i.e., we have to weaken



the intended theorem such that it does hold for the
counterexamples. Let us analyze the counterexamples
more precisely. They have the following form (let Oa

denote O1 in the first two models and O2 in the second
two):

cent(Oa) < cent(Ob) ∧
prod(Oa) < prod(Ob) ∧
stra(Oa) = stra(Ob)

An obvious way to implement option 2 is to formal-
ize the intended theorem as the weaker the higher the
centralization, the higher or equal the stratification:

∀x, y [ cent(x) < cent(y) → stra(x) ≤ stra(y) ]

This weaker version of the theorem holds in the mod-
els of Table 5, turning the former counterexamples into
examples. Now, we make a second attempt at prov-
ing this (weaker version of the) theorem using Otter.
Note that, although we have dealt with the (type of)
counterexamples in Table 5, this gives no guarantee
that there are no other counterexamples. There turns
out to be none, because Otter can prove the weaker
version of T.19.7

This same strategy also works for T.10 and T.13, but
not for the remaining other 15 claimed theorems. Con-
sider for example the first conjecture, T.1:

∀x, y [ form(x) < form(y) → prod(x) < prod(y) ]

Mace generates 12 counterexamples (cardinality 2,
w.l.o.g. using only F.1 and F.3), two of which are
listed in Table 6.

Table 6: Counterexamples To T.1.
cent form prod

O1 0 0 1
O2 0 1 0
O1 0 0 0
O2 0 1 0

These counterexamples have the following forms:

• form(O1) < form(O2) ∧ prod(O1) > prod(O2)

• form(O1) < form(O2) ∧ prod(O1) = prod(O2)

Moreover, there are also models (of F.1 and F.3) in
which the theorem does hold (note that these are no
counterexamples but examples). These have the form:

7Otter requires an axiom expressing that the ordering
is strict, for example ∀x, y ¬[ x < y ∧ y < x ]. In Mace
the order “<” is build-in.

• form(O1) < form(O2) ∧ prod(O1) < prod(O2)

There is no relation between the variables of formal-
ization and production: a weaker version of T.1 that
holds in all these models, will be a tautology. Pursu-
ing option 2 gives us three additional theorems, i.e.,
the weaker versions of T.10, T.13 and T.19. Although
this doubles the explanatory power of the theory, it
remains somewhat doubtful that Hage did overlook
counterexamples to the remaining 15 of his 21 theo-
rems.

It may be more reasonable to assume that these coun-
terexamples were not among the models that Hage in-
tended for his theory (option 3). Based on our analysis
above, a way to exclude the models that are counterex-
amples to T.19 is to add the axiom that a higher pro-
duction will imply a higher stratification (the converse
of F.5):

∀x, y [ prod(x) < prod(y) → stra(x) < stra(y) ]

After adding this axiom, the models of Table 5 are no
longer models of the (modified) theory, making these
counterexamples disappear. This is confirmed by Ot-
ter which can now prove the theorem T.19.

One way to view this revision is as adding an axiom
to the premise set, but there’s another way to view
it. We can combine both F.5 and its converse to form
F.5′, a revised formalization of axiom A.5:

∀x, y [ stra(x) < stra(y) ↔ prod(x) < prod(y) ]

As a result, we have reformalized the natural language
axiom the higher the stratification, the higher the pro-
duction by interpreting it as a bi-implication. This
interpretation can be justified considering the ambi-
guity of the natural language axioms.

This strategy works for all the theorems in (Hage 1965)
that were not derivable from F.1 through F.7, causing
similar revisions to the other axioms.8 Table 7 con-
tains the revised first-order formalization of the ax-
ioms. Now that we have interpreted all of Hage’s ax-
ioms as bi-implications we can, using Otter, derive
the all the corollaries that are mentioned in Table 1.
Not only can we derive the conditional version of the
corollaries, but we can also derive the 21 correspond-
ing bi-implications. For example, Otter can derive

8The converse of F.1 (because of T.1, 8-9, 13, 16), F.2
(T.10, 17, 19), F.3 (T.10, 17-18, 20-21), F.4 (T.3-4), F.5
(T.5, 11-12, 14-15, 17-21), and F.7 (T.10, 13) are necessary
for the derivation of theorems. The converse of F.6 is not!
We decide to include the converse of F.6 in order to give
similar interpretations of all natural language axioms.



Table 7: The Revised Formal Assumptions.
F.1′ ∀x, y [ cent(x) < cent(y) ↔ prod(x) < prod(y) ]

F.2′ ∀x, y [ form(x) < form(y) ↔ effi(x) < effi(y) ]

F.3′ ∀x, y [ cent(x) < cent(y) ↔ form(x) < form(y) ]

F.4′ ∀x, y [ stra(x) < stra(y) ↔ jobs(x) > jobs(y) ]

F.5′ ∀x, y [ stra(x) < stra(y) ↔ prod(x) < prod(y) ]

F.6′ ∀x, y [ stra(x) < stra(y) ↔ adap(x) > adap(y) ]

F.7′ ∀x, y [ comp(x) < comp(y) ↔ cent(x) > cent(y) ]

T.19′:

∀x, y [ cent(x) < cent(y) ↔ stra(x) < stra(y) ]

Also the theorems, formulated in the same way as the
axioms, can be interpreted as bi-implications. This re-
sult provides some confidence for the interpretation in
Table 7 (and for the choice to regard the counterex-
amples as non-intended models of the theory).9

Using F.1′ through F.5′, Mace generates 258 mod-
els on a domain of size 2 (one of which is shown in
Table 8). Consequently, the revised formalization is

Table 8: A Model Of Assumptions F.1′ Through F.7′.
cent prod form effi stra jobs adap comp

O1 0 0 0 0 0 1 1 1
O2 1 1 1 1 1 0 0 0

still a consistent theory. Inspecting this model, we
can confirm that the theorems are satisfiable; for ex-
ample, it is a model of theorem T.19′. We can also
check whether theorems are falsifiable by constructing
a model in which the theorem does not hold (disre-
garding the premises). For example, the models in
Table 5 still prove that theorem T.19′ is falsifiable.
Note that these models are necessarily no longer mod-
els of the revised axioms, otherwise they would still be
counterexamples to the theorem. Since T.19′ is both
satisfiable and falsifiable, the theorem is contingent—
it is neither a tautology nor a contradiction.

We can explore the theory’s domain by examining its
models. Interestingly, in 256 of the 258 models of F.1′

through F.5′ with cardinality 2, all axioms hold vacu-
ously (because each function is equal for both elements
of the domain). For each of the eight functions there

9Jerry Hage later confirmed that the axioms and the-
orems should indeed be interpreted as biconditionals, and
mentioned that he explicitly included the words “and vice
versa” in later references to the theory. Note that without
adding the converse of F.6 the theorems T.4-5, 12, 15, 18,
21 can only be derived as conditionals.

are 2 options to be equal, both zero or both one, giving
256 (= 28) models. As soon as one of the functions is
unequal, all functions are unequal. This results in a
model as depicted in Table 8 (and the isomorphic copy
with O1 and O2 interchanged being the remaining last
model).

If one interprets the 0 as ‘low’ and the 1 as ‘high’
then this model represents to the ‘two ideal types’ of
organization that are discussed on (Hage 1965, p.304-
307). One ‘ideal type’ is an ‘organic model’ that has
high complexity, low centralization, low formalization,
low stratification, high adaptiveness, low production,
low efficiency, and high job satisfaction (correspond-
ing to O1 in the model of Table 8). This organiza-
tion type emphasizes adaptiveness. The other ‘ideal
type’ is a ‘mechanistic model’. This opposite of the
‘organic model’ has low complexity, high centraliza-
tion, high formalization, high stratification, low adap-
tiveness, high production, high efficiency, and low job
satisfaction (corresponding to O2 in the model of Ta-
ble 8). This organization type emphasizes production.

3.4 SUMMARIZING

In order to derive the claimed theorems, we had to
interpret the natural language assumptions as logical
bi-implications. On the one hand, this rescues the the-
ory: the intended theorems are soundly derivable, the
theorems are contingent (both satisfiable and falsifi-
able), and the theory is consistent. On the other hand,
this trivializes the theory: now all eight functions be-
come indistinguishable.10 In short, one has to con-
clude that the axioms of (Hage 1965) are too strong.
Nevertheless, the attempt that Hage undertook, i.e., to
construct a general, axiomatic theory of organizations,
remains an important enterprise. Any effort to formu-
late some of the basic axioms of organization theory,
should take Hage’s attempt into account.

A critical analysis of Hage’s theory is unfair without
noting the incomparability of his and our positions.
Science has progressed significantly since the sixties:
much more is known about formal logics and about
their application; automated reasoning tools are oper-
ational and are valuable research assistants; and also
the social sciences have advanced, e.g., empirical data
have become available. This has led to renewed inter-
est in building axiomatic, formal theories in the social
sciences.

10From a strictly formal point of view, one would need a
trichotomy axiom for each of the eight functions to ensure
that values for each function are comparable. For example,
∀x, y [ cent(x) < cent(y) ∨ cent(x) = cent(y) ∨ cent(x) >
cent(y) ].



Table 9: Theoretical Criteria And Automated Reasoning Tools.
Criterion Theorem Prover Model Generator
Consistency ×
Inconsistency ×
Soundness ×
Unsoundness ×
Falsifiability ×
Unfalsifiability ×
Contingency ×
Noncontingency ×
Domain ×

4 CONCLUSIONS AND
DISCUSSION

In this paper we outlined a theory building method-
ology that is based on the use of standard first-order
logic, and of existing automated reasoning tools. The
logic provides us with a number of criteria that can
be tested for using computational tools, such as con-
sistency, soundness, falsifiability, and contingency (see
Table 9). In principle, each criterion can be tested for
by both theorem proving and model generation strate-
gies, for example, a theorem is also sound if it holds
in all models of the premise set, or a theory is consis-
tent if the deductive closure of the premise set does
not contain a contradiction. In practice, the use of
automated theorem provers and model generators is
complementary: generating all models or the complete
deductive closure of a premise set is impossible. A the-
orem prover is suitable for proving the inconsistency of
the theory, or the soundness of a derivation (requiring
only a single proof), and a model generator can prove
the consistency of the theory, or the unsoundness of a
conjecture (requiring only a single model). In short,
much is to be gained by using the right tool for the spe-
cific proof/disproof attempt at hand, and even more
than just computational differences. Consider, for ex-
ample, a situation in which the prover fails to prove a
conjecture. Determining what caused this failure typ-
ically requires a thorough examination of the search-
traces—an arduous, time-consuming activity. If the
model generator can construct a counterexample to
the conjecture, it will become apparent immediately
why the proof attempt failed.

As always, there are principal and practical limita-
tions to use of automated reasoning tools: first-order
logic is not decidable (although it is semi-decidable:
it may detect a consequent eventually); current au-
tomated model generators can only find finite mod-
els (even only very small ones, cardinalities beyond

a dozen seem impractical); and the common practi-
cal limitations such as memory, CPU, time. However,
none of the proofs and models searches for the case
study in Section 3 requires more than five seconds.
Admittedly, this case study concerns a relatively sim-
ple theory fragment. Larger theories have been for-
malized in some of the other case studies (for example
(Péli and Masuch 1997) where proofs required up to
30 minutes). Current implementations of automated
theorem provers, including Otter, are very powerful.
Automated model generators are of recent incarna-
tion, and are yet far less sophisticated. Mace chokes
on deeply nested terms or clauses with many literals
(beyond 10 distinct terms). We might end up in a
situation in which we cannot prove a conjecture, nor
find small counterexamples to it (for example, when all
counterexamples have infinite cardinality). Still, cur-
rent automated model generators are powerful enough
to have solved several open problems in (finite) math-
ematics (Slaney 1994).

We started this paper by referring to the positivist her-
itage that we share—the logical analysis for evaluating
and justifying scientific theories. However, the use of
the tools goes beyond a rigid, final justification of the-
ories. We use them extensively during the process of
formalization. As a result, we also enter the context
of discovery: during the formalization process, we will
repeatedly refine the (formal) theory. This makes our
methodology more in line with more recent philosophy
of science, in particular with (Lakatos 1976). Lakatos
gives a logical analysis of the development of theories
over time, with which the case study of section 3 shows
remarkable resemblance (especially his classroom dia-
logue attempting to prove the polyhedron conjecture).

In our experience, the tools are especially useful during
the process of formalizing a theory—intermediate ver-
sions of a theory under construction are more likely
to contain logical flaws. When formalizing a larger
theory, a short lapse of attention may result in an in-



consistent theory. Proving consistency by generating
a model can be a fast and easy safeguard against such
an unfortunate event. Moreover, on many occasions
(especially in the social sciences), theorems cannot be
derived because some background knowledge is miss-
ing. The need for such an assumption can become
clear immediately by examining the counterexamples.
It is often difficult to find such non-intended models by
hand, because they conflict with our common sense.
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Kamps, J. and L. Pólos (1998). Reducing uncer-
tainty: A formal theory of organizations in ac-
tion. CCSOM Working Paper 98-167.

Lakatos, I. (1976). Proofs and Refutations. The logic
of mathematical discovery. Cambridge Univer-
sity Press, Cambridge, England.

McCune, W. (1994a). A Davis-Putnam program
and its application to finite first-order model
search: Quasigroup existence problems. Tech-
nical report, Argonne National Laboratory, Ar-
gonne IL. DRAFT.

McCune, W. (1994b). Otter: Reference man-
ual and guide. Technical Report ANL-94/6, Ar-
gonne National Laboratory, Argonne IL.
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