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Abstract

This paper provides practical operationalizations of criteria
for evaluating scientific theories, such as the consistency and
falsifiability of theories and the soundness of inferences, that
take into account definitions. The precise formulation of these
criteria is tailored to the use of automated theorem provers and
automated model generators—generic tools from the field of
automated reasoning. The use of these criteria is illustrated by
applying them to a first order logic representation of a classic
organization theory, Thompson’s Organizations in Action.

Introduction
Philosophy of science’s classical conception of scientific the-
ories is based on the axiomatization of theories in (first order)
logic. In such an axiomatization, the theory’s predictions can
be derived as theorems by the inference rules of the logic. In
practice, only very few theories from the empirical sciences
have been formalized in first order logic. One of the reasons
is that the calculations involved in formalizing scientific the-
ories quickly defy manual processing. The availability of au-
tomated reasoning tools allows us to transcend these limita-
tions. In the social sciences, this has led to renewed interest
in the axiomatization of scientific theories (Péli et al. 1994;
Péli & Masuch 1997; Péli 1997; Bruggeman 1997; Hannan
1998; Kamps & Pólos 1999). These authors present first or-
der logic versions of heretofore non-formal scientific theo-
ries.

The social sciences are renowned for the richness of their
vocabulary (one of the most noticeable differences with the-
ories in other sciences). Social science theories are usually
stated using many related concepts that have subtle differ-
ences in meaning. As a result, a formal rendition of a so-
cial science theory will use a large vocabulary. We recently
started to experiment with the use of definitions as a means to
combine a rich vocabulary with a small number of primitive
terms.

Now definitions are unlike theorems and unlike axioms.
Unlike theorems, definitions are not things we prove.
We just declare them by fiat. But unlike axioms, we do
not expect definitions to add substantive information. A
definition is expected to add to our convenience, not to
our knowledge. (Enderton 1972, p.154)
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If dependencies between different concepts are made ex-
plicit, we may be able to define some concepts in terms of
other concepts, or in terms of a smaller number of primitive
concepts. If the theory contains definitions, the defined con-
cepts can be eliminated from the theory by expanding the
definitions. Eliminating the defined concepts does not affect
the theory, in the sense that the models and theorems of the
theory remain the same.

This paper provides practical operationalizations of crite-
ria for evaluating scientific theories, such as the consistency
and falsifiability of theories and the soundness of inferences.
In earlier discussion of the criteria for evaluating theories,
we did not distinguish between different types of premises
(Kamps 1998). In this paper, we will provide practical oper-
ationalizations of these criteria that take definitions into ac-
count, and illustrate their use on a formal fragment of orga-
nization theory.

Logical formalization
Most social science theories are stated in ordinary lan-
guage (except, of course, for mathematical theories in eco-
nomics). The main obstacle for the formalization of such a
discursive theory is their rational reconstruction: interpret-
ing the text, distinguishing important claims and argumenta-
tion from other parts of the text, and reconstructing the argu-
mentation. This reconstruction is seldom a straightforward
process, although there are some useful guidelines (Fisher
1988). When the theoretical statements are singled-out, they
can be formulated in first order logic. The main benefit of the
formalization of theories in logic is that it provides clarity by
providing an unambiguous exposition of the theory (Suppes
1968). Moreover, the fields of logic and philosophy of sci-
ence have provided a number of criteria for evaluating for-
mal theories, such as the consistency and falsifiability of the-
ories and the soundness of inferences. Our aim is to develop
support for the axiomatization of theories in first order logic
by giving specific operationalizations of these criteria. These
specific formulations are chosen such that the criteria can be
established in practice with relative ease, i.e., such that exist-
ing automated reasoning tools can be used for this purpose.1

1Of course, we hope that this will be regarded as an original con-
tribution, but the claim to originality is a difficult one to establish.
The novelty is in the combination of ideas from various fields and
our debts to the fields of logic and philosophy of science fan out
much further than specific citations indicate.



Criteria for Evaluating Theories
We will� use the following notation. Let � denote the set of
premises of a theory. A formula � is a theorem of this the-
ory if and only if it is a logical consequence, i.e., if and only
if ��� ��� . The theory itself is the set of all theorems, in sym-
bols, �	�
����� ���
� .

Consistency The first and foremost criterion is consis-
tency: we can tell whether a theory in logic is contradiction-
free. If a theory is inconsistent, it cannot correspond to its
intended domain of application. Therefore, empirical testing
should focus on identifying those premises that do not hold
in its domain. The formal theory can suggest which assump-
tions are problematic by identifying (minimal) inconsistent
subsets of the premises.

The theory is consistent if we can find a model � such that
the premises are satisfied: ��� ��� . A theory is inconsistent if
we can derive a contradiction, � , from the premises: ����� .

Soundness Another criterion is soundness of arguments:
we can tell whether a claim undeniably follows from the
given premises. If the derivation of a claim is unsound,
empirical testing of the premises does not provide conclu-
sive support for the claim. Conversely, empirically refuting
the claim may have no further consequences for the theory.
Many of our basic propositions are inaccessible for direct
empirical testing. Such propositions can be indirectly tested
by their testable implications (Hempel 1966). In case of un-
sound argumentation, examining the counterexamples pro-
vides useful guidance for revision of the theory.

A theorem � is sound if it can be derived from the
premises ����� . A theorem � is unsound (i.e., � is no theo-
rem) if we can construct a counterexample, that is, a model �
in which the premises hold, and the theorem is false: ��� ���
and ���� ��� .

Falsifiability Falsifiability of a theorem means that it is
possible to refute the theorem. Self-contained or tautological
statements are unfalsifiable—their truth does not depend on
the empirical assumptions of the theory. Falsifiability is an
essential property of scientific theories (Popper 1959). If no
state of affairs can falsify a theory, empirical testing can only
reassert its trivial validity. A theory is falsifiable if it contains
at least one falsifiable theorem.

An initial operationalization of falsifiability is: a theorem� is unfalsifiable if it can be derived from an empty set of
premises: ��� and falsifiable if we can construct a model �
(of the language) in which the theorem is false: ���� ��� . Note
that we cannot require this model to be a model of the the-
ory. A theorem is necessarily true in all models of the theory
(otherwise it would not be a theorem). We should therefore
ignore the axioms of the theory, and consider arbitrary mod-
els of the language. This initial formulation works for some
unfalsifiable statements like tautologies, but may fail in the
context of definitions. Consider the following simple exam-
ple: a theory that contains a definition of a �������	�! "$# predi-
cate. %'&)( �����!�*�� "$#,+ &.-0/ 1 �32$+ &.-�465 2378��#9#;: �=<>+ &>-@?
In such a theory, we will have a the following theorem.%'&)( �������	�! "$#,+ &>-0A 1 �32B+ &.-C?

Using falsifiability as formulated above, we would conclude
that this statement is falsifiable. It is easy to construct mod-
els (of the language) in which the theorem is false, that is,
models in which an object D occurs such that �����!�*�� "$#@+9D - is
assigned true and

1 �32B+;D - is false. However, if we expand
the definition, then the theorem becomes%'&)(E1 �32B+ &.-F4G5 2H7I�!#J#K: �*<.+ &.-0A 1 �32B+ &>-@?
This expanded theorem is tautologically true and therefore
unfalsifiable by the above formulation. This is problematic,
since “we do not expect definitions to add substantive infor-
mation” (Enderton 1972, see the above quotation). There-
fore, the elimination of defined concepts should also not af-
fect any of the criteria for evaluating theories. Although we
have to ignore the axioms, we must take the definitions into
account when establishing falsifiability.

In the context of definitions �MLONKPRQS� , a theorem � is falsi-
fiable if there exists a model � in which the definitions hold,
and the theorem is false: �T� �U� LVN;P and �W�� �U� . A theorem� is unfalsifiable if the theorem can be derived from only the
set of definitions: �MLONKPX��� .

Satisfiability Satisfiability is the counterpart of falsifi-
ability. Satisfiability of a theorem ensures that it can be
fulfilled. Self-contradictory statements are unsatisfiable. It
makes no sense to subject an unsatisfiable theorem to empir-
ical testing, since it is impossible to find instances that cor-
roborate the theorem.

In the context of definitions � LVN;P QY� , a theorem � is
satisfiable if there exists a model � in which the definitions
hold, and the theorem is true: ��� ���MLONKP and ��� ��� . A the-
orem � is unsatisfiable if we can derive a contradiction from
only the set of definitions and the theorem: � LONKP3Z �	�
�I�)� .

Contingency Theorems that can both be fulfilled and re-
futed are called contingent—their validity strictly depends
on the axioms, they are neither tautologically true, nor self-
contradictory. The empirical investigation of non-contingent
theorems does not make any sense because the outcome is
predetermined.

A theorem is contingent if it is both satisfiable and falsi-
fiable. A theorem is non-contingent if it is unsatisfiable or
unfalsifiable (or both).

Further advantages Making the inference structure of a
theory explicit will make it possible to assess the theory’s ex-
planatory and predictive power (by looking at the set of the-
orems because these are the predictions of the theory, and the
proofs give explanations for them); its domain or scope (by
investigating the models of the theory); its coherence (for ex-
ample, a theory may turn out to have unrelated or indepen-
dent parts); its parsimony (for example, it may turn out that
some assumptions are not necessary, or can be relaxed); and
other properties.

Computational tools
The above operationalizations require particular proof or
model searches for establishing the criteria. The field of
automated reasoning has provided us with automated theo-
rem provers and model generators—generic tools that can di-
rectly be used for computational testing of the criteria. Au-
tomated theorem provers, such as OTTER (McCune 1994b),



are programs that are designed to find proofs of theorems.
Typical theorem provers use reductio ad absurdum, that
is, the program attempts to derive a contradiction from the
premises and the negation of the theorem. A theorem prover
can also be used to prove that a theory is inconsistent if it
can derive a contradiction from the set of premises of the the-
ory. Automated model generators, such as MACE (McCune
1994a), are programs that can find (small) models of sets of
sentences. A model generator can prove the consistency of a
theory, if it can generate a model of the premises. It can also
be used to prove underivability of a conjecture, by attempting
to generate a model of the premises in which the conjecture
is false. Table 1 summarizes how to test for the criteria.2

CRITERION OTTER MACE

Consistency [;\!]I^J]�_ `ba
Inconsistency a6ced
Soundness a�fhgjiFk�lmced
Unsoundness [;\!]I^J]�_ `ba�fng=i�k�l
Falsifiability [;\!]I^J]�_ `baXoKprq$fsg=i�k�l
Unfalsifiability a oKprq fhgjiFk�lmced
Satisfiability [;\!]I^J]�_ `ba oKprq fsg=k�l
Unsatisfiability a oKprq fsg=k�ltced
Note: a denotes a premise set, with aXoKprq the definitions in this
set, and k a conjecture or theorem.

Table 1: Criteria and Automated Reasoning Tools.

The decision to use either automated theorem provers or
model generators is not an arbitrary one. Although (syntac-
tic) proof-theoretic and (semantic) model-theoretical char-
acterizations are logically equivalent, determining the cri-
teria is a different matter. First, there is a fundamental re-
striction on what we can hope to achieve because first order
logic is undecidable. Although undecidable, first-order logic
is semi-decidable—we can prove �u��� if it is true. We
suggest the use of theorem provers only for cases in which a
contradiction can be derived. The other cases are, in general,
undecidable (causing theorem provers to run on for ever).
However, finding finite models is, again, decidable—we can
find a finite model � such that �v� �w� if there exists such
a finite model. Current model generators can only find finite
models—even only models of small cardinalities. We have
no solution for those cases in which only infinite models ex-
ist (or only models that are too large for current programs).
Second, the tests we suggest to evaluate the criteria do not
only prove a criterion, but also present a specific proof or
model that is available for further inspection. In simple cases
theorem provers may terminate after exhausting their search
space without finding a contradiction, proving indirectly that
the problem set is consistent, or that a conjecture is not deriv-
able. Even in these cases a direct proof is far more informa-
tive, for example, if we can find specific counterexamples to
a conjecture, it is immediately clear why our proof attempt
has failed.

2OTTER and MACE are companion programs that can read the
same input format. This facilitates switching between theorem
proving and model searching, depending on which type of tool is
most suitable for the specific proof or disproof attempt at hand.
Kamps (1998) discusses the use of these tools for formal theory
building in detail.

Case Study: A Formal Theory of
Organizations in Action

We will illustrate the criteria outlined above by applying
them to the formal theory of Organizations in Action (Kamps
& Pólos 1999), a formal rendition of (Thompson 1967).
Thompson (1967) is one of the classic contributions to orga-
nization theory: it provides a framework that unifies the per-
spective treating organizations as closed systems, with the
perspective that focuses on the dependencies between orga-
nizations and their environment. This framework has influ-
enced much of the subsequent research in organization the-
ory. Thompson (1967) is a ordinary language text, in which
only the main propositions are clearly outlined. Kamps and
Pólos (1999) provide a formal rendition of the first chapters
of the book, by reconstructing the argumentation used in the
text.

PREDICATES

Primitive:x [Ky*^ y is an organizationz x [Ky�{V|}y*^ |}y is a suborganization of y~�� [Ky!{J�C��^ �@� is the technical core of y�'�!��� [Ky!{C�@��^ �@� is rationally evaluated by y�'� [Ky!{@��^ y has uncertainty ��'��� [Ky!{@�,{J�C��^ y attempts to reduce � for �C��$� [��C��{O�H{,y=^ �@� is exposed to a fluctuation � from y� z [��C��{,�j{,y=^ �@� is exposed to a constraint � from y� [��C{,��^ � causes ��F� [Ky�{C�9^ y has control over �
Defined:� x [Ky=^ y is a complex organization���>�R� [��C�j{@�,{Vy=^ �@� is exposed to an influence � from yz �.�3� [Ky!{@�,{C�@��^ y seals off �C� from ���~ x [Ky=^ y is an atomic organization�F�X� [Ky!{O�H{C�@��^ y buffers � for �@��R�'� [Ky!{C�j{C�C��^ y anticipates and adapts to � for �@��F��� [Ky!��{,y*�}^ y=� is in y�� ’s controlled environmentz.� [Ky�{O�H{@�C��^ y smoothes � for �C��X�3� [Ky!{C�j{@�@��^ y negotiates � for �@�

Table 2: Predicates (Kamps & Pólos 1999).

The formal theory uses the predicate symbols reprinted in
table 2. Although the text of (Thompson 1967) does not con-
tain explicit definitions, the use of terminology in the text
strongly suggests strict dependencies between several im-
portant concepts. This allowed for the definition of these
concepts in terms of a small number of primitive notions of
organization theory. Table 3 lists the premises (both def-
initions and assumptions) and theorems of the formal the-
ory. In the formal theory, the key propositions of (Thompson
1967) can be derived as theorems (theorem 3, corollaries 8,
9, and 11). The proofs of these theorems are based on a re-
construction of the argumentation in the text (assumptions 1–
8). Additionally, the formal theory explains why the theory
is restricted to a particular type of organizations (theorem 6).
Moreover, it derives a heretofore unknown implication of the
theory (corollary 12) that relates Thompson’s theory to re-
cent empirical findings and current developments in organi-
zation theory. For detailed discussion we refer the reader to
(Kamps & Pólos 1999).

The criteria of the previous section played an important



PREMISES AND THEOREMS

Premises:
Def.1 �B�s� � x [���^�  x [��B^�¡n\�¢£� z x [��>{@¢H^�¡ ~�� [��>{@¢H^9¤¥¤
Def.2 �B�>{@¢�{@¦§� �.�.�
� [��>{@¢B{,¦	^�  �$� [��>{J¢�{C¦�^.¨ � z [��.{@¢B{,¦�^9¤
Def.3 �B�>{@¢�{@¦§� z ���$� [��>{J¢�{C¦�^©  z x [��>{,¦�^�¡h\!ª${@«¬� ���>�R� [K¦�{C¢B{Cª�^.¡ �­� [K¦�{C«t^�¡ � [�¢�{@«t^�¡ �'��� [��>{C«®{,¦�^9¤¥¤
Def.4 �B�s� ��~ x [���^�  x [���^�¡ni � x [���^9¤
Def.5 �B�>{@¢�{@¦§� ����� [��>{@¢B{,¦	^©  z x [��.{,¦�^�¡ �$� [K¦H{C¢B{@�B^.¡ �'�.� [��.{C¢B{,¦�^9¤
Def.6 �B�>{@¢�{@¦§� �
�>� [��>{J¢�{C¦�^©  z x [��>{,¦�^�¡ � z [K¦H{C¢B{@�B^.¡ �'�.� [��.{C¢B{C¦�^9¤
Def.7 �B�>{@¢¯� �F��� [��>{C¢H^�  x [��B^�¡§��¦§� ���>�R� [��>{@¦H{C¢H^�° �F� [��>{,¦	^9¤±¤
Def.8 �B�>{@¢�{@¦§� z>� [��.{@¢B{,¦�^�  z x [��>{,¦	^�¡n\�ª£� �$� [��.{@¢B{Cª�^�¡ �'��� [��>{@¢B{,¦�^9¤¥¤
Def.9 �B�>{@¢�{@¦§� �X�3� [��>{@¢�{C¦�^©  z x [��>{C¦�^�¡h\!ª¯� � z [��>{@¢B{Cª�^�¡ �'��� [��>{@¢�{@¦�^9¤¥¤
Ass.1 �B�>{@¢�{@¦§� ~X� [��>{@¢3^�¡ ~X� [��>{C¦�^©°²¢§`0¦=¤
Ass.2 �B�>{@¢¯� ~�� [��>{C¢H^�° �'�!��� [��.{C¢H^9¤
Ass.3 �B�>{@¢�{@¦§� z x [��>{C¢H^�¡ �'�!��� [��>{C¢H^�¡ �­� [�¢B{@¦�^�° �'��� [��>{C¦H{C¢H^9¤
Ass.4 �B�>{@¢�{@¦§� �.�.�
� [��>{@¢B{,¦	^�°³\!ª¯� �'� [��>{Cª�^�¡ � [�¢B{Jª�^9¤±¤
Ass.5 �B�>{@¢¯� x [���^�¡ ~�� [��>{@¢H^�¡hi z x [��>{C¢H^�°´�¯`µ¢�¤
Ass.6 �B�>{@¢�{@¦H{Cª${C«�� ���>�R� [��>{C¢B{C¦	^.¡ �'� [��>{@ª�^.¡ � [�¢B{Cª�^.¡ �­� [��.{@«¶^.¡ � [�¢B{C«t^©°´ª8`µ«
¤
Ass.7 �B�>{@¢�{@¦H{Cª¯� x [���^�¡ z x [��>{@¢H^�¡ ���>�R� [�¢B{@¦H{,ª�^©° ��� [��>{C¦	^9¤
Ass.8 �B�>{@¢�{@¦H{Cª¯� �'�.� [��.{C¢B{C¦�^�¡ � [�ª${C¢H^�¡ ��� [��>{@ª�^©° �'��� [��.{@ª${,¦�^9¤

Theorems:
Lem.1 �B�>{@¢¯� � x [���^�¡ ~�� [��>{@¢H^�° z x [��>{C¢H^9¤
Lem.2 �B�>{@¢�{@¦§� � x [���^�¡ ~X� [��>{J¢H^.¡ �­� [�¢B{C¦	^�° �'��� [��>{C¦�{C¢H^9¤
Thm.3 �B�>{@¢�{@¦H{Cª¯� � x [��B^�¡ ~X� [��.{@¢H^.¡ ���>�R� [�¢B{,¦H{@ª�^©° z �.�3� [��>{,¦�{C¢H^9¤
Lem.4 �B�s� ��~ x [���^�  x [���^�¡ni�\�¢¯� z x [��>{C¢H^�¡ ~�� [��>{C¢H^9¤¥¤
Lem.5 �B�>{@¢¯� ��~ x [���^�¡ ~X� [��>{J¢H^©°·�¯`µ¢�¤
Thm.6 �B�>{@¢�{@¦H{Cª${C«�� ��~ x [���^�¡ ~X� [��>{C¢H^�¡ ���>�R� [�¢B{@ª${C¦�^.¡ �­� [�¢B{C«¶^�¡ � [�ª${C«¶^�°·\��s� �­� [��>{J��^�¡ � [�ª${C�B^>¡¯«µ`µ�3¤¥¤
Thm.7 �B�>{@¢�{@¦H{Cª¯� � x [��B^�¡ ~X� [��.{@¢H^.¡ ���>�R� [�¢B{,¦H{@ª�^©° �'��� [��>{,¦�{C¢H^9¤
Cor.8 �B�>{@¢�{@¦§� � x [���^�¡ ~X� [��>{J¢H^.¡ �$� [�¢B{@¦H{C��^�° �F�X� [��>{@¦H{C¢H^9¤
Cor.9 �B�>{@¢�{@¦§� � x [���^�¡ ~X� [��>{J¢H^.¡ � z [�¢B{C¦�{C��^�° �
�>� [��>{@¦H{C¢H^9¤
Thm.10 �B�>{@¢�{@¦H{Cª${C«�� � x [���^�¡ ~X� [��>{J¢H^.¡ �.�.�
� [�¢B{,¦H{C�B^�¡ �F��� [��.{@ª�^�¡ ���>�R� [��>{J«¸{,ª�^�¡ � [�«¸{,¦	^©° �'��� [��>{C«®{C¢H^9¤
Cor.11 �B�>{@¢�{@¦H{Cª${C«�� � x [���^�¡ ~X� [��>{J¢H^.¡ �$� [�¢B{,¦�{C��^�¡ �F��� [��>{@ª�^�¡ �3� [��>{@«¸{Cª�^�¡ � [�«¸{,¦	^�° z.� [��>{J«¸{,¢H^9¤
Cor.12 �B�>{@¢�{@¦H{Cª${C«�� � x [���^�¡ ~X� [��>{J¢H^.¡ � z [�¢B{C¦�{C��^�¡ �F��� [��>{@ª�^�¡ � z [��>{@«®{,ª�^�¡ � [�«®{,¦�^�° �X�3� [��>{C«®{C¢H^9¤

Table 3: A Formal Theory of Organizations in Action (Kamps & Pólos 1999).
Lem.1 Lem.2 Thm.3 Lem.4 Lem.5 Thm.6 Thm.7 Cor.8 Cor.9 Thm.10 Cor.11 Cor.12

Consistent yes
Sound yes yes yes yes yes yes yes yes yes yes yes yes
Falsifiable yes yes yes no yes yes yes yes yes yes yes yes
Satisfiable yes yes yes yes yes yes yes yes yes yes yes yes
Contingent yes yes yes no yes yes yes yes yes yes yes yes

Table 4: Evaluating the Theory.

role during the construction of the formal theory. Table 4
give an assessment of the final version of the theory in terms
of the criteria.

Consistency Using an automated model generator it is
easy to find models of the theory. MACE produced a model
of cardinality 4 within a second (a model having universe�*¹�ºj»Hº�¼Bº�½B� , reprinted in tables 5 and 6). This is a prototypi-
cal model of the theory corresponding to the claims of theo-
rem 3, theorem 7, and corollary 8. It represents an organiza-
tion that seals its core technologies off from environmental
fluctuations, by the use of buffering (for example the stock-
piling of materials and supplies). It is easy to verify that
all premises (and theorems) hold in the model—the model
proves that the theory is consistent.

Finding any arbitrary model of the theory is, formally
speaking, sufficient to prove its consistency. We can find
models on smaller cardinalities. For example, on cardinal-
ity 1 there exists a trivial model that assigns false to all pred-
icates. In practice, we try to find more natural models of
the theory. That is, we can examine the models and see if

they conform to our mental models of the theory. This is
an easy safeguard against hidden inconsistencies—theories
that are only consistent because background knowledge has
remained implicit.3 We can look for prototypical models of
the theory directly by adding premises that express appropri-
ate initial conditions (typically existential statements). If we
find a model of this enlarged set of premises, it is obviously

3Consider the following simple example:�B�s� ��¾*¿ [���^©° �.ÀjÁ9Â [��B^9¤�B¾jÃJÃKÄ�Å�Æ Ç ÅjÁ [KÈ ¾�É�Ê�Ê}Ë ^i �>ÀjÁ9Â [KÈ ¾�É�Ê�Ê}Ë ^
Can we find a model of this theory? Yes, although inspection of
the models will reveal that in every model of the theory, Johnny the
rottweiler is not a dog. These models are nonintended models be-
cause of the (implicit) background knowledge that rottweilers are a
particular breed of dogs.�$�s� �B¾=ÃJÃKÄ�Å�Æ Ç ÅjÁ [���^�° ��¾*¿ [���^9¤
Adding this assumption to the theory will make it inconsistent, that
is, we can then derive a contradiction from it.



x
0 T
1 F
2 F
3 F

z x
0 1 2 3

0 F T F F
1 F F F F
2 F F F F
3 F F F F

~��
0 1 2 3

0 F T F F
1 F F F F
2 F F F F
3 F F F F

�'�!���
0 1 2 3

0 F T F F
1 F F F F
2 F F F F
3 F F F F

�'�
0 1 2 3

0 F F F F
1 F F F T
2 F F F F
3 F F F F

�'��� [KÌ�{CÍ�{}Î�^ ` T and�'��� [KÌ�{,Ï!{}Î�^ ` T and�'��� [��>{J¢�{C¦�^�` F other-
wise.

�$� [@Î*{,Ï!{VÌ	^ ` T and�$� [��>{J¢�{C¦�^ ` F other-
wise.

� z [��>{C¢B{@¦�^Ð` F for all�>{J¢B{,¦ in gjÌ!{}Î*{OÏ�{,Í�l .
�

0 1 2 3
0 F F F F
1 F F F F
2 F F F T
3 F F F F

���
0 1 2 3

0 F F T F
1 F F F F
2 F F F F
3 F F F F

Table 5: A Model of the Theory (only primitives).� x
0 T
1 F
2 F
3 F

���>�R� [@Î*{VÏ�{VÌ	^³` T and���>�R� [��>{@¢B{,¦�^©` F other-
wise.

z �.�3� [KÌ�{VÏ�{}Î�^Ñ` T andz �.�3� [��>{@¢B{,¦	^s` F other-
wise.

�F�X�3� [KÌ�{VÏ�{}Î�^u` T and�F�X�3� [��>{@¢B{,¦	^m` F other-
wise.

Table 6: Selected Defined Predicates (extending Tab.5).

also a model of the theory.

Soundness In the final formal theory (as reprinted in ta-
ble 3), all theorems are derivable. Figure 1 shows the in-
ference structure of the formal theory. None of the proofs
is very complex (the automated theorem prover OTTER re-
quired only 12 seconds for the longest proof).

The original text of the theory presupposes common back-
ground knowledge—assumptions taken for granted in the
substantive field. In order for the theorems to be deductively
derivable, several implicit assumptions had to be added to
the theory (notably assumptions 1, 6 and 7). Which pre-
cise background assumptions to add is one of the thorniest
problems in the formalization of a theory, requiring a deep
understanding of the substantive field under consideration.
Fortunately, the formal tools can help: suppose we cannot
derive a theorem due to a missing background assumption.
We can prove that the theorem is underivable by generating
counterexamples, that is, models of the premises in which the
theorem is false. If the unsoundness of the theorem is due
to missing background knowledge, inspection of the coun-
terexamples will reveal that they are nonintended models—
models that violate our common sense, or implicit back-

Def.1

Def.1 Def.2

Def.3

Def.4

Def.5

Def.6

Def.7 Def.8

Def.9

Ass.1

Ass.2

Ass.3

Ass.4

Ass.5 Ass.6

Ass.7

Ass.8

ÒCÓ�Ô Õ Ö¥×
ÒCÓ�Ô Õ ÖEÖØ9Ù�Ú Õ Ö±Û

Ò@ÓKÔ Õ Ü
Ò@ÓKÔ Õ Ý

Ø;Ù�Ú Õ Þ
Ø;Ù�Ú Õ ß
Ø;Ù�Ú Õ à

áEâ�Ú Õ ×
áEâ�Ú Õ ãáEâ�Ú Õ ä

áEâ�Ú Õ Ö

Figure 1: Inferences in the Formal Theory

ground assumptions from the substantive domain. For ex-
ample, we found models of organizations having more than
one operational core (conflicting with assumption 1, which
is implicit in the original text). We can make the theorem
derivable if we add sufficient assumptions to exclude these
nonintended models from the theory.

Falsifiability We tried to prove the falsifiability of the the-
orems as discussed above: by finding a model in which the
definitions hold and the theorem is false. We failed to find
such a model for lemma 4. As it turns out, lemma 4 can be de-
rived from just definitions 1 and 4—proving that this lemma
is unfalsifiable. Lemma 4 is true by definition, and there-
fore does not make an empirical claim. If we would subject
lemma 4 to empirical testing, we will be unable to refute it,
but can at best reassert the trivial validity of the statement.

Fortunately, the other theorems of the formal theory are
falsifiable. For each of these theorems, we can find models of
the definitions in which the theorem is false (not reproduced
here). MACE generated these models in a matter of seconds.

Satisfiability/Contingency For proving the satisfiability
of the theorems, we need to find models that make both the
definitions and the theorem true. The model of tables 5 and 6
also proves the satisfiability of all theorems. As a result, we
can conclude that only lemma 4 is non-contingent—it is not
an empirical statement, but its truth is determined by virtue
of the definitions only. The other theorems make empirical
claims that can, in principle, be corroborated or refuted by
empirical testing.

Conclusions and Discussion
This paper discussed the axiomatization of scientific theories
in first order logic. We provided practical operationalizations
of criteria for evaluating scientific theories, such as the con-
sistency and falsifiability of theories and the soundness of in-
ferences. The precise formulation of these criteria is tailored
to the use of computational support. The tests for the criteria,
in practice amounting to particular proof or model searches,
can be directly performed by existing automated reasoning
tools.

The efficient treatment of definitions is one of the ba-
sic research problems in automated reasoning (Wos 1988,
Problem 30). A naive approach is to eliminate all defined



predicates and functions from the problem set by expanding
the definitions. This, however, also eliminates useful ways
chunking information and as a result it “increases the likeli-
hood that a program will get lost” (Wos 1988, p.62).4 Since
only few problems are provable without expanding (some
of) the definitions, dealing with definitions is a difficult chal-
lenge for automated reasoning tools. As a result, most au-
tomated theorem provers treat definitions and axioms alike
(a notable exception is (Giunchiglia & Walsh 1989)). Inter-
estingly, the above argument does not seem to apply to au-
tomated model generators.5 The search space of automated
model generators is the set of all possible models, i.e., all
possible interpretation functions of the logical vocabulary.
Reducing the vocabulary of the formal language by elimi-
nating the defined concepts will proportionally reduce this
search space. Moreover, after eliminating the defined con-
cepts, the definitions themselves can be removed from the
problem set, which reduces the number of “constraints” that
need to be taken into account when deciding whether a par-
ticular interpretation is a model of the problem set.

We used the criteria to evaluate a formal rendition of a
classic organization theory (Kamps & Pólos 1999). Assess-
ing the criteria allows for an exact evaluation of the merits
of a theory. In some cases, this may reveal important facts
about the theory, for example, the case study showed that one
of the derived statements is unfalsifiable—empirical investi-
gation of it is futile. However, we do not view the criteria as
rigid, final tests. Quite the opposite, in our experience the cri-
teria are especially useful during the process of formalizing
a theory. During the construction of a formal theory, the cri-
teria can provide useful feedback on how to revise the theory
in case of a deficiency. For example, examining counterex-
amples can reveal which implicit (background) assumptions
need to be added to the theory. There are, of course, impor-
tant principled and practical limitations to the axiomatization
of theories in first order logic: the undecidability of first or-
der logic, the scientific knowledge available in the substan-
tive domains, or the availability of resources like processor
power, memory, and time. There is yet no equivocal answer
to the question whether it is possible, or even desirable, to ax-
iomatize large parts of substantive domains. Axiomatization
is often viewed as the ultimate step in the lifetime of a sci-
entific theory—the axioms are frozen in their final form, and
active research moves on to areas where still progress can be
made. The main motivation for the research reported in this
paper is that the formalization of theories can play a broader

4This is substantiated by the theory in our case study: after
eliminating all defined predicates, OTTER proved several theorems
slightly faster, but some others slower. These are preliminary ob-
servations without taking into account the time needed expand the
definitions (a preprocessing step that is done once for any number
of queries). This expansion was done manually but is of no great
complexity: since definitions are not allowed to be circular, we only
need to expand each definition once.

5For the theory in our case study, eliminating defined con-
cepts gave significantly better performance on all model searches
(roughly halving MACE’s processor and memory usage). Again,
these are preliminary observations that do not consider the prepro-
cessing of definitions.

role: it need not end the life of a theory, but rather contribute
to its further development.
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Péli, G.; Bruggeman, J.; Masuch, M.; and Ó Nualláin, B. 1994. A
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