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certainty: A formal theory of Organizations in Action. American Journal of So-
ciology, 104:1776–1812, 1999. c©1999 by The University of Chicago.

Chapter 4 is an extended version of: J. Kamps. On criteria for formal theory
building: Applying logic and automated reasoning tools to the social sciences.
In J. Hendler and D. Subramanian, editors, Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99), pages 285–290. AAAI Press/The
MIT Press, Menlo Park CA, 1999. c©1999 by the American Association for
Artificial Intelligence.

Chapter 5 is an extended version of: J. Kamps. On the process of axioma-
tizing scientific theories: Using justification criteria in the context of discovery.
In Proceedings of the AISB’99 Symposium on Scientific Creativity, pages 49–58.
The Society for the Study of Artificial Intelligence and Simulation of Behaviour,
1999.

Chapter 6 is a shorter version of: J. Kamps and M. Masuch. Partial deductive
closure: Logical simulation and management science. Management Science, 43
(9):1229–1245, 1997. c©1997 by the Institute for Operations Research and the
Management Sciences.

Chapter 7 was published as: J. Kamps and G. Péli. Qualitative reasoning
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Preliminaries

Formal Logic

We will assume that the reader is familiar with the basic notions of classical
logic. See introductory texts (Barwise and Etchemendy 1992, 1994) or standard
textbooks such as (Tarski 1946; Enderton 1972; Chang and Keisler 1990).

First-Order Logic (with Equality)

Syntax A logic is based on a particular set of symbols. For first-order logic these
are a fixed set of the logical symbols (variables; connectives ¬, ∧, ∨, →, and ↔;
equality symbol =; quantifiers ∀ and ∃; and parenthesis and commas) and a varying
set of non-logical symbols (individual constants; functions; and predicates).

There are strict rules that define which sequences of symbols are well-formed
formulas of the language. A formula with no free variables is called a sentence.
Semantics A (formal) model consists of a universe (a non-empty set) and an
interpretation function that is a mapping between the non-logical symbols (i.e.,
constants, functions, and predicates of the language) and elements of this universe.
The logical symbols have a fixed interpretation.

This allows for a strict definition of relative truth, i.e., whenever a sentence ϕ is
satisfied (or true) in a model A, in symbols, A |= ϕ. We will use Σ |= ϕ to denote
that sentence ϕ is satisfied in every model of the set of sentences Σ, i.e., ϕ is a
logical consequence of Σ.
Proof Theory We use Σ ` ϕ to denote that sentence ϕ is deducible from the set
of sentences Σ, i.e., there exists a proof of ϕ from Σ. Such a (formal) proof is a
finite sequence of sentences ending with ϕ and such that each sentence is either a
logical axiom (i.e., a tautology, quantifier or identity axiom); belongs to Σ; or can
be inferred from earlier sentences using an inference rule.

There exist sets of inference rules that are sound and complete, i.e., such that
Σ ` ϕ if and only if Σ |= ϕ.

xv
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In this thesis we will assume that the underlying logic is standard first-order
logic—generally conceived as the logic by outsiders.1 Although a reader lacking
some proficiency in formal logic may not be able to follow all detailed arguments
or their underlying motivation, we made particular efforts to ensure that the main
points can still be understood.

Artificial Intelligence

The automatization of logical inferencing has a long history (Newell and Simon
1956; Beth 1958b). The decision to use standard first-order logic makes imme-
diately available a wide variety of computer applications. We do extensively use
generic tools from the field of automated reasoning.2

Automated Reasoning Tools

Automated Theorem Provers are programs designed for finding proofs of the-
orems (usually by proving that a set of sentences is unsatisfiable). We mainly used
Otter (McCune 1994b), a resolution-style theorem prover for first-order logic with
equality. Other automated theorem provers we used include metafor (Ó Nualláin
1993), SPASS (Weidenbach 1997), and bliksem (De Nivelle 1999).
Automated Model Generators are programs designed for enumerating the fi-
nite (small) models of a set of sentences. We mainly used Mace (McCune 1994a),
a model generator for first-order logic with equality, based on a Davis-Putnam pro-
cedure for propositional satisfiability testing. Other automated model generators
we used include Finder (Slaney 1994b) and SEM (Zhang and Zhang 1995).
Problem Library There exists a comprehensive library of automated reasoning
problems, called TPTP (Sutcliffe, Suttner, and Yemenis 1994). TPTP uses a uni-
form format for representing problems, which can be translated into the appropriate
format required by specific programs.

A general introduction to automated reasoning is (Wos, Overbeek, Lusk, and
Boyle 1992) or the more formal treatment of (Fitting 1996). Automated reasoning
is a subfield of artificial intelligence. For a general introduction, see (Genesereth
and Nilsson 1987) or the classic collection (Feigenbaum and Feldman 1963), which
is especially recommended since it originated from a business school.

The substantive theories we investigated are qualitative theories. Their repre-
sentation is related to research on formal theories of the everyday physical world
(Hayes 1979, 1985b; Davis 1998) and common-sense reasoning (McCarthy 1959;
Hobbs and Moore 1985; Hobbs, Blenko, Croft, Hager, Kautz, Kube, and Shoham
1985; Davis 1990). One chapter deals explicitly with qualitative reasoning tech-
niques (Weld and de Kleer 1990; Kuipers 1994).

1The notions we use generally do not depend on this choice and can easily be generalized to
other logics.

2The programs we will refer to as automated model generators are sometimes called a (finite)
domain enumerator, model generation program, model searcher, model finder, or model builder.
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Since, in our view, the axiomatization of theories is not restricted to jus-
tification only, there are some links with machine discovery (Langley, Simon,
Bradshaw, and Żytkow 1987; Thagard 1988; Shrager and Langley 1990).

Sociology

We will extensively discuss the formalization of theories from the field of sociology.
For a general introduction to sociology, see (Elster 1989). In some chapters, we
will use theories from a remarkable approach to sociological theory development
that attracted much attention in the fifties and sixties. This approach, based on
the work of Zetterberg (1955, 1965), attempted to put ordinary language theories
in an axiomatic form.3 Although these theories are relatively simple from our
current point of view, their perspicuous form makes them excellent illustrations
for discussing various issues that arise during the formalization of social science
theories.

The other substantive theories we deal with belong to sociology’s subfield of
organization theory.

(Some) Organization Theory

Rational adaptation theories Mainstream organizational theories regard orga-
nizations as agents that adapt rationally to changing environments. Specifically,
these theories try to explain the structure of organizations by analyzing their ad-
justment to external influences. We will extensively discuss the axiomatization
of a particular rational adaptation theory (Thompson 1967), which discusses the
adjustments due to external influences that introduce uncertainty in the organiza-
tion’s decision making process. These organization theories describe organizations
from an individual viewpoint.
Environmental selection theories Complementarily, a change in environmen-
tal conditions also affects the whole population of organizations. For example, if
resource conditions deteriorate, the total population of organizations will decline
(regardless of efforts of individual organizations to avoid this fate). Two chapters
deal with the theory of organizational ecology (Hannan and Freeman 1977, 1989).
Organizational ecology describes the processes by which organizational populations
grow and decline due to changing environmental conditions. It abstracts from the
rational behavior of individual organizations, and assumes that organizational pop-
ulations are solely dependent on the environmental conditions.

For overviews of organization theory, see (Perrow 1986; Scott 1998) or see (Grandori

3This so-called axiomatic theory approach used ordinary language exclusively and based its
theoretical inferencing on an intuitive notion of deduction. It is important to note that the
virtues of these axiomatic theories have not been disputed. Criticism primarily focused on the
validity of its ordinary language deductions (Costner and Leik 1964). There have been attempts
to give a causal interpretation of these ordinary language statements, and to investigate under
which conditions valid inferences can be made in the resulting causal models (Blalock 1969).
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1987) for an overview that attempts to stress commonalities instead of differ-
ences.4

Philosophy

Any effort to formalize scientific theories is bound to encounter various issues
of philosophical interest. For a general introduction to philosophy, see (Quine
and Ulian 1970; Glymour 1992b). The most relevant subfield is philosophy of
science. See (Bechtel 1988) for an overview, or more substantial texts (Nagel
1961, especially chapters 13 and 14) and (Hempel 1966; Rudner 1966).

There are important relations with various issues treated in the rich logico-
philosophical literature. Specifically, there is an obvious link with the philosoph-
ical movement known as the logical empiricism or logical positivism (Ayer 1959;
Neurath, Carnap, and Morris 1970). Moreover, our approach is closely related to
application-oriented, formal approaches in the philosophy of science (for exam-
ple, Kyburg 1968; Goodman 1977; Balzer, Moulines, and Sneed 1987). And last,
but not least, there turn out to be interesting parallels with the philosophical
treatment of mathematical discovery, especially with (Lakatos 1976), based on
the critical philosophy of (Popper 1959, 1963) and the revival of mathematical
heuristics by (Pólya 1945, 1954a,b, 1962, 1965).

4Current research in organization theory is extremely fragmented, therefore it is recommend-
able to start with reading some of the classics (for example, Simon 1947; March and Simon 1958;
Cyert and March 1963; Thompson 1967). Alternatively, it is often insightful to read research
on the edge between organization theory and the more coherent field of economics (for example,
Barney and Ouchi 1986). A great last resort is (Nicholson 1995).



Chapter 1

Introduction & Overview

If we like, we can look on theory as a game. The winner is the
man who can deduce the largest variety of empirical findings from
the smallest number of general propositions, with the help of a
variety of given conditions. . . . A science whose practitioners
have been good at playing it has achieved a great economy of
thought. No longer does it face just one damn finding after an-
other. It has acquired an organization, a structure. . . . But if
theory is a game, it must like other games be played according
to the rules, and the basic rules are that a player must state real
propositions and make real deductions. Otherwise, no theory!

—George Caspar Homans, The Nature of Social Science

The common availability of powerful computers can radically change the way sci-
ence is performed. To realize this potential we need to make scientific knowledge
accessible to our computers. Over the last decades, advances in computer science
have allowed for the large-scale, computational representation of scientific data.
The same progress has not yet been achieved for the most distinguished form
of scientific knowledge—our scientific theories. Before we can computationally
reason with theories, we have to find a suitable representation for them. This
thesis presents a logical approach to computational theory building, that is to say,
we will investigate the representation of scientific theories in formal logic.

Scientific theories are usually viewed as systems of propositions: the theory
makes particular claims that follow from a number of underlying assumptions.
The argumentation for such a claim usually involves both assumptions about
the empirical reality, and general rules of inferencing (whose validity does not
depend on the case at hand). Logic is the scientific discipline that traditionally
investigates these general rules of inferencing. Formal logic provides rigorous

1
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formalisms that can play at least a normative role for deciding the validity of
arguments.1 The representation of theories as logical arguments is one of the
least original thoughts in this thesis. It dates back long before the invention of
computers, and can be traced to the writings of Aristotle, who provided the first
explicit formal logic. In light of these historical facts, perhaps a more appropriate
title for this thesis would have been a computational approach to logical theory
building.2

The merits of a logical representation of theories are well-understood and fre-
quently elaborated, and it has been shown that interesting methodological issues
can be raised and discussed under the assumption that theories are axiomatized
in formal logic. However, it should be noted that, so far, logical axiomatizations
of significant scientific theories from the empirical sciences have rarely been con-
structed. In other words, the practical use of formal logic to represent actual
theories from the empirical sciences is far less understood. These practical as-
pects will be the main focus throughout this thesis, and one of its main lines
will be the logical formalization of actual scientific theories. In particular, we
will provide or discuss formal renditions of actual theories or theory fragments
in each chapter of this thesis.3 For these applications of formal logic, we will use
social science theories from the field of sociology and, especially, its subfield of
organization science. This is, perhaps, a surprising choice because the paradigm
examples of scientific theories in the empirical sciences belong to other domains,
in particular to the domain of physics. The field of sociology is even renowned
for its lack of systematic theory. Nevertheless, in as far as sociology is a science,
it should adhere to the same methodological principles as the other sciences (for
example, whether a theoretical argument in sociology is valid should be judged by
the same criteria as an argument in physics). As has been widely argued before
(Nagel 1956; Rudner 1966; Popper 1969; Neurath 1970), the “logic” of the social
sciences is not different from the other sciences.

1The precise relation between logic and thinking is quite complex and need not concern us
here. Even though human reasoning frequently defies logical principles, it can usually be recon-
structed as a logical argument, for example by making explicit the underlying tacit assumptions
(Henle 1962).

2Some have argued against logical representations of theories because they are ‘unrealistic,’
in the sense that there is little correspondence between logical and informal notions of theories
as they occur in the literature. More specifically, logical theories are commonly thought to be
only ‘syntactic,’ having no place for the ‘theoretical intuition’ or the ‘mental models’ behind the
theory. To what extent this is a valid objection remains to be seen (at least, we will later present
clear cases that undermine this view). Here, we just want to make the following observation:
even if this notion may seem unnatural for human theorizing (especially outside the fields of
logic and mathematics), it does seem a natural notion for computational theorizing.

3Whether these formal theory fragments will qualify as full axiomatizations of significant
scientific theories remains to be decided, but they will suffice for substantiating the points we
want to address.
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1.1 Overview

The chapters in this thesis are relatively self-contained, allowing for separate
chapters to be read independently. This thesis is structured as follows:

1.1.1 Introduction and Overview

This chapter will continue with an overview of the rest of this thesis.

1.1.2 Formal Theory Building Using Automated Reason-
ing Tools

Chapter 2 prepares the ground for a computational methodology for axiomatizing
scientific theories. Its first goal is to explore how logical criteria for evaluating the-
ories can be established, in practice, using generic automated reasoning tools. Its
second goal is to investigate which logical criteria correspond to natural questions
to be asked about theories from the social sciences.

Computational support can be of decisive importance for providing actual
formalizations of theories. The automatization of logical inferencing has a long
history (Newell and Simon 1956; Beth 1958b).4 A decision to use standard first-
order logic makes immediately available a wide variety of computer applications.
More specifically, we can reuse generic tools developed in the field of automated
reasoning (Wos et al. 1992). In this chapter, we will investigate whether current
automated theorem provers and model generators can be of use to determine some
of the familiar criteria for evaluating theories as proposed in logic and philosophy
of science, such as the consistency and falsifiability of theories, and the soundness
of derivations. This was inspired by earlier papers on the logical formalization of
social science theories (Péli, Bruggeman, Masuch, and Ó Nualláin 1994; Péli and
Masuch 1997) that use an automated theorem prover to prove the derivability
of theorems.5 By extending the range of criteria we can make a more detailed
evaluation of the formal theory.

There are convincing philosophical arguments that social science theories
should be evaluated by the same criteria as theories from other disciplines (Rud-
ner 1966; Popper 1969). This does not imply that these criteria are directly
applicable to theoretical writings in sociology. More specifically, these criteria

4Newell, Shaw, and Simon (1957) report the remarkable achievements of their computer
program, the Logic Theory Machine, which discovered proofs of 38 out of the first 52 theorems
in the second chapter of the Principia Mathematica (Whitehead and Russell 1962, probably
theorems *2.02–*2.521 on pp.98–107).

5Earlier papers also addressed the consistency of their theories by checking whether the
search-space of an automated theorem prover contained a contradiction. Of course, it is likely
that the theorem prover would have found a contradiction in case the theory was inconsistent.
However, being unable to find a contradiction in this necessarily limited search-space does not
in itself prove that the theory under consideration is consistent.
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might address issues that do not (yet) appear to be relevant to theorizers in so-
ciology. The main part of this chapter is a case study of the formalization of a
sociological theory, Hopkins (1964) “The Exercise of Influence in Small Groups.”
As it turns out, several of the standard criteria are relevant for this specific theory
under consideration. Moreover, we succeeded in computationally evaluating each
of these criteria using automated reasoning tools. Specifically, we formally and
computationally proved the soundness of theoretical inferences; proved the con-
sistency of the theory; proved the falsifiability and satisfiability (and, therefore,
the contingency) of the theorems; proved that additional theorems do belong to
the theory (when interpreted as a deductive system); proved that the axioms of
the theory are not independent; and, finally, provided minimal axioms sets of the
theory (which are proved to be independent). The use of automated reasoning
tools is subject to various limitations, think of the undecidability of first-order
logic, and practical limitation of CPU-power, memory, and time. However, using
only default settings for the programs, none of the actual proof or model searches
for determining the criteria required more than five seconds. That is to say, the
evaluation of sociological theories seems to be within the computational power of
current automated reasoning tools.

Realizing the full potential of these automated reasoning programs requires an
intimate knowledge of the internal machinery. First, it requires an understand-
ing of the automated reasoning techniques (see [Fitting 1996] for an overview).
For example, interpreting the proofs generated by an automated theorem prover
requires, at least, knowledge of the used inference rules (for example, Otter [Mc-
Cune 1994b] can use a dozen inference rules). Moreover, since there does not exist
a uniform output-format, interpreting generated proofs also requires knowledge
of the internal representation format used by the program. If a theorem prover
fails to generate a proof, then examining a trace of the failed proof attempt is
even far more bewildering. Second, using automated reasoning tools also requires
heuristic knowledge on the choice of inference rules and search strategies (there
are surprisingly few publications that address this, a notable exception is [Wos
1996]). Most of our problems turned out to be relatively simple, in the sense that
they can be solved by the programs using the default settings. At least, this is
true for the simplified and cleaned-up final versions of the theories presented in
this thesis. Some of the intermediate versions did require serious efforts to be
proven automatically, including modification of the used programs themselves.6

Our main concern is how these types of tools can be used for the formalization of
theories. Therefore, we will abstract away from program-specific details as much
as possible.

6For example, the substantive theories used in this thesis usually have large vocabularies,
whereas the distributed version of Mace accepts at most a total of twelve constants, predicates,
and functions (including functions resulting from Skolemization). Most programs are distributed
with their source-code, allowing modifications to these programs to be implemented by the user.
We will gladly spare the reader the details.
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1.1.3 A Formal Theory of Organizations in Action

Chapter 3 presents an axiomatization of a classic organization theory, Thomp-
son (1967) “Organizations in Action.” Thompson’s book is one of the classic
contributions to organization theory: it provides a framework that unifies the
perspective treating organizations as closed systems, with the perspective that
focuses on the dependencies between organizations and their environment. This
framework has influenced much of the subsequent research in organization theory.
“Organizations in Action” is an ordinary language text, in which only the main
propositions are clearly outlined. This chapter provides a formal rendition of the
first chapters of the book, by reconstructing the argumentation used in the text.

Although the text of “Organizations in Actions” does not contain explicit
definitions, the use of terminology in the text strongly suggests strict dependencies
between several important concepts. This allowed for the definition of these
concepts in terms of a small number of primitive notions of organization theory.
In the formal theory, the key propositions of (Thompson 1967) can be derived
as theorems. The proofs of these theorems are based on a reconstruction of the
argumentation in the text. Additionally, the formal theory explains why the
theory is restricted to a particular type of organizations. Moreover, it derives a
heretofore unknown implication of the theory that relates Thompson’s theory to
recent empirical findings and current developments in organization theory.

1.1.4 Criteria for Formal Theory Building

The social sciences are renowned for the richness of their vocabulary (one of the
most noticeable differences with theories in other sciences). Social science theories
are usually stated using many related concepts that have subtle differences in
meaning. As a result, a formal rendition of a social science theory will use a large
vocabulary. In the formalization of chapter 3 we started to experiment with the
use of definitions as a means to combine a rich vocabulary with a small number
of primitive terms.

Now definitions are unlike theorems and unlike axioms. Unlike the-
orems, definitions are not things we prove. We just declare them by
fiat. But unlike axioms, we do not expect definitions to add substan-
tive information. A definition is expected to add to our convenience,
not to our knowledge. (Enderton 1972, p.154)

If dependencies between different concepts are made explicit, we may be able
to define some of the concepts in terms of the other concepts, or in terms of
a smaller number of primitive concepts. If the theory contains definitions, the
defined concepts can be eliminated from the theory by expanding the definitions.
Eliminating the defined concepts does not affect the theory, in the sense that the
models and theorems of the theory remain the same.
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Chapter 4 extends the initial discussion of criteria for evaluating theories in
chapter 2. Our earlier discussion did not distinguish between types of premises.
Here, we discuss how to augment these criteria for scientific theories containing
definitions. We will provide practical operationalizations of criteria for evaluat-
ing theories, including the consistency (existence of a model) or inconsistency
(derivability of contradictory statements) of the theory; the soundness (existence
of a proof) or unsoundness (existence of a counterexample) of conjectures and
theorems; the satisfiability and falsifiability of theorems; and the independence
of axioms. The tests for the criteria, in practice amounting to particular proof or
model searches, can be directly performed by existing automated reasoning tools.

We used the criteria to evaluate a formal rendition of a classic organization
theory, the formal theory of “Organizations in Action” discussed in chapter 3.
Assessing the criteria allows for an exact evaluation of the merits of a theory. In
some cases, this may reveal important facts about the theory, for example, the
case study showed that one of the derived statements is unfalsifiable—empirical
investigation of it can, at best, confirm its trivial validity.

1.1.5 The Process of Axiomatizing Scientific Theories

Scientific activities are traditionally dichotomized into the context of justification
and the context of discovery. Within this distinction, the axiomatization of the-
ories is viewed as the ultimate step in the justification of a theory. Chapter 5
deals with the question to which extent the axiomatization of theories should be
considered as strictly justification.

A first-order logic rendition of a theory gives an explicit, unambiguous expo-
sition of the theory. As discussed in chapter 4, there exists a number of criteria
(most importantly, the consistency of theories and the soundness of derivations
of theorems) that can be evaluated using generic tools from automated reason-
ing. We can make a rigorous evaluation of a scientific theory by assessing these
criteria. However, we do not view these criteria as rigid, final tests. Quite the
opposite, in our experience the criteria are especially useful during the process
of formalizing a theory. The tests we suggest to evaluate the criteria do not
only prove a criterion, but also present a specific proof or model that is available
for further inspection. Specifically, during the construction of a formal theory,
the criteria can provide useful feedback on how to revise the formal theory in
case of a deficiency. For example, any exposition of a theory in ordinary lan-
guage makes various theoretical presuppositions. Formalizing a scientific theory
requires these presuppositions to be made explicit. To identify these implicit
background assumptions is one of the thorniest problems in the formalization of
a theory, requiring a deep understanding of the substantive field under consider-
ation. If the appropriate background assumptions are not added to the formal
theory, various conjectures may not be derivable. However, if we can find specific
counterexamples to such an underivable conjecture, it is immediately clear why
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our proof attempt has failed. In particular, these counterexamples reveal which
implicit (background) assumptions need to be added to the formal theory.

We will give a detailed illustration of this by formalizing a theory fragment
from Zetterberg (1965) “On Theory and Verification in Sociology.” As it turns
out, we will repeatedly revise the formal rendition of the theory, by adding im-
plicit background knowledge, reformulating the conjectures, and changing the
axioms of the theory. This process of formalization is essentially interactive.
We attempt to use computational support for those tasks for which computers
are better equipped. For example, we use automated reasoning tools for finding
proofs or models. Notice that human theorizers have often difficulty in finding
counterexamples that were not intended to be models of the theory. Theorizers
tend to ignore these models since they conflict with their common-sense or with
their understanding of the substantive domain. Fortunately, an automated model
generator does not have such a bias. On the other hand, a human theorizer can
use this knowledge to distinguish between non-intended models and genuine coun-
terexamples. This decision is crucial because it determines whether we need to
revise the premises (in case of a non-intended model) or whether we need to revise
the conjecture (in case of a genuine counterexample). The product of our axiom-
atization attempt, a first-order logic rendition of a theory, is a deductive theory.
However, the process of axiomatizing a theory is essentially non-deductive. For
example, we may decide to revise the theory to account for a counterexample.
Such an attempt to revise the theory is abductive. In fact, we use an extended
form of abduction, since we may either decide to change the premises to explain
the claim (traditional abduction), or decide to change the claim such that it can
be explained by the premises as they stand.

Finally, and most importantly, the revision of the formal theory may have an
impact on the original theory. This can be of great importance since even a minor
modification of the original theory may avoid the costs involved in the empirical
testing of incorrect or irrelevant hypotheses. The used criteria facilitate a piece-
meal revision of the theory, resulting in a cyclic process of theory development,
much like the discussion of the polyhedra conjecture in (Lakatos 1976).

1.1.6 Partial Deductive Closure

Chapter 6 presents earlier work on an implemented program to enumerate a
certain class of theorems.

In formal logic, the deductive closure of a theory is taken for granted—in fact,
the formal definition of a “theory” is a set of sentences closed under the rules
of inference (Tarski 1956). In reality, however, it is impossible to generate the
complete deductive closure of a premise set, for the resulting set is infinite (since
it contains all tautologies, i.e., expressions that are always true and hence follow
from any set). In consequence, the complete deductive closure of a premise set
is neither realizable nor desirable—only partial deductive closures provide useful
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results. In this chapter, we present an algorithm that performs an efficient partial
deductive closure for an important class of formulas, i.e., conditional formulas
that relate two relevant domain properties. Statements of this form provide the
backbone of any empirical social science; arguably, it is the most important class
of empirical statements in the social sciences.

The implemented program is applied to a first-order logic rendition of Hannan
and Freeman (1984) “Structural Inertia and Organizational Change” as published
by Péli et al. (1994). As it turns out, our algorithm generates more theorems
than the original discursive theory of organizational inertia made explicit, some
of which are of theoretical interest.

1.1.7 Qualitative Reasoning beyond the Physics Domain

The ability to reason qualitatively about physical systems is important to under-
standing and interacting with the physical world for both humans and intelligent
machines. Accordingly, its study has become an important subject of research
in artificial intelligence. Most of the theories in the social sciences are qualita-
tive theories. Chapter 7 does not discuss the formalization of theories in logic,
but the modeling of theories using qualitative reasoning techniques (Weld and
de Kleer 1990). Qualitative reasoning techniques are almost exclusively applied
to the domain of physics (explaining the alternative names ‘qualitative physics’
and ‘naive physics’). This chapter makes a case for the application of qualita-
tive reasoning techniques outside the domain of physics. As a case in point, this
chapter provides a qualitative simulation model of the density-dependence theory
of organizational ecology (Hannan and Carroll 1992), using the General Archi-
tecture for Reasoning about Physics (GARP [Bredeweg 1992]).7 The simulation
model is shown to generate results of theoretical relevance. The chapter discusses
differences between the application of qualitative reasoning techniques to physics
and to the social sciences.

Reason for inclusion of this chapter is that sociological theories—unlike the-
ories in physics—are usually qualitative descriptions, making them suitable can-
didates for modeling with these techniques. Moreover, this type of ‘cognitive’
modeling of qualitative theories has been very influential on the logical formaliza-
tion view as outlined in earlier chapters. The qualitative reasoning techniques are,
for a large part, rooted on artificial intelligence research on common-sense rea-
soning and, in particular, efforts to formalize knowledge of the everyday physical
world (Hayes 1979, 1985b). Hayes’ proposal stated explicitly:

It is not proposed to develop a new formalism or language to write

7This system largely incorporates the Qualitative Process Theory (QPT [Forbus 1984]).
There also exists a mathematically elegant system for reasoning with qualitative differential
equations (Kuipers 1994) (to which more expressive systems like QPT can be translated [Far-
quhar 1993]).
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down all this knowledge in. In fact, I propose (as my friends will
have expected) that first-order logic is a suitable basic vehicle for
representation. (Hayes 1985b, p.3).

This dictum is, in a sense, precisely what we did in earlier chapters. In this chapter
we will use one of the ‘special’ programming languages that was developed later.8

To no great surprise, there are direct ways to axiomatize these special qualitative
reasoning languages in first-order logic (Davis 1990, 1992).

1.1.8 Discussion and Related Work

Finally, chapter 8 contains some discussion and references to related work.

8There were legitimate computational reasons to develop these special languages. These spe-
cial languages allowed for building complex systems far beyond what computational inferencing
in first-order logic allowed. Earlier chapters show that this may be no longer the case.





Chapter 2

Formal Theory Building Using
Automated Reasoning Tools

The merits of representing scientific theories in formal logic are well-known. Ex-
pressing a scientific theory in formal logic explicates the theory as a whole, and
the logic provides formal criteria for evaluating the theory, such as soundness and
consistency. On the one hand, these criteria correspond to natural questions to be
asked about the theory: is the theory contradiction-free? (is the theory logically
consistent?) is the theoretical argumentation valid? (can a theorem be soundly
derived from the premises?) and other such questions. On the other hand, test-
ing for these criteria amounts to making many specific proof attempts or model
searches: respectively, does the theory have a model? can we find a proof of a
particular theorem? As a result, testing for these criteria quickly defies manual
processing. Fortunately, automated reasoning provides some valuable tools for
this endeavor. This chapter discusses the use of first-order logic and existing
automated reasoning tools for formal theory building, and illustrates this with a
case study of a social science theory, Hopkins’ theory of the exercise of influence
in small groups.

2.1 Introduction

The theory building methodology outlined in this chapter is by no means a new
one. The use of formal logic to represent scientific theories dates back, at least, to
the logical positivists (Ayer 1959). What is novel in our approach is the extensive
use of automated reasoning tools. One of the reasons for the demise of positivism
was the inability to put philosophy into practice. The formalization of scientific
theories requires a huge amount of tedious calculations that exceed manual pro-
cessing capabilities. The use of computational tools allows us to transcend these
limitations, and bring much of the positivist philosophy to life.

11
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This research is part of the concerted effort to revive formal theory building
in the social sciences by using formal logics and by taking advantage of the avail-
able computational support. Social scientists usually agree that theories should
be logical, but they rarely address the issue, eschewing the difficulties of investi-
gating the logical structure of ‘discursive theories’ (theories expressed in natural
language, the standard representation in the social sciences). Rather than engag-
ing ourselves in abstract, philosophical deliberations,1 we focus on applied case
studies. That is, we ‘formalize’ actual social science theories by rationally recon-
structing them and expressing them in logical form. The resulting formalizations
are then tested using logical criteria, a task greatly facilitated by the availability
of computational tools.

In section 2.2 we will explain the value of formalization in the explication of
scientific theories and the role tools from automated reasoning can play in this
process. In section 2.3 we present a case study that shows how this can be applied
in the social sciences, and we end in section 2.4 by summarizing our experiences
and drawing conclusions.

2.2 Formal Theory Building

The principal reason for formalizing scientific theories is to clarify and explicate
them. Until a scientific theory is expressed in a formal and unambiguous manner,
it remains open to many interpretations. Provided that readers can interpret the
formalism, a formal exposition of a scientific theory allows them to understand
the theory, to distinguish between alternative readings, to gauge its boundaries,
and to compare it with alternatives (see also Suppes 1968).

We use the classical, axiomatic-deductive notion of a theory. The premises of a
theory consist of universal statements (universal laws or empirical generalizations,
possibly supplemented with definitions). The theory itself is the deductive closure
of the set of premises (Tarski 1956). Theoretical explanations and predictions
correspond to deductions from the set of premises (Popper 1959).

We prefer to use this strict notion of a theory over more liberal ones.2 The
reason for this is simple: our main interest is the justification of theories, and
we are therefore interested in strict criteria that can be objectively evaluated.
This position has clear limitations; many other aspects of theory building require
creativity and insight (activities with which logic is rarely associated). Especially
the discovery of theories requires different methods than formal logic and deduc-
tion. Most of the research in the social sciences is directed at empirical surveys,

1See for example (Adorno, Dahrendorf, Pilot, Albert, Habermas, and Popper 1969) for
interesting arguments in favor of, and against the use of formal logic in the social sciences.

2Although this conception of theory is mainly inspired by theories in mathematics and
physics, it is applicable to all empirical sciences, including the social sciences (Rudner 1966;
Popper 1969).
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and the main theme of all methodology textbooks is how to perform such empir-
ical research. Our efforts do not replace, but rather complement this empirical
research. As soon as a (tentative version of) a theory is formulated, we have
some powerful tools for evaluating it. There are several logical criteria available
for evaluating a theory formalized in a logical language, such as the consistency
of the theory or soundness of a derivation.

Many of these logical criteria correspond to natural questions which we would
like to ask about a scientific theory:

Is the argumentation of the theory valid? In logical terms, can a given
conjecture be soundly derived from the premises? If we can prove a given theorem
from the premises, the argumentation is sound. That is, if we consider cases in
which the premises hold, then the theorem must also hold (i.e, the theorem is a
prediction). Conversely, if we consider cases in which the theorem holds, then the
premises give an explanation for the theorem (there may be other explanations,
although these must satisfy the same soundness criterion).

For proving the fallaciousness of an argument we use a complementary ap-
proach: looking for a counterexample. If we can construct a model in which the
premises hold but the conjecture does not hold, we have refuted the conjecture.

Is the theory contradiction-free? In logical terms, is the theory logically
consistent? An inconsistent theory has an empty domain: empirically testing
an inconsistent theory is futile. If we can construct a model of the premise set
then the theory is logically consistent. One may want to include the (spelled-
out) theorems, but as long as these are soundly derivable from the premises they
cannot make the theory inconsistent.

To establish that a theory is inconsistent, we use a complementary approach:
showing that it leads to an absurdity. An inconsistent theory is a trivial theory,
in the sense that any statement (and its negation) is derivable from it. If we can
derive a contradiction from some subset of the premises, the theory is inconsistent.

Is the theory falsifiable? Are the theorems logically contingent? If no state
of affairs can possibly falsify a theory, then it is a waste of time to empirically
test the theory. Falsifiability is an essential property of a scientific theory (Popper
1959). If we can construct a model (disregarding all premises) where a theorem
of the theory is false, then this theorem is falsifiable. If we can prove a theorem
from an empty premise set, the theorem is not falsifiable. A theory that contains
at least one falsifiable theorem (and therefore at least one falsifiable premise) is
falsifiable.

If we can also construct a model in which the theorem holds (which is always
the case for soundly derivable theorems in a consistent theory), then this theorem
is satisfiable too. A theorem that is both satisfiable and falsifiable, is contingent:
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the validity of the theorem is strictly determined by the premises—it is neither a
tautology nor a contradiction.

Does the theory use redundant premises? Are the premises logically in-
dependent? If a premise can be derived from the other premises, it becomes a
theorem and can be removed from the premise set. If we can prove that neither
a premise nor its negation is derivable from the other premises, then this premise
is independent.

What is the explanatory and predictive power of the theory? What do
the theorems of the theory look like? Investigating the set of theorems will give
insight in a theory’s explanatory and predictive power, because the theorems are
the predictions of the theory, and their proofs give explanations for them.

What is the domain that the theory describes? What do the models of
the theory look like? Investigating the models of a theory gives insight into the
domain which the theory describes.

In practice, testing for logical criteria requires many derivations involving large
sets of formulas. In this endeavor, automated reasoning provides some invaluable
tools. We use the following tools:

• Otter (McCune 1994b), a resolution-style automated theorem prover for
first-order logic with equality. This theorem prover can find inconsistencies
in the set of input formulas. Its principal use is to construct refutation
proofs of conjectures, by feeding it a (consistent) premise set together with
the negation of a conjecture. If the program derives an inconsistency, then
we have, in fact, proved the conjecture (because the conjecture must hold
in all models of the premises).

• Mace (McCune 1994a), a model generator for first-order logic with equality,
based on a Davis-Putnam procedure for propositional satisfiability testing.
This model generator can find small models of the set of input formulas (for
example to prove the consistency of the theory). It can also be used in an
attempt to find counterexamples to a conjecture, by feeding it a premise set
together with the negation of the conjecture.

There are many other automated theorem provers and model generators avail-
able. We choose here to use Otter and Mace because they are companion
programs that can read the same input format. This is a great advantage for our
work, since we want to switch between theorem proving and model generation,
depending on which type of tool is most suitable for the specific proof/disproof
attempt at hand. In the next section, we will explain the use of these tools for
formal theory building in detail.
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2.3 A Social Science Case Study

Several case studies of formalization using automated reasoning support tools
have been performed. These case studies include the following social science
theories: Mintzberg’s Contingency Theory (Glorie, Masuch, and Marx 1990),
Thompson’s Organizations in Action (Pólos 1991), and Hannan and Freeman’s
Organizational Ecology including their theory of organizational inertia (Péli et al.
1994), life history strategies (Péli and Masuch 1997), niche width (Bruggeman
1997; Péli 1997), and age dependence fragment (Hannan 1998).3 The original
theories, as most other social science theories, were stated in natural language.
As a result, the main obstacle for formalizing such a discursive theory is their
rational reconstruction: interpreting the text, singling out important concepts,
distinguishing assumptions and theorems from other parts of the text, and re-
constructing the argumentation. This motived our choice for the theory we want
to formalize as a case study in this chapter: Hopkins (1964) ‘The Exercise of
Influence in Small Groups.’ Although this is not a formal theory for it uses natu-
ral language exclusively, it is an axiomatic theory in which axioms and theorems
are clearly outlined.4 This greatly facilitates the rational reconstruction of the
theory, and allows us to focus on the actual formalization of the theory and the
role automated reasoning tools can play in this process.

2.3.1 Hopkins’ Theory of Small Groups

This section contains a logical formalization of Hopkins (1964) ‘The Exercise of
Influence in Small Groups.’ Hopkins investigates the distribution of influence
among members of a group, and attempts to explain differences in the amount
of influence that members exercise. He follows the standard usage of the concept
of a sociological group, which is ‘defined’ by the interactions of its members
(Homans 1950, pp.82–86). If certain persons interact frequently with one another
in accord with established patterns, they are viewed as a group (irrespective of
the particular activities in which they interact). Two further criteria of a group
are that “the interacting persons define themselves as ‘members’,” and that “the
persons in interaction be defined by others as ‘belonging to the group’” (Merton
1968, p.340). As is immediately clear, the concept of group is relative and the
boundaries of groups are not necessarily fixed.

Hopkins develops his theory for certain kinds of groups, namely small groups.
The concept of a ‘small’ group is characterized by “a rather high degree of visibil-
ity,” “the absence of stable, well-defined subgroups,” and “the interaction takes

3Some fragments of the resulting formalizations are included in the TPTP (Thousands of
Problems for Theorem Provers) Problem Library (Sutcliffe et al. 1994).

4Note that this is an exceptional case; only part of social science texts state carefully for-
mulated propositions, very few of those attempt to make their underlying assumptions explicit,
and even fewer indicate inferences between them.
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place when all or most members are present and participating in a common activ-
ity” (Hopkins 1964, pp.14–17). Here, the degree of visibility refers to “the extent
to which the norms and the role-performances with a group are readily open to
observation by others” (Merton 1968, p.373). Hopkins continues by discussing
the interaction system of a group, thereby identifying five relevant properties of
groups: its rank structure, the frequency of interaction, the level of visibility,
the degree of normative consensus, and the amount of influence exercised (pages
21–25). Each of these five group properties can also be interpreted for individual
members of a group, and in this way we derive five corresponding properties of
the status of members in groups: rank, centrality, observability, conformity, and
influence (see Table 2.1). These five properties of the status of members form the

Group Property Status Property
Rank structure Rank
Frequency of interaction Centrality
Level of visibility Observability
Degree of normative consensus (Subjective) Conformity
Amount of influence exercised Influence

Note: This table is reproduced from (Hopkins 1964, p.26).

Table 2.1: Properties of groups and corresponding status properties.

core of Hopkins’ theory (and are discussed in detail on pages 26–40 of his book):

Rank is referring to the generally agreed upon worth or standing of a member
relative to the other members. A member’s relative rank may derive from
institutionalized evaluations of well-defined statuses (such as professor and
student in a seminar), or from differential evaluations of qualities or perfor-
mances (such as high- and low-ranking participants in a study group).

Centrality designates how close a member is to the ‘center’ of the group’s in-
teraction network. This refers simultaneously to the frequency with which
a member participates in interaction with other members and the number
or range of other members with whom he or she interacts.

Observability is referring to a member’s actual knowledge of group norms. Visi-
bility refers to a structural property of groups in virtue of which participants
are more or less likely to observe the actual norms of the group. Hopkins
prefers to disregard a member’s structurally given opportunity to know the
group norms, but, instead, construes observability as the actual knowledge
of group norms. In this way, a member of a group has a greater observability
if his or her estimates of group norms and opinions are more accurate.
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Conformity is the condition (or degree) of congruence between a member’s pro-
file on the relevant norms and the profile of the group-held norm. Confor-
mity refers to a member’s innate feelings on group norms, and a member
need not necessarily act in accord with his own profile. Conformity should
be distinguished from compliance, which does refer to the congruence be-
tween a member’s actual behavior and group norms.

Influence is the effects of action on the group’s normative consensus, relative
to the impact of the other members’ actions. That is to say, a member
has a higher influence, over a given period of time, if the impact of his or
her actions on group consensus during that period is greater relative to the
other members.

The main theoretical part of Hopkins’ book is in the fourth chapter (pages
50–98). Here, Hopkins lists 15 propositions (9 axioms and 6 derived statements).
These propositions are about five status properties in groups: rank, centrality,
observability, conformity, and influence. As Hopkins states: “The five status-
properties—rank, centrality, observability, conformity, and influence—taken two
at a time, can be combined to form twenty statements of simple implication”
(page 50). Since Hopkins only regards fifteen of these as theoretically or empir-
ically interesting, only these fifteen are discussed. Table 2.2 lists these proposi-
tions. Figure 2.1 depicts the nine axioms (Propositions 1, 2, 4, 6–9, 12, and 14)
graphically.

Rank

Conformity

Observability

CentralityInfluence

6 6
?

�

?

-

6

?
�

(A.1)

(A.7)

(A.12)(A.9)(A.8)

(A.6)

(A.2)

(A.4)

(A.14)

Figure 2.1: Hopkins’ axioms (based on page 52).

2.3.2 Formalization

We use first-order logic to formalize Hopkins’ propositions. In the formalization
we use five unary functions to represent the status properties and the ‘greater
than’ relation (see Table 2.3).
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For any member of a small group:
1. The higher his rank, the greater his centrality.
2. The greater his centrality, the greater his observability.
3. The higher his rank, the greater his observability (derivation).
4. The greater his centrality, the greater his conformity.
5. The higher his rank, the greater his conformity (derivation).
6. The greater his observability, the greater his conformity.
7. The greater his conformity, the greater his observability.
8. The greater his observability, the greater his influence.
9. The greater his conformity, the greater his influence.
10. The greater his centrality, the greater his influence (derivation).
11. The greater his influence, the greater his observability (derivation).
12. The greater his influence, the greater his conformity.
13. The higher his rank, the greater his influence (derivation).
14. The greater his influence, the higher his rank.
15. The greater his centrality, the higher his rank (derivation).

Note: All propositions are from (Hopkins 1964, p.51).

Table 2.2: The propositions of Hopkins’ Theory.

rank(x) the rank of x.
cent(x) the centrality of x.
obse(x) the observability of x.
conf(x) the conformity of x.
infl(x) the influence of x.
(x > y) x is greater/higher than y.

Table 2.3: Functions and relations used in the formalization.
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Using these functions and relations, a proposition like 1:

The higher his rank, the greater his centrality.

can be formalized in first-order logic as

∀x, y [rank(x) > rank(y) → cent(x) > cent(y)]

This translation is, arguably, a natural translation of such a ordinary language
proposition into first-order logic.

Hopkins regards Propositions 1, 2, 4, 6–9, 12, and 14 as axioms of his theory.
Table 2.4 gives a formalization of these propositions as suggested above.

A.1 ∀x, y [rank(x) > rank(y) → cent(x) > cent(y)]
A.2 ∀x, y [cent(x) > cent(y) → obse(x) > obse(y)]
A.4 ∀x, y [cent(x) > cent(y) → conf(x) > conf(y)]
A.6 ∀x, y [obse(x) > obse(y) → conf(x) > conf(y)]
A.7 ∀x, y [conf(x) > conf(y) → obse(x) > obse(y)]
A.8 ∀x, y [obse(x) > obse(y) → infl(x) > infl(y)]
A.9 ∀x, y [conf(x) > conf(y) → infl(x) > infl(y)]
A.12 ∀x, y [infl(x) > infl(y) → conf(x) > conf(y)]
A.14 ∀x, y [infl(x) > infl(y) → rank(x) > rank(y)]

Table 2.4: A formal version of Hopkins’ axioms.

2.3.3 Soundness of Argumentation

Hopkins claims that Propositions 3, 5, 10, 11, 13, and 15 are derivable from the
axioms of his theory. Table 2.5 gives a formalization of these propositions. Hop-

T.3 ∀x, y [rank(x) > rank(y) → obse(x) > obse(y)]
T.5 ∀x, y [rank(x) > rank(y) → conf(x) > conf(y)]
T.10 ∀x, y [cent(x) > cent(y) → infl(x) > infl(y)]
T.11 ∀x, y [infl(x) > infl(y) → obse(x) > obse(y)]
T.13 ∀x, y [rank(x) > rank(y) → infl(x) > infl(y)]
T.15 ∀x, y [cent(x) > cent(y) → rank(x) > rank(y)]

Table 2.5: A formal version of Hopkins’ theorems.

kins (1964, pp.97–98) also indicates which propositions are used in his derivations:
Proposition 3 is derived from 1 and 2; Proposition 5 from 1 and 4; Proposition 10
from 2 and 8, or from 4 and 9; Proposition 11 from 12 and 7; Proposition 13
from 1, 4 and 9; and Proposition 15 from 2, 9 and 14, or from 2, 8 and 14.
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The first derived proposition is number 3. Hopkins claims that “This third
proposition derives from the preceding two and its rationale is essentially that
of its premises” (page 59). Unfortunately, Hopkins does not further specify his
intuitive notion of ‘derivability.’ Of course, if this proposition is indeed derivable
from the two other propositions or axioms, it is no great surprise that the empirical
rationale for it can be traced back to the two axioms. Formal logic comes with
a strict notion of inference that allows us to verify the derivations in our formal
version of the theory.

We can use Otter to test whether the suggested theorems can be soundly
derived from the axioms. We can test whether T.3 is derivable from the axioms
using the input-file (without loss of generality, we use only A.1 and A.2):

set(auto).
formula_list(usable).
% A.1
all x y (rank(x)>rank(y) -> cent(x)>cent(y)).
% A.2
all x y (cent(x)>cent(y) -> obse(x)>obse(y)).
% negation of T.3
-( all x y (rank(x)>rank(y) -> obse(x)>obse(y)) ).

end_of_list.

Otter’s resolution-style proofs require the conjecture or theorem to be negated
in the input-file. If now the theorem (in its original form) is indeed derivable,
we will be able to derive a contradiction (proving the theorem by reductio ad
absurdum). As it turns out, Otter can derive T.3 using A.1 and A.2.

Theorem 3 The higher his rank, the greater his observability.

∀x, y [rank(x) > rank(y) → obse(x) > obse(y)]

Proof: Otter can derive T.3 from A.1 and A.2.5

In a similar way, we can try to derive the other theorems.

5Otter produces the following proof:
1 [] -(rank(x)>rank(y))|cent(x)>cent(y).

2 [] -(cent(x)>cent(y))|obse(x)>obse(y).

3 [] -(obse($c2)>obse($c1)).

4 [] rank($c2)>rank($c1).

5 [hyper,4,1] cent($c2)>cent($c1).

6 [hyper,5,2] obse($c2)>obse($c1).

7 [binary,6.1,3.1] $F.

By two applications of hyper-resolution, and one final application of binary resolution, see (Wos
et al. 1992) for details on these inference rules.
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Theorem 5 The higher his rank, the greater his conformity.

∀x, y [rank(x) > rank(y) → conf(x) > conf(y)]

Proof: Otter can derive T.5 from A.1 and A.4.

Theorem 10 The greater his centrality, the greater his influence.

∀x, y [cent(x) > cent(y) → infl(x) > infl(y)]

Proof: Otter can derive T.10 from A.2 and A.8.

Theorem 11 The greater his influence, the greater his observability.

∀x, y [infl(x) > infl(y) → obse(x) > obse(y)]

Proof: Otter can derive T.11 from A.12 and A.7.

Theorem 13 The higher his rank, the greater his influence.

∀x, y [rank(x) > rank(y) → infl(x) > infl(y)]

Proof: Otter can derive T.13 from A.1, A.4, and A.9.

Theorem 15 The greater his centrality, the greater his rank.

∀x, y [cent(x) > cent(y) → rank(x) > rank(y)]

Proof: Otter can derive T.15 from A.2, A.8, and A.14.

The theoretical argumentation of Hopkins theory is strictly intuitive. He just
postulates that propositions are derivable, without specifying the used rules of
inference.6 We have presented a first-order logic rendition of his propositions and
tested whether the intuitive arguments would correspond to rigorous proofs in
formal logic. As it turns out, we can formally prove all the propositions of which
the derivability was claimed. Moreover, the proofs we find correspond exactly
with the suggested inferences—confirming his intuitive arguments.

6Although, on one occasion, he states that “Proposition 10 derives logically from Proposi-
tion 2 and 8, or from 4 and 9” (page 74, emphasis added).
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2.3.4 Consistency of the Theory

The fact that we can prove all the suggested theorems provides us with some
confidence in our particular formalization of the axioms and theorems. We can
further investigate our theory by testing whether it is non-contradictory or consis-
tent. Consistency is a crucial property of formal theories, because any statement
is derivable from an inconsistent axiom set.7 We can prove the consistency of the
(formal) theory by generating a model of it.

We can use Mace in an attempt to find models of the set of axioms. We can
test whether there are such models using the input-file:

set(auto).
formula_list(usable).
all x y (rank(x)>rank(y) -> cent(x)>cent(y)). % A.1
all x y (cent(x)>cent(y) -> obse(x)>obse(y)). % A.2
all x y (cent(x)>cent(y) -> conf(x)>conf(y)). % A.4
all x y (obse(x)>obse(y) -> conf(x)>conf(y)). % A.6
all x y (conf(x)>conf(y) -> obse(x)>obse(y)). % A.7
all x y (obse(x)>obse(y) -> infl(x)>infl(y)). % A.8
all x y (conf(x)>conf(y) -> infl(x)>infl(y)). % A.9
all x y (infl(x)>infl(y) -> conf(x)>conf(y)). % A.12
all x y (infl(x)>infl(y) -> rank(x)>rank(y)). % A.14

end_of_list.

There exist many models of this axiom set, even models of small cardinalities.
If we use {0, 1} as the universe, then Mace generates over a thousand models
in just 2 seconds.8 Table 2.6 shows one of these models. It is easy to verify

rank cent obse conf infl
0 0 0 0 0 0
1 1 1 1 1 1

> 0 1
0 F F
1 T F

Table 2.6: A model of Hopkins’ axioms.

that the axioms hold in this model, which represents a group with only two
members. Proposition 1, for example, is true because the member with the highest
rank, which is member 1, also has the highest centrality. In this model, we

7Classical logic has the principle ex falso sequitur quodlibet that says that everything can be
concluded from a contradiction.

8For example, by invoking Mace with the options ‘-n2 -p -m5000’, see (McCune 1994a)
for details. Mace generates 1024 models on {0, 1}, we present here one that gives a natural
interpretation of the ‘>’ relation. A formal model consists of a universe (here {0, 1}) and a
mapping between the non-logical symbols (here a binary relation > and unary functions rank,
cent, obse, conf, and infl) and elements of the universe. For example, consider the model in
Table 2.6: here, the relation symbol > is interpreted as (1 > 0) is true, and (0 > 0), (0 > 1),
and (1 > 1) are false and the function rank is interpreted as rank(0) = 0 and rank(1) = 1.
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have one member, 1, with higher rank, centrality, observability, conformity, and
influence than another member, 0,—a ‘prototypical’ model of this simple theory.
Statements that are derivable from the axioms are necessarily true in all their
models. In particular, the theorems we derived earlier are also true in the model
of Table 2.6. For example, T.3 is true because the member with the higher rank
(i.e., member 1) has also the higher observability.

Finding an arbitrary model of the axiom set proves that it is consistent. That
is, even the single, simple model in Table 2.6 proves that the set of axioms, and
therefore the theory, is consistent.

2.3.5 Satisfiability, Falsifiability, and Contingence

We can also try to investigate whether the theorems are falsifiable, i.e., whether
it is (logically) possible that the theorem is false. For example, if a statement
is tautologically true, its truth is determined by logic and the statement does
not make an empirical claim. As a result, empirical testing can only reaffirm its
trivial validity. We can also check whether theorems are falsifiable by constructing
a model in which the theorem does not hold. Notice that such a model cannot
be model of the theory, since a theorem is necessarily true in all models of the
premises—otherwise it would not be a theorem. Therefore, we have to ignore the
premises of the theory.

Consider theorem 3 the higher his rank, the greater his observability.

∀x, y [rank(x) > rank(y) → obse(x) > obse(y)]

As it turns out, we can find a model in which the theorem, T.3, is false. Even
on a small universe like {0, 1}, Mace generates several of such models (one of
which is shown in Table 2.7). Finding this model proves that T.3 is falsifiable.
Notice that this is a model does not respect, for example, the premise A.1. It is
a model of the language but not a model of the theory (otherwise it would be a
counterexample).

rank cent obse conf infl
0 0 0 1 0 0
1 1 0 0 0 0

> 0 1
0 F F
1 T F

Table 2.7: A model in which T.3 is false.

In a similar vein, we can also investigate whether the theorems are satisfiable,
i.e., whether it is (logically) possible that the theorem is true. For example, if
a statement is a contradiction, its truth (or rather its falsity) is also determined
by logic. As a result, such a statement does also not make an empirical claim,
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rank cent obse conf infl
0 0 0 0 1 0
1 1 0 0 0 0

> 0 1
0 F F
1 T F

Table 2.8: A model in which T.5 is false.

rank cent obse conf infl
0 0 0 0 0 1
1 0 1 0 0 0

> 0 1
0 F F
1 T F

Table 2.9: A model in which T.10 is false.

rank cent obse conf infl
0 0 0 1 0 0
1 0 0 0 0 1

> 0 1
0 F F
1 T F

Table 2.10: A model in which T.11 is false.

rank cent obse conf infl
0 0 0 0 0 1
1 1 0 0 0 0

> 0 1
0 F F
1 T F

Table 2.11: A model in which T.13 is false.

rank cent obse conf infl
0 1 0 0 0 0
1 0 1 0 0 0

> 0 1
0 F F
1 T F

Table 2.12: A model in which T.15 is false.
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and empirical testing can only reaffirm its trivial falsity. We can check whether
a statement is satisfiable by constructing a model in which it does hold. As
noted above, theorems are necessarily true in all models of the axiom set. That
is, theorem T.3 is true in the model of Table 2.6, proving that the theorem is
satisfiable.

The two models of Tables 2.6 and 2.7 prove that T.3 is both satisfiable and
falsifiable. Theorem T.3 is a contingent statement—its truth or falsity is not
predetermined by the logic, but depends on the validity of the axioms.

We can repeat this for all other theorems (and for the axioms themselves).
Of course, all theorems hold in the model of Table 2.6, i.e., this model proves
that all theorems are satisfiable. We also succeed in proving the falsifiability of
all theorems: the models in Tables 2.8–2.12 prove the falsifiability of T.5, T.10,
T.11, T.13 and T.15 respectively. As a result, all theorems are satisfiable and
falsifiable, and therefore contingent.

2.3.6 Examining the Theorems

Hopkins (1964, p.50) states: “The five status-properties—rank, centrality, ob-
servability, conformity, and influence—taken two at a time, can be combined
to form twenty statements of simple implication.” However, the text only ex-
plicitly lists the fifteen statements reprinted in Table 2.2. These five missing
pairs of status properties are: conformity-rank, observability-rank, influence-
centrality, conformity-centrality, and observability-centrality. The corresponding
‘statements of simple implication’ are, presumably, those listed in Table 2.13.

For any member of a small group:
16. The greater his conformity, the higher his rank.
17. The greater his observability, the higher his rank.
18. The greater his influence, the greater his centrality.
19. The greater his conformity, the greater his centrality.
20. The greater his observability, the greater his centrality.

Table 2.13: The ‘missing’ propositions of Hopkins.

We want to investigate the relation between the theory and the missing propo-
sitions. Hopkins does not further discuss these propositions, although he states:
“Six of the possible derivations from these basic propositions are discussed be-
cause of their theoretical or empirical interest, and the other five are not discussed
because they are not particularly interesting” (page 52). This suggests that the
missing propositions are derivable from the set of axioms. As it turns out, they
are all derivable from the axioms.
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Theorem 16 The greater his conformity, the higher his rank.

∀x, y [conf(x) > conf(y) → rank(x) > rank(y)]

Proof: Otter can derive T.16 from A.9 and A.14.

Theorem 17 The greater his observability, the higher his rank.

∀x, y [obse(x) > obse(y) → rank(x) > rank(y)]

Proof: Otter can derive T.17 from A.8 and A.14.

Theorem 18 The greater his influence, the greater his centrality.

∀x, y [infl(x) > infl(y) → cent(x) > cent(y)]

Proof: Otter can derive T.18 from A.14 and A.1.

Theorem 19 The greater his conformity, the greater his centrality.

∀x, y [conf(x) > conf(y) → cent(x) > cent(y)]

Proof: Otter can derive T.19 from A.9, A.14, and A.1.

Theorem 20 The greater his observability, the greater his centrality.

∀x, y [obse(x) > obse(y) → cent(x) > cent(y)]

Proof: Otter can derive T.20 from A.8, A.14, and A.1.

The five missing propositions are all derivable from the set of axioms. As a
result, the formulas in Table 2.14 are further theorems of the theory. A theory

T.16 ∀x, y [conf(x) > conf(y) → rank(x) > rank(y)]
T.17 ∀x, y [obse(x) > obse(y) → rank(x) > rank(y)]
T.18 ∀x, y [infl(x) > infl(y) → cent(x) > cent(y)]
T.19 ∀x, y [conf(x) > conf(y) → cent(x) > cent(y)]
T.20 ∀x, y [obse(x) > obse(y) → cent(x) > cent(y)]

Table 2.14: Further theorems.

consists of all the statements that are logical consequences of its set of axioms
(including the axioms themselves, which are trivial consequences of themselves).
If we accept the axioms of a theory, then we must also accept all statements that
are derivable from the premises, i.e., all statements that are necessarily true if the



2.3. A Social Science Case Study 27

premises are true. A theorizer is not allowed to include only some of the theorems
in the theory, and not to include other theorems (unless the premises are modified
accordingly). Of course, in any exposition of a theory, we will only explicitly spell
out those theorems that are the most salient consequences of our theory. Since
Hopkins assured us that “they are not particularly interesting,” they need not be
explicitly spelled out in the text.9 Nevertheless, they are theorems of the set of
axioms, and therefore part of Hopkins’ theory.

2.3.7 Examining the Axioms

The theory uses the nine axioms of Table 2.4. Rather surprisingly, Hopkins states:
“It has perhaps been noticed that there are nine basic propositions, whereas the
number logically required to generate the statements is less” (pages 51–52). Ap-
parently, the theory contains redundant axioms, that is, the same set of theorems
can be derived from a subset of axioms. We can distinguish between two ways in
which axioms may be redundant: 1) an axiom may turn out to be unnecessary
for deriving a given set of theorems, or 2) an axiom may turn out to be derivable
from the other axioms. In the second case, we make the axiom set more parsi-
monious by making the derivable axiom into a theorem.10 In the first case, we
may even relax the axiom altogether, making the theory more general. Hopkins’
explanation for the use of redundant axioms is even more surprising: “This is be-
cause in the theory proper there are nine substantive important relations among
the properties” (page 52). It is unclear why he does not want to have theorems
that are “substantive important relations among the properties.” First, having
substantive important theorems is generally regarded as the very purpose of a
theory. Second, there will be substantive important theorems anyway, because
the axioms are, of course, also theorems themselves since each of them can be
trivially derived from the set of axioms.

The first type of superfluous axioms we want to consider are those axioms
that are not used for deriving the singled-out theorems. We will first examine the
proofs of the theorems as stated above:

• Axiom A.1 is used in derivation of theorems T.3, T.5, and T.13;

• Axiom A.2 is used in derivation of theorems T.3, T.10, and T.15;

9Of course, if they were undesirable or unwanted consequences they should be spelled out.
Note that each of the ‘missing’ propositions is the converse of one that is discussed in the text
(T.16 is the converse of A.5; T.17 of T.3; T.18 of T.10; T.19 of A.4; and T.20 of A.2).
It is unclear how the converse of a statement of “theoretical or empirical interest” can be “not
particularly interesting.”

10As Tarski (1946, p.131) puts it: “Fundamentally, we strive to arrive at an axiom system
which does not contain a single superfluous statement, that is, a statement that can be derived
from the remaining axioms and which, therefore, might be counted among the theorems of the
theory under construction.”
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• Axiom A.4 is used in derivation of theorem T.5;

• Axiom A.7 is used in derivation of theorem T.11;

• Axiom A.8 is used in derivation of theorems T.10 and T.15;

• Axiom A.9 is used in derivation of theorem T.13;

• Axiom A.12 is used in derivation of theorem T.11; and

• Axiom A.14 is used in derivation of theorem T.15.

The remaining axiom, A.6, is not used in any of the proofs.11 This is also the
case in the informal derivations in which Proposition 6 is never used (Hopkins
1964, pp.97–98)—Is this the redundancy that Hopkins is referring to? We can
remove axiom A.6 from the axiom set and still have the same set of singled-out
theorems. It is important to note that changing the axiom set does, in general,
change the theory. Although the singled-out theorems remain derivable there
may be other theorems that cease to belong to the theory. For example, if we
decide to remove A.6 from the axioms, then the statement of A.6—which was
a substantive important relation—may no longer belong to the theory. Unless of
course A.6 is also a case of the second type of redundancy, i.e., that A.6 can be
derived from the remaining set of axioms. This turns out to be the case.

Axiom 6 The greater his observability, the greater his conformity.

∀x, y [obse(x) > obse(y) → conf(x) > conf(y)]

Proof: Otter can derive A.6 from A.8 and A.12. A different proof uses A.8,
A.14, A.1, and A.4.12

We can derive A.6 from the other axioms. As a result, if we decide to remove
A.6 from the axioms set, then the theory does not change. That is to say the same
set of statements will be derivable from the smaller set of axioms, in particular,
the statement of A.6 will now become a theorem. This proves that axiom A.6
is not independent of the other axioms. The other axioms were used for deriving
some of the axioms, nevertheless, they might still be redundant if they can be
derived from some of the other axioms.

We can try to prove whether the other axioms are independent. Let us consider
axiom A.1. If we want to prove that A.1 is independent of the other axioms, we
have to show that the other axioms do not imply the truth (nor the falsity) of
A.1. That is to say, we have to prove that both

11This does, of course, not prove that the other axioms are necessary, since there may be
different proofs of the theorems that use even less of the axioms.

12We can instruct Otter not to terminate after finding a first proof, but to continue searching
for other proofs by setting the ‘max proofs’ parameter, see (McCune 1994b) for details.



2.3. A Social Science Case Study 29

1. {A.2,A.4,A.6,A.7,A.8,A.9,A.12,A.14} 6` A.1 and that

2. {A.2,A.4,A.6,A.7,A.8,A.9,A.12,A.14} 6` A.1.13

Proving underivability is, in general, very hard. We will here try to find small
counterexamples for these derivability relations. We can prove (2) by finding a
model of the other axioms in which A.1 is true. This amounts to finding a model
of the total set of axioms. We already did this in Table 2.6 when we proved
consistency. Similarly, we can prove (1) if we can find a model of the other
axioms in which A.1 is false. Mace generated the model with universe {0, 1}
reprinted in Table 2.15. Finding these two models proves that the axiom A.1 is

rank cent obse conf infl
0 0 0 0 0 0
1 1 0 0 0 0

> 0 1
0 F F
1 T F

Table 2.15: A model in which A.1 is false, and the other axioms hold.

independent of the other axioms—neither its truth, nor its falsity is implied by
the other axioms.

Next, we consider A.2. Again, the model in Table 2.6 proves that the falsity
of A.2 is not implied by the other axioms. However, we do not manage to find
a small model of the other axioms in which A.2 is false. Maybe A.2 is not
independent of the other axioms? As it turns out, we can derive A.2 from the
other axioms.

Axiom 2 The greater his centrality, the greater his observability.

∀x, y [cent(x) > cent(y) → obse(x) > obse(y)]

Proof: Otter can derive A.2 from A.4 and A.7.

This proves that axiom A.2 is not independent of the other axioms. We can
also prove that axioms A.4, A.7, A.8, A.9, and A.12 are not independent.

Axiom 4 The greater his centrality, the greater his conformity.

∀x, y [cent(x) > cent(y) → conf(x) > conf(y)]

Proof: Otter can derive A.4 from A.2 and A.6. A different proof uses A.2,
A.8, and A.12.

13We use here · · · to indicate the negation of the formula, i.e., if A.1 is a formula ϕ then A.1
represents the formula ¬(ϕ).
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Axiom 7 The greater his conformity, the greater his observability.

∀x, y [conf(x) > conf(y) → obse(x) > obse(y)]

Proof: Otter can derive A.7 from A.9, A.14, A.1, and A.2.

Axiom 8 The greater his observability, the greater his influence.

∀x, y [obse(x) > obse(y) → infl(x) > infl(y)]

Proof: Otter can derive A.8 from A.6 and A.9.

Axiom 9 The greater his conformity, the greater his influence.

∀x, y [conf(x) > conf(y) → infl(x) > infl(y)]

Proof: Otter can derive A.9 from A.7 and A.8.

Axiom 12 The greater his influence, the greater his conformity.

∀x, y [infl(x) > infl(y) → conf(x) > conf(y)]

Proof: Otter can derive A.12 from A.14, A.1, and A.4. A different proof uses
A.14, A.1, A.2, and A.6.

Finally, let us consider axiom A.14. The model in Table 2.6 still proves that
the falsity of A.14 is not implied by the other axioms. Mace generated the
model in Table 2.16 (having universe {0, 1}). This model proves that the truth of

rank cent obse conf infl
0 0 0 0 0 0
1 0 0 1 1 1

> 0 1
0 F F
1 T F

Table 2.16: A model in which A.14 is false, and the other axioms hold.

A.14 is not implied by the other axioms. Together with the model in Table 2.6,
this proves that axiom A.14 is independent of the other axioms.

We have proved that the axioms of the theory are not independent—several
of the axioms can be derived from the other axioms. We have proven that A.1
and A.14 are independent of the other axioms, that is, a smaller axiom set must
include these two axioms.
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2.3.8 Minimal Sets of Axioms

In the previous section, we proved that seven of the nine axioms are not indepen-
dent of the other axioms. In this section, we will try to prune the axioms. That
is, we will try to make the axiom set more parsimonious by removing superfluous
axioms. Each of these seven axioms can be removed from the premise set, since
each of them can be derived from the other axioms. Of course, this does not
imply that we can remove all seven axioms together, since the removal of one ax-
iom may make another axioms independent relative to the smaller set of axioms.
That is, if we remove one of the derivable axioms, we have to test again whether
there are still non-independent axioms. If there are none, then the axiom set is
minimal, otherwise, we can further reduce the set of axioms and test again for
non-independence.

A minimal subset of these nine axioms is the set of five axioms A.1, A.4,
A.7, A.8, and A.14 (see Table 2.17). We can prove that this is an axiom set

A.1 ∀x, y [rank(x) > rank(y) → cent(x) > cent(y)]
A.4 ∀x, y [cent(x) > cent(y) → conf(x) > conf(y)]
A.7 ∀x, y [conf(x) > conf(y) → obse(x) > obse(y)]
A.8 ∀x, y [obse(x) > obse(y) → infl(x) > infl(y)]
A.14 ∀x, y [infl(x) > infl(y) → rank(x) > rank(y)]

Table 2.17: A minimal axiom set for Hopkins’ theory.

that will generate all propositions (i.e., all the theorems and other axioms) by
proving the ‘missing’ axioms from this new, smaller, set of axioms. We can use
the proofs outlined in the previous section:

{A.4,A.7} ` A.2

{A.1,A.4,A.8,A.14} ` A.6

{A.7,A.8} ` A.9

{A.1,A.4,A.14} ` A.12

These four derivable axioms A.2, A.6, A.9, and A.12, which were all “substan-
tive important relations among the properties” (page 52), thus become further
theorems of the theory. We can prove that the smaller axiom set, consisting of
A.1, A.4, A.7, A.8, and A.14, is minimal by proving that all axioms in this
smaller set are independent of the other axioms in this set. We did this above for
axioms A.1 and A.14. We now also succeed in proving the independence of the
other three axioms (relative to this smaller set of five axioms, see the models in
Tables 2.18–2.20).

Another minimal subset of these nine axioms is the set of five axioms A.1,
A.2, A.6, A.9, and A.14 (see Table 2.21). Again, this is an axiom set of the
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rank cent obse conf infl
0 0 0 0 0 0
1 0 1 0 0 0

> 0 1
0 F F
1 T F

Table 2.18: A model in which A.4 is false, and the axioms A.1, A.7, A.8, and
A.14 hold.

rank cent obse conf infl
0 0 0 0 0 0
1 0 0 0 1 0

> 0 1
0 F F
1 T F

Table 2.19: A model in which A.7 is false, and the axioms A.1, A.4, A.8, and
A.14 hold.

rank cent obse conf infl
0 0 0 0 0 0
1 0 0 1 0 0

> 0 1
0 F F
1 T F

Table 2.20: A model in which A.8 is false, and the axioms A.1, A.4, A.7, and
A.14 hold.

A.1 ∀x, y [rank(x) > rank(y) → cent(x) > cent(y)]
A.2 ∀x, y [cent(x) > cent(y) → obse(x) > obse(y)]
A.6 ∀x, y [obse(x) > obse(y) → conf(x) > conf(y)]
A.9 ∀x, y [conf(x) > conf(y) → infl(x) > infl(y)]
A.14 ∀x, y [infl(x) > infl(y) → rank(x) > rank(y)]

Table 2.21: A second minimal axiom set for Hopkins’ theory.
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theory because:

{A.2,A.6} ` A.4

{A.1,A.2,A.9,A.14} ` A.7

{A.6,A.9} ` A.8

{A.1,A.2,A.6,A.14} ` A.12

It is a minimal axiom set, because we can prove it is an independent set of axioms
(models not reproduced here).

These two axiom sets

{A.1,A.4,A.7,A.8,A.14}

{A.1,A.2,A.6,A.9,A.14}

have cardinality five and all the other propositions (both theorems and the re-
moved axioms) can be derived from them. There are other minimal axioms sets,
but these two are the smallest subsets of the listed axioms that generate all twenty
propositions.14

2.3.9 Recapitulating

In this section, we presented a formal version Hopkins’ theory of ‘The Exercise
of Influence in Small Groups’ by representing his propositions in first-order logic.
We evaluated this first-order logic rendition using the logical criteria. In this
way, we could prove several properties of the theory. First, we proved that the
informal argumentation of Hopkins corresponds to rigorous proofs of theorems in
the formal rendition of the theory. Second, we proved that the (formal) theory
is non-trivial in the sense that it is consistent or contradiction-free. Third, we
proved that the theorems are logically contingent, that is, the claims they make
are are both logically falsifiable and satisfiable. Fourth, we proved that the five
‘missing’ propositions are also derivable from the same axiom set—i.e., they are
also theorems of Hopkins’ theory. Fifth, we proved that the suggested axioms
of the theory are not independent. And sixth, we provided two subsets of the
axioms that are independent. Notice that, although we made various changes in
the exposition of the theory, the theory itself did not change. The initial formal
version of the theory and the final axioms sets can be used to generate precisely
the same class of theorems and the same class of models.

14All propositions relate two different status properties, therefore, we need at least four axioms
to make a coherent theory (if we use less than four axioms, the theory will consist of independent
parts). If we want to derive all twenty propositions, we need at least one further axiom that
relates the fifth status property back to the first.



34 Chapter 2. Formal Theory Building Using Automated Reasoning Tools

2.4 Discussion and Conclusions

In this chapter we discussed formal theory building based on the use of standard
first-order logic, and of existing automated reasoning tools. The logic provides
us with a number of criteria that can be tested for using computational tools. In
principle, each criterion can be tested for by both theorem proving and model
generation strategies, for example, a theorem is also sound if it holds in all models
of the premise set, or a theory is consistent if the deductive closure of the premise
set does not contain a contradiction. In practice, the use of automated theorem
provers and model generators is complementary: generating all models or the
complete deductive closure of a premise set is impossible. A theorem prover
is suitable for proving the inconsistency of the theory, or the soundness of a
derivation (requiring only a single proof), and a model generator can prove the
consistency of the theory, or the unsoundness of a conjecture (requiring only a
single model). In short, much is to be gained by using the right tool for the
specific proof/disproof attempt at hand, and even more than just computational
differences. Consider, for example, a situation in which the prover fails to prove
a conjecture. Determining what caused this failure typically requires a thorough
examination of the search-traces—an arduous, time-consuming activity. If the
model generator can construct a counterexample to the conjecture, it will become
apparent immediately why the proof attempt failed.

As always, there are principal and practical limitations to use of automated
reasoning tools: first-order logic is not decidable (although it is semi-decidable:
it may detect a consequent eventually); current automated model generators can
only find finite models (even only very small ones, cardinalities beyond a dozen
seem impractical); and the common practical limitations such as memory, CPU,
time.15 However, none of the proofs and models searches for the case study in
section 2.3 requires more than five seconds. Admittedly, this case study con-
cerns a relatively simple theory fragment. Larger theories have been formalized
in some of the other case studies (for example [Péli and Masuch 1997] where
proofs required up to 30 minutes). Current implementations of automated theo-
rem provers, including Otter, are very powerful. Automated model generators
are of recent incarnation, and are yet far less sophisticated. Mace chokes on
deeply nested terms or clauses with many literals (beyond 10 distinct terms).
We might end up in a situation in which we cannot prove a conjecture, nor find
small counterexamples to it (for example, when all counterexamples have infinite

15The input format of Otter and Mace is, strictly speaking, only accepting sentences—
formulas in which no variables occur freely. However, since freely occurring variables are in-
terpreted as (new) constants, this amounts to precisely the same: the assignments of the free
variables are precisely the interpretations of the constants added to the vocabulary. Of course,
the internal procedures immediately translate the first-order sentences to clauses, which does
preserve the satisfiability or unsatisfiability of the original sentences, but not necessarily the
logical meaning (due to the skolemization of existential quantifiers).
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cardinality). Still, current automated model generators are powerful enough to
have solved several open problems in (finite) mathematics (Slaney 1994a).





Chapter 3

Reducing Uncertainty: A Formal
Theory of Organizations in Action

This chapter presents a formal reconstruction of James D. Thompson’s classic
contribution to organization theory, Organizations in Action. The reconstruction
explicates the underlying argumentation structure for Thompson’s propositions—
literally, theorems or problems to be demonstrated. This allows Thompson’s
propositions to be derived as theorems in a deductive theory. As it turns out,
the formal theory is based on general assumptions using only few primitive con-
cepts. In addition, this theory explains why Thompson’s propositions do not
hold for noncomplex or “atomic” organizations (a restriction on the domain of
application). Furthermore, this study reveals that organizations attempt to re-
duce constraints in their environment—a heretofore unknown implication of the
theory.

3.1 Introduction

Thompson’s Organizations in Action was published more than three decades ago
but is still one of the classics of organization theory. The book provides a unifying
perspective on open- and closed-systems thinking in organization theory that has
been recognized as an important contribution in its own right (Scott 1998). The
environment is a key source of uncertainty for an organization, and Thompson
argued that much of organizational action can be explained by the need to reduce
uncertainty. Consider a specific action such as “buffering” (e.g., building ware-
houses or storages), aiming to seal off the organization’s technical or operational
core from environmental uncertainty. The main lines of his arguments always
are couched in explicitly formulated propositions but also are brought to life by
examples such as the typologies of technologies (long-linked, mediating, or inten-
sive), interdependencies (pooled, sequential, or reciprocal), and coordination (by

37
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standardization, by plan, or by mutual adjustment). His typologies have inspired
much research in organizational design (Galbraith 1977) and contingency theory
(Mintzberg 1979). However, despite the impressive number of citations, the book
itself is not read much anymore—most students of organization science will only
know the book through references.1 Because of this, the typologies and examples
of Thompson are getting more attention than his core ideas, which are captured
in the propositions. The aim of this chapter is to bring Thompson’s main ideas
back into focus by presenting a logical formalization of his propositions. That is,
we will formalize the propositions of Organizations in Action in first-order logic
and reconstruct the underlying argumentation for them.

Thompson’s Organizations in Action is a suitable candidate for a formaliza-
tion attempt in organization and management theory. First, Thompson’s theory
is formulated using abstract concepts that transcend individual organizations and
particular organization types (Zald 1996). Second, the influential role of Organi-
zations in Action ensures that the thinking of quite a number of contemporary
scholars is based, at least in part, on ideas presented in this famous book. As a
result, the basic assumptions of Organizations in Action are likely to turn out to
be common assumptions of several organization theories.

In this chapter, we give an axiomatic reconstruction of the first chapters of
Organizations in Action. Our main focus is on the second chapter of this book.
Arguably, this is the most important chapter of the book since it provides a
unifying perspective on rational, closed-systems strategies in an open-systems
environment. The chapter is structured as follows: First, in §3.2, we will introduce
the research methodology of logical formalization; then, in §3.3 we will apply this
method to Thompson’s Organizations in Action; and finally, in §3.4, we will
review the formal theory and discuss issues related to our work.

3.2 Research Methodology: Logical Formaliza-

tion

There is a broad consensus among social scientists on the importance of the-
ory. However, this consensus breaks down as soon as one tries to discuss what
a ‘theory’ is (Sutton and Staw 1995). As Masuch, Bruggeman, Kamps, Péli,
and Pólos (1996) argued, any discussion about ‘theory’ is subject to confusion,
unless it is rooted on a clear conception of what ‘theory’ is. The disciplines of
Logic and Philosophy of Science have provided a clear notion of formal, deductive
theory.2 In this chapter, we will use the classical, axiomatic-deductive notion of

1The Social Sciences Citation Index lists 145 citations in 1995, 154 in 1996, and 135 in 1997
(Social Sciences Citation Index a,b,c).

2Some readers may argue that the social sciences require different scientific techniques (for
example of empirical inquiry) than other sciences. This may very well be the case, but the
context of justification and the structure of theories are common for all sciences (Rudner 1966;
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a theory (Tarski 1956; Popper 1959). The premises of a formal theory consist
of general statements (universal laws or empirical generalizations, supplemented
with definitions) of which the validity is known or assumed, and the theorems
of a formal theory are those statements that are logical consequences of the set
of premises, i.e., statements that are necessarily true whenever the premises are
true. The formal theory itself is the set containing the premises and all theo-
rems, and theoretical explanations and predictions correspond to deductions of
theorems from the set of premises (Popper 1959). The main problem for the
application of this notion of theory in the social sciences is that it presupposes
an exact notion of logical consequence (how the truth of the premises carries
over to theorems). Most social science theories are formulated in natural lan-
guage, which is inherently ambiguous, and therefore makes it impossible to say
of a given conjecture whether or not it is indeed a theorem.3 Most textbooks on
social science research methodology contain chapters on the scientific or logical
foundations of social research. Typically, these chapters are used indirectly to
provide the background context for discussing social scientific inquiry (Singleton
and Straits 1999). Logical formalization is an attempt to address such issues
directly, by rationally reconstructing scientific theories and representing them in
formal logic.

3.2.1 The Product of Logical Formalization

The result of a logical formalization is a theory in a strict sense. The theory
consists of statements in a restricted language. This language contains special
symbols from the used formal logic4, names of variables, and names of constants,
predicates, and functions (from the theory’s domain of application).

The resulting theory contains an explicit set of premises. The premises form
the axioms or basis of the theory. We distinguish between a definition, which
introduces a name for a meaningful concept that is expressible in terms of other
concepts and an assumption, which contains a claim that is known or assumed to
hold for the theory’s (intended) domain of application.

Definitions are used to give a name for meaningful concepts that are express-
ible in terms of other concepts. In a formal theory there is a clear distinction
between primitive concepts, and concepts that are defined in terms of the primi-
tive concepts. A defined concept can be eliminated from the theory by replacing
the concept with the expression it stands for. We can only use defined concepts

Popper 1969).
3Notice however, that there are intuitive notions of what constitutes a sound inference or

argumentation in natural language. Constructs like ‘if . . . then . . . ,’ ‘. . . then it follows . . . ,’
or ‘Therefore, . . . ’ frequently appear in articles.

4In case of first-order logic these are: quantifiers ∀ (for all), ∃ (there exists); connectives ¬
(not), ∧ (and), ∨ (or), → (implies), and ↔ (if and only if); and the equality symbol =.
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in the definition of other concepts if this does not lead to circularity.5 In this
way, it is possible to write out an equivalent definition that uses only primitive
concepts, and it remains possible to eliminate all defined concepts.

The assumptions are general statements, such as universal laws or law-like
statements like empirical generalizations.6 The theory’s domain of application is
characterized by the assumptions: the theory applies to all domains that satisfy
the assumptions (after using the definitions to eliminate defined concepts that
may occur in the assumptions). The more general the assumptions of the theory
are, the larger is its domain of application. For the empirical testing of the theory
it suffices to test the assumptions (if they turn out to be valid then theorems that
are logically derivable from them must necessarily be true as well). If assump-
tions are not directly testable, we can try to falsify them by testing consequences
of them (if any of these consequences turns out to be false, then some of the
assumptions must be false).

The theory consists of all the statements that are logical consequences of the
set of premises (including the premises because they are trivial consequences of
themselves). If we accept the premises of a theory, then we must also accept all
statements that are logical consequences of the premises, i.e., that are necessarily
true if the premises are true. A theorizer is not allowed to include only some
of the theorems in the theory, and not to include other theorems (unless the
premises are modified accordingly). In any exposition of a theory, there are,
apart from the premises, only a small number of salient consequences singled out.
We use the following labels: a theorem, which is an interesting consequence of
a theory because it is a surprising result, or a new testable implication of the
theory; a lemma, which is a minor theorem—an intermediate result that is used
to derive further theorems or lemmas but is of some interest in its own right; and
a corollary, which is an immediate consequence of a theorem.

The consequences of the premises are the predictions or claims of the theory.
The proof of a theorem in a formal theory corresponds to an argument for, or
explanation of the claim it makes (giving a causal explanation, i.e., answering
why the claim holds). That is, if we consider cases in which the premises hold,
then the theorem must also hold (i.e., the theorem is a prediction). Conversely, if
we consider cases where the theorem holds, then the premises give an explanation
for why the theorem holds. If a conjecture is not a consequence of the premises,
empirical support for the premises and the conjecture’s claim can be independent:
even if the premises are valid, the conjecture can be false, and even if we refute
the conjecture, all the theory’s premises may still be valid.

5It is impossible to define all the concepts of a theory: if all concepts were defined in terms
of the other concepts, then some of the definitions have to be circular.

6These statements are also called laws or hypotheses depending on the range of evidence for
them. We prefer to use the neutral term assumptions here.
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3.2.2 The Process of Logical Formalization

Most social science theories are stated in natural language. The process of log-
ical formalization takes as input a discursive theory (a theory stated in natural
language) and outputs a theory in formal logic. This process concerns the inter-
linked activities of rational reconstruction (reconstructing the claims, premises,
and argumentation of the theory) and formal modeling (capturing the claims as
theorems that are provable from explicit definitions and assumptions). The pro-
cess of logical formalization does not obey to strict rules, but involves creativity
and insight.7

A problem is that not all of the discursive text is theory. A text usually
contains examples, discussion, citations, figures, etc.; parts which are not theory
(Sutton and Staw 1995). We can reconstruct the theory by identifying sentences
that are definitions, or assumptions about the intended application area of the
theory, or sentences that are the claims or propositions that the author makes. If
we manage to identify definitions, assumptions, and propositions in the text (and
formulate these in logic) then we can test for the theorem-hood of the propositions.

However, it is highly unlikely that we can immediately prove the propositions,
because not all of the theory is in the discursive text. The authors of a text typi-
cally assume a basis of common background knowledge. For example, if a causes
b and b causes c then a reader will immediately infer that a also causes c using his
background knowledge about the transitivity of causality. In a formal theory, this
assumption has to be added explicitly. Making common background knowledge
explicit is important, because any ambiguity about their specific content may
cause confusion. Moreover, the background knowledge may have unanticipated
desirable or unwanted consequences (which are also part of the theory).

There is an even worse problem when there turns out to be a real hiatus in the
argumentation of the theory. Sutton and Staw (1995) observe that authors rou-
tinely use non-theoretical statements in lieu of theory. This indicates that many
theories are missing some crucial assumptions. From the viewpoint of justifica-
tion, we should stop at the discovery of such a hiatus and conclude that (part of)
the argumentation, predictions, and explanations of the theory are unsound and
must be discarded: the chain of argumentation is as strong as its weakest link.
Authors also make unnecessary assumptions or assumptions that can be relaxed,
increasing the parsimony of the theory and making it more generally applicable.

Another problem is that organization theory is known to make conflicting re-
quirements and to contain paradoxes (Quinn and Cameron 1988). During the

7The same holds for the formalization of theories in traditional mathematics (Blalock 1969).
There is always a certain distance to bridge between a partial and ambiguous formulation in
natural language and a rigorous formal exposition of the theory in logic or mathematics. A
noticeable difference between the formalization in logic and formalization in traditional math-
ematics is that logic does not require metric precision (which only few theories can provide),
but can closely follow the original qualitative argumentation of the natural language theories
(Hannan 1997).
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formalization of organization theory, such requirements and paradoxes can man-
ifest themselves as contradictions. The theory may contain assumptions that
are reasonable when considered independently, but nevertheless lead to a con-
tradiction when combined. These contradictions typically arise if some of the
theory’s assumptions are formulated too generally (for example when exceptions
are not taken into account). Moreover, a discursive theory might be interpreted
differently in different contexts. Two interpretations of a theory may each be
consistent, but lead to inconsistency when combined. Again, from the viewpoint
of justification, we should discard an inconsistent theory.

However, our working hypothesis is that sociological texts have real theoreti-
cal content, although it may be obscured by the use of natural language.8 That is,
if we discover a contradiction or hiatus in a theory, we always attempt to recon-
struct the theory such that it is contradiction-free and that its argumentation is
sound. As a result, we gradually move into the context of discovery and do some
theorizing ourselves: We are forced to move away from the explicit statements of
the text, and have to rely more and more on our reconstruction of it. Consider
the case in which a part of the text strongly suggests an implicit assumption of
the theory. Our approach in this is theory-friendly: the goal is to find a favor-
able interpretation that is consistent and allows us to derive the propositions as
theorems.9 Examining the formal theory is useful during this process of recon-
struction. The formal theory may suggest which subset of the assumptions is
inconsistent, or suggest which additional (background) assumptions would make
a proposition derivable. Logical formalization is a constructive methodology for
theory building, because future discussion can be pointed down to the specific
premises responsible for it and thereby facilitate further development of the the-
ory.

3.3 Thompson’s Organizations in Action

Organizations in Action provides a unifying framework for both the classical,
closed-systems theories and the emerging open-systems theories of organizations.
As Thompson writes, “A central purpose of this book is to identify a framework
which might link at important points several of the now independent approaches
to the understanding of complex organizations” (Thompson 1967, p.viii).

8In fact, there is some controversy over the theoretical status of social sciences. On the one
hand, most social scientists do not seem to worry much about the theoretical status of their
science, for example the definite phrase ‘the theory of . . . ’ frequently appears in titles. On
the other hand, philosophers of science tend to be skeptical about social science theories, for
example Rudner (1966, p.40) argues that the social sciences are poor on theory and Balzer et al.
(1987, p.xix) state that contemporary sociological theory is in its formative (or pre-scientific)
period.

9The ambiguities of natural language makes it generally easy to find inconsistent interpre-
tations of a discursive theory, or interpretations in which propositions are not derivable.
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This framework has survived the test of time remarkably well, that is, the
material is part of mainstream organization theory and citations are frequent.
In this chapter, we will mainly focus on the second chapter of Organizations in
Action. Arguably, the second chapter is the most important one because it pro-
vides the crucial link between closed-systems and open-systems strategies. The
second chapter starts with one of Thompson’s famous typologies, a typology of
technologies: Long-linked technologies are serial interdependent. Several actions
have to be performed in sequence. The prototypical example is an assembly line;
Mediating technologies are concerned with linking of interdependent customers.
Typical examples are commercial banks, insurance firms, and employment agen-
cies; and Intensive technologies are crucially dependent upon feedback on their
actions. Typical examples are hospitals, construction industry, and military com-
bat teams (Thompson 1967, pp.15–18).

These three types of technology are increasingly susceptible to environmental
influences and are therefore decreasingly faithful approximations of closed-systems
strategies. The three variations in technology are introduced merely “to illustrate
the propositions we wish to develop” (Thompson 1967, p.15). These carefully
formulated propositions will be the main focus of study in this chapter, since
they capture Thompson’s unifying framework. The propositions of the second
chapter are listed in Table 3.1.

Label Content

Proposition 2.1 . . . . Under norms of rationality, organizations seek to seal off
their core technologies from environmental influences.

Proposition 2.2 . . . . Under norms of rationality, organizations seek to buffer
environmental influences by surrounding their technical
cores with input and output components.

Proposition 2.3 . . . . Under norms of rationality, organizations seek to smooth
out input and output transactions.

Proposition 2.4 . . . . Under norms of rationality, organizations seek to antici-
pate and adapt to environmental changes which cannot
be buffered or leveled.

Proposition 2.5 . . . . When buffering, leveling, and forecasting do not protect
their technical cores from environmental fluctuations, or-
ganizations under norms of rationality resort to rationing.

Note: All propositions are from (Thompson 1967, pp.14–24).

Table 3.1: Propositions of Thompson’s Chapter 2.

There has been some debate on the theoretical status of Thompson’s propo-
sitions. As the editors of a collection of his essays write:

Unlike some sociologists, Thompson cannot be accused of being
“wordy” and of using unnecessary jargon. He uses simple language
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and got to the point quickly. This is especially true for his major work,
Organizations in Action. Indeed, the reader sometimes feels Thomp-
son gets to the point too quickly; his parsimonious style sometimes
leaves the reader behind. Also, although his work contains numer-
ous propositions, all are not derived from a common set of explicit
theoretical concepts and assumptions. In this sense Thompson was
not a rigorous deductive theorist. Instead, he introduced concepts
and formulated propositions appropriate to the organizational reali-
ties he was examining, with little effort to show that different sets
of propositions derived logically from still more general propositions,
assumptions, and concepts. (Rushing and Zald 1976, pp.ix–x)

However, we observed that Thompson’s informal argumentation for the propo-
sitions suggests an underlying explanatory structure. Therefore, we decided to
reconstruct this argumentation in formal logic and build a rigorous deductive the-
ory of Organizations in Action. In the rest of this section, we will try to derive
Thompson’s propositions as theorems in a formal, deductive theory of Organiza-
tions in Action.

3.3.1 Complex Organizations

Before we can prove the propositions, we will have to introduce a number of
general concepts from Thompson’s chapter 1. We will only introduce those con-
cepts from chapter 1 that are necessary for deriving the propositions in further
sections. The main ingredient of all organization theories is, obviously, organiza-
tions. We use the predicate O for “organizations”. For example, O(o) expresses
that o is an organization. We also use a predicate SO for a “suborganization” of
an organization. For example, SO(o1, o2) expresses that o2 is a suborganization
of (organization) o1. A suborganization is a part of the organization (but not all
arbitrary parts of an organization are suborganizations).

Organizations in Action is explicitly dealing with “complex organizations”.
Thompson states that complex organizations are ubiquitous in modern societies
and gives several examples: manufacturing firms, hospitals, schools, armies, com-
munity agencies (Thompson 1967, p.3). However, Thompson does not give a
definition of complex organizations, nor does he dwell upon differences between
complex and other, noncomplex organizations. We will define complex organi-
zations by some of their characteristics, and will discuss in §3.3.3, below, what
noncomplex organizations would look like and why, if they exist, they are ex-
empted from Thompson’s theory.

We will use CO for complex organizations. For example, CO(o) says that o is a
complex organization. Thompson gives some structural characteristics of complex
organization. He adopts the suggestion of Parsons (1960) that organizations
exhibit three distinct levels of responsibility and control: technical, managerial,
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and institutional. According to Thompson, “every formal organization contains
a suborganization whose “problems” are focused around effective performance of
the technical function” (Thompson 1967, p.10). We introduce the predicate TC
for the technical or operational core of an organization. For example, TC(o, tc)
says that tc is the technical core of o. We will define complex organizations as
exactly those organizations that have a technological suborganization:

Definition 1 Complex organizations.
∀x [CO(x) ↔ O(x) ∧ ∃y [SO(x, y) ∧ TC(x, y)]]
(Read: x is a complex organization if and only if x is an organization and there exists
a y such that y is a suborganization of x and y is the technical core of x.)

Thompson uses the notion of a technical core (the transformational or pro-
duction process) in a general sense that applies to all three types of technologies:
long-linked, mediating, and intensive technology (pp.15–18). The core technolo-
gies of assembly lines are the processing of material and supervision of these
operations. In case of mediating technologies like commercial banks, the core
activities are the linking of depositors and borrowers. And in case of intensive
technologies like hospitals, core activities are the performance of some specific
combination of various skills depending, on the patient’s state.

Definition 1 still allows complex organizations to have more than one tech-
nical core, although Thompson consistently uses the definite article “the” when
referring to an organization’s core technologies (p.10). We will explicitly assume
that the technical core of an organization can be uniquely determined—complex
organizations can only have one technical core.

Assumption 1 The technical core is unique.
∀x, y, z [TC(x, y) ∧ TC(x, z) → y = z]
(Read: if both y and z are the technical core of x, then y is equal to z.)

Assumption 1 ensures that we can talk about the technical core of a complex
organization. This technical core is the technical suborganization of definition 1,
as becomes clear from the following lemma:10

Lemma 1 The technical core of a complex organization is a suborganization.
∀x, y [CO(x) ∧ TC(x, y) → SO(x, y)]
(Read: if x is a complex organization with core technologies y, then y is a suborgani-
zation of x.)

10All derived statements are proved using the automated theorem prover Otter (Organized
Techniques for Theorem-proving and Effective Research; McCune 1994b). We will give here
only the outline of those proofs: the first lines of the proofs are by assumption, and the meta-
implication symbol, ⇒, indicates steps in the proof. Most steps involve modus ponens: if φ
holds and φ implies ψ, then ψ holds as well.
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Proof: (Using definition 1 and assumption 1.) By Def.1, a complex organization
has a technical core that is a suborganization. By Ass.1, an organization can have
only one technical core. Therefore, the technical core of a complex organization
is a suborganization.

CO(o1) ∧ TC(o1, tc1) (by assumption)
⇒ (∃tc2) SO(o1, tc2) ∧ TC(o1, tc2) (by Def.1)
⇒ tc1 = tc2 (by Ass.1)
⇒ SO(o1, tc1)

Lemma 1 is a technicality that will be used in some of the other proofs. It
allows us to talk about the technical core of a complex organization by ensuring
that the technical core is the specific suborganization of definition 1.

The performance of their core technologies is crucial for organizations. Ac-
cording to Thompson (p.11), “it would therefore be advantageous for an organi-
zation subject to criteria of rationality to remove as much uncertainty as possible
from its technical core.” We call this “rational evaluation” and capture this by a
predicate, REVA. For example, REVA(o, tc) expresses that o evaluates tc in terms
of technical rationality. As stated above, we assume that core technologies are
rationally evaluated:

Assumption 2 The technical core is rationally evaluated.
∀x, y [TC(x, y) → REVA(x, y)]
(Read: if y is the technical core of x, then x will rationally evaluate y.)

Furthermore, if an organization rationally evaluates a particular suborgani-
zation, then it will attempt to reduce uncertainty for that suborganization. We
introduce a predicate, UC, for uncertainty of a (sub)organization. For example,
UC(o, u) says that o has uncertainty u. We further introduce a predicate, RED,
for the reduction. For example, RED(o, u, tc) expresses that o attempts to reduce
u for tc. We can now formulate the assumption that organizations attempt to
reduce the uncertainty for suborganizations that are rationally evaluated:

Assumption 3 Organizations attempt to reduce uncertainty for rationally eval-
uated suborganizations.
∀x, y, z [SO(x, y) ∧ REVA(x, y) ∧ UC(y, z) → RED(x, z, y)]
(Read: if y is a suborganization of x, and x rationally evaluates y, and z is the uncer-
tainty of y, then x attempts to reduce uncertainty z for y.)

Using assumptions 2 and 3, we can now derive the following lemma for complex
organizations:
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Lemma 2 Complex organizations attempt to reduce uncertainty for their techni-
cal cores.
∀x, y, z [CO(x) ∧ TC(x, y) ∧ UC(y, z) → RED(x, z, y)]
(Read: if x is a complex organization with core technologies y, and z is the uncertainty
of y, then x attempts to reduce the uncertainty z for y.)

Proof: (Using lemma 1, and assumptions 2, and 3.) By Lem.1, the technical
core is a suborganization, and by Ass.2, it is rationally evaluated by the organi-
zation. Therefore, by Ass.3, the organization attempts to reduce uncertainty for
the technical core.

CO(o1) ∧ TC(o1, tc1) ∧ UC(tc1, u1) (by assumption)
⇒ SO(o1, tc1) (by Lem.1)
⇒ REVA(o1, tc1) (by Ass.2)
⇒ RED(o1, u1, tc1) (by Ass.3)

Lemma 2 will be an important part of the argumentation in the rest of this
chapter, because “coping with uncertainty [appears] as the essence of the admin-
istrative process” (p.159).

Def.1
Ass.1

Ass.2
Ass.3

Lem.2Lem.1

Figure 3.1: Reducing uncertainty (structure of the theory 1).

In this section, we introduced the setting for Thompson’s proposition by intro-
ducing predicates for organizations, O; suborganizations, SO; and core technolo-
gies, TC. This led to the defined notion of complex organizations, CO (Def.1). We
assumed that organizations have only one technological suborganization (Ass.1).
We derived that the technical core of a complex organization is a suborganization
(Lem.1; see Fig.3.1). We furthermore introduced predicates for uncertainty, UC;
for rational evaluation, REVA; and for reduction, RED. We assumed that the per-
formance of their core technologies is crucial for organizations (Ass.2), and that
an organization will attempt to remove as much uncertainty as possible from
suborganizations whose performance is rationally evaluated (Ass.3). We derived
that complex organizations attempt to reduce uncertainty for their technical cores
(Lem.2).

3.3.2 Sealing Off

In this section, we will now try to prove Thompson’s first proposition: “organiza-
tions seek to seal off their core technologies from environmental influences” (p.19).
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Before we can give a formal version of this proposition, we have to introduce some
more predicates. According to Thompson, organizations are subject to environ-
mental influences. These environmental influences consist of both environmental
fluctuations and constraints. Environmental fluctuations are dynamic, they re-
flect the change of market conditions (such as seasonal demand). Environmental
constraints are static restrictions on the organization (such as new legislation).
We introduce two predicates, FL and CS, for fluctuations and constraints, re-
spectively. For example, FL(tc, f, o) says that tc is exposed to a fluctuation f
from o, and CS(tc, c, o) expresses that tc is exposed to a constraint c from o. We
define environmental influences, ENVI, to be the general term used for both fluc-
tuations and constraints. For example, ENVI(tc, i, o) says that tc is exposed to
environmental influence i from o.

Definition 2 Environmental influence.
∀x, y, z [ENVI(x, y, z) ↔ FL(x, y, z) ∨ CS(x, y, z)]
(Read: x is exposed to an influence y from z if and only if x is exposed to a fluctuation
y from z or x is exposed to a constraint y from z.)

Thompson argues that “technologies and environments are major sources of
uncertainty for organizations” (p.13). To express that environments cause uncer-
tainty, we use a predicate, C, for causality. For example, C(i, u) expresses that i
causes u.11 Environmental influences cause uncertainty in the organization:

Assumption 4 Environmental influences cause uncertainty.
∀x, y, z [ENVI(x, y, z) → ∃v [UC(x, v) ∧ C(y, v)]]
(Read: if x is exposed to an environmental influence y from z, then there exists a v

such that v is the uncertainty of x, and influence y causes uncertainty v.)

Thompson’s use of the term “sealing off” (p.19) corresponds closely to the
reduction of uncertainty that is due to an environmental influence. An organiza-
tion seals a suborganization off from an environmental influence if it attempts to
reduce the uncertainty caused by this influence. We define a predicate, SEFF, in
precisely this way. For example, SEFF(o, i, tc) expresses that o seals off tc from
influence i.

Definition 3 Sealing off.
∀x, y, z [SEFF(x, y, z) ↔ SO(x, z) ∧ ∃v, w [ENVI(z, y, v) ∧ UC(z, w) ∧ C(y, w) ∧
RED(x, w, z)]]
(Read: x seals z off from y if and only if z is a suborganization of x, and there exists v
and w such that z is exposed to an influence y from v, and y causes uncertainty w of
z, and x attempts to reduce w for z.)

11Causality is a complex notion with intricate properties. In this chapter, we do not use any
formal property of causality, although we would (at least) consider causality to be transitive (if
x causes y and y causes, in turn, z then x causes z: ∀x, y, z [C(x, y) ∧ C(y, z) → C(x, z)]).
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We can now prove the following theorem:

Theorem 3 Complex organizations seal off their core technologies from environ-
mental influences.
∀x, y, z, v [CO(x) ∧ TC(x, y) ∧ ENVI(y, z, v) → SEFF(x, z, y)]
(Read: if x is a complex organization, and y is the technical core of x, and y is exposed
to an influence z from v, then x seals y off from z.)

Proof: (Using lemmas 1 and 2, definition 3, and assumption 4.) By Lem.1,
the technical core is a suborganization. By Ass.4, an environmental influence
causes uncertainty for the technical core. By Lem.2, complex organizations at-
tempt to reduce this uncertainty for their technical core. Therefore, by Def.3, the
organization is sealing its technical suborganization off from the environmental
influence.

CO(o1) ∧ TC(o1, tc1) ∧ ENVI(tc1, e1, o2) (by assumption)
⇒ SO(o1, tc1) (by Lem.1)
⇒ (∃u1) UC(tc1, u1) ∧ C(e1, u1) (by Ass.4)
⇒ RED(o1, u1, tc1) (by Lem.2)
⇒ SEFF(o1, e1, tc1) (by Def.3)

This theorem is a formal version of Thompson’s proposition 2.1: “Under norms of
rationality, organizations seek to seal off their core technologies from environmen-
tal influences” (p.19). The phrase “Under norms of rationality” is not explicitly
mentioned in the antecedent of theorem 3. These “norms of rationality” seem
to underly all propositions, and are reflected in the “rational evaluation” of as-
sumptions 2 and 3, which, by lemma 2, play a role in the argument. The phrase
“seek to . . . ” is captured by the intentional interpretation of the RED predicate:
attempt to reduce. Since sealing off is defined in terms of the reduce predicate,
it inherits the intentional interpretation.

Def.2
Def.3

Ass.4

Thm.3Lem.2Lem.1

Figure 3.2: Sealing off (structure of the theory 2).

We introduced predicates for environmental fluctuations, FL, and environ-
mental constraints, CS. This led to the defined notion of environmental influ-
ence, ENVI (Def.2). We introduced a predicate for causes, C. We assumed that
environmental influences cause uncertainty (Ass.4). We defined a predicate for
sealing off, SEFF (Def.3), and learned that complex organizations are sealing off
their core technologies from environmental influences (Thm.3; see Fig.3.2).
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3.3.3 Beyond Thompson: Atomic Organizations

Thompson does not discuss why he restricts his theory to complex organizations.
In this section, we will step away from Thompson’s book and try to answer
questions like: What would noncomplex organizations look like? Do they exist
in the real world? If so, why are they excluded from Thompson’s theory? How
do they fare in the real world?

We will simply define noncomplex organizations as organizations that are not
complex organizations. We baptize such organizations as atomic organizations
and define a predicate ATO for them: ATO(o) says that o is an atomic organiza-
tion.

Definition 4 Atomic organizations.
∀x [ATO(x) ↔ O(x) ∧ ¬CO(x)]
(Read: x is an atomic organization if and only if x is an organization and x is not a
complex organization.)

Note that we define ATO in terms of another defined predicate, CO. This is
only allowed if it does not lead to circularity. In other words, we must be able to
trace back the underlying primitive concepts. This can be done by unfolding the
definition of complex organizations (definition 1):

Lemma 4 Atomic organizations are organizations that have no suborganization
as technical core.
∀x [ATO(x) ↔ O(x) ∧ ¬∃y [SO(x, y) ∧ TC(x, y)]]
(Read: x is an atomic organization if and only if x is an organization, and there is no
y such that y is a suborganization of x and y is the technical core of x.)

Proof: (Using definitions 1 and 4.) By Def.4 atomic organizations are organi-
zations that are not complex organizations. Using Def.1, they are organizations
that are either no organizations (which would be a contradiction), or do not have
a technical suborganization.

ATO(o1) (by assumption)
⇔ O(o1) ∧ ¬CO(o1) (by Def.4)
⇔ O(o1) ∧ ¬[O(o1) ∧ ∃y [SO(o1, y) ∧ TC(o1, y)]] (by Def.1)
⇔ O(o1) ∧ [¬O(o1) ∨ ¬∃y [SO(o1, y) ∧ TC(o1, y)]]
⇔ O(o1) ∧ ¬∃y [SO(o1, y) ∧ TC(o1, y)]

Lemma 4 gives an abstract characterization of atomic organizations: atomic
organizations do not have their core technologies grouped in a special suborga-
nization—there is no clear separation between their core technologies and other
activities. We can use this characterization to try to identify organization that
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would be atomic in the sense of Def.4. There are some examples of organizations
that correspond to this abstract characterization. Examples of atomic organiza-
tions are small organizations, especially organizations such as family firms that
have only very few employees. These small organizations do not have a clear
separation between technological and other activities; for example, they are man-
aged by their owners, who are also involved in the technical operations. Although
small-sized organizations have not received much attention in the literature, the
majority of organizations has only a very limited number of employees, and small
organizations occupy a substantial part of the market (Granovetter 1984). As
Granovetter (1984, p.333) notes, “the study of organizations is often taken to
be synonymous with the study of “complex organizations”” and “much of what
has been done in some otherwise splendid work on the sociology of economic
life and complex organizations has proceeded as if the entire waterfront has been
covered, when in fact work has concentrated in one important receding pool.” To-
gether with small organizations, another example of atomic organizations is new
organizations. New enterprise startups usually do not have a fully crystallized
management structure; technical and management activities are all performed by
the entrepreneur. New organizations involve new roles, which have to be learned
(at the cost of inefficiency) (Stinchcombe 1965). Obviously, new and small orga-
nizations show considerable overlap.

Lemma 4, stating that atomic organizations do not have a technological sub-
organization, still leaves us two possibilities in discussing the technical core of
atomic organizations. The first option is to assume that the technical core of
atomic organizations does not exist at all.12 This option has as a result that
all statements that involve the technical core do not apply to atomic organiza-
tions. The second option is to argue that all organizations, including atomic ones,
have certain technologies that constitute the core of their activities. Therefore, it
makes sense to talk about the core technologies of any organization. If, as in the
case of atomic organizations, these technological activities are not grouped to-
gether in a suborganization, we treat the entire organization as its own technical
core.

Since Thompson does not discuss noncomplex organizations, we can only spec-
ulate on which option to choose. We will pursue the second option because it
allows us to further investigate characteristics of atomic organizations. We can
implement this option by assuming that if the technical core of an organization
is not a suborganization, then it is identical with the organization itself:

Assumption 5 If the technical core of an organization is not a suborganization,
then we treat the whole organization as its technical core.
∀x, y [O(x) ∧ TC(x, y) ∧ ¬SO(x, y) → x = y]
(Read: if x is an organization, and y is the technical core of x, and y is not a suborga-
nization of x, then x and y are identical.)

12Formally, ∀x [ATO(x) → ¬∃y [TC(x, y)]].
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Assumption 5 gives us indeed the result of the second option:

Lemma 5 Atomic organizations are identical with their technical core.
∀x, y [ATO(x) ∧ TC(x, y) → x = y]
(Read: if x is an atomic organization, and y is the technical core of x, then x and y are
identical.)

Proof: (Using lemma 4 and assumption 5.) By Lem.4, atomic organizations
do not have a technical core that is a suborganization, that is, it is either not a
suborganization or not a technical core (which would be a contradiction). There-
fore, the technical core of an atomic organization is not a suborganization, and by
Ass.5, it follows that the technical core is identical with the atomic organization.

ATO(o1) ∧ TC(o1, tc1) (by assumption)
⇒ O(o1) ∧ ¬∃y [SO(o1, y) ∧ TC(o1, y)] (By Lem.4)
⇒ ∀y [¬SO(o1, y) ∨ ¬TC(o1, y)]
⇒ ¬SO(o1, tc1) ∨ ¬TC(o1, tc1)
⇒ ¬SO(o1, tc1)
⇒ o1 = tc1 (By Ass.5)

Lemma 5 is the companion of lemma 1, which stated that the technical core
of a complex organization is a suborganization. Lemma 5 reiterates that atomic
organizations cannot differentiate between their core technologies and other ac-
tivities: there is no distinction between levels of technical and managerial respon-
sibilities and control.

Now that we have identified the technical core of atomic organizations, we
can try to discuss issues relating to its uncertainty. Unfortunately, assumption 4
puts hardly any restriction on uncertainties caused by the environment. Thomp-
son recognized that an organization may be subject to a number of different
uncertainties, for example, technological uncertainty and the uncertainty due to
influences (Thompson 1967, p.1). As a result, we cannot represent the uncertainty
as a function of the organization because a single organization may be exposed to
different influences that cause different uncertainties for it. However, we would
want to require something weaker, namely that a single environmental influence
will only cause a single uncertainty:

Assumption 6 A single influence causes a single uncertainty.
∀x, y, z, v, w [ENVI(x, y, z) ∧ UC(x, v) ∧ C(y, v) ∧ UC(x, w) ∧ C(y, w) → v = w]
(Read: if x is exposed to an influence y from z, and y causes uncertainty v of x, and y
also causes uncertainty w of x, then uncertainty v is equal to uncertainty w.)
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This assumption is a restriction on assumption 4, which stated that that an
influence will cause uncertainty. This restriction is consistent with Thompson’s
text. Using assumption 6 we can derive a theorem about atomic organizations:

Theorem 6 The technical core of an atomic organization faces the same envi-
ronmental uncertainty as the organization.
∀x, y, z, v, w [ATO(x)∧TC(x, y)∧ENVI(x, v, z)∧UC(x, w)∧C(v, w) → ∃u [UC(y, u)∧
C(v, u) ∧ u = w]]
(Read: if x is an atomic organization with core technologies y, and if x is exposed to
an influence v from z, and v causes uncertainty w of x, then there exist uncertainty u
of the technical core y, caused by v, and the uncertainty u is equal to the uncertainty
w.)

Proof: (Using lemma 5 and assumptions 4 and 6.) By Lem.5 atomic organiza-
tions are identical with their technical cores. Therefore, the technical core faces
the same environmental influence as the organization. By Ass.4, this causes un-
certainty of the technical core. Then by Ass.6, the uncertainty of the technical
core is the same as the uncertainty of the organization.

ATO(o1) ∧ TC(o1, tc1) ∧ ENVI(o1, e1, o2) ∧ UC(o1, u1) ∧ C(e1, u1) (by assumption)
⇒ o1 = tc1 (by Lem.5)
⇒ ENVI(tc1, e1, o2)
⇒ (∃u2) UC(tc1, u2) ∧ C(e1, u2) (by Ass.4)
⇒ u2 = u1 (by Ass.6)

Theorem 3 stated that complex organizations seal off their core technologies
from environmental influences. Theorem 6, in contrast, states that atomic or-
ganizations and their core technologies face the same uncertainty—noncomplex
organizations cannot reduce the uncertainty for their technical core.13 Theo-
rem 6 may help explain the massive failure rates of small organizations (U.S.
Small Business Administration), and of new enterprises—the liability of newness
(Freeman, Carroll, and Hannan 1983; Brüderl, Preisendörfer, and Ziegler 1992;
Hannan 1998). In the case of atomic organizations, an environmental influence
causes the same uncertainty on the organizational level as it will on the techni-
cal core. As a result, atomic organizations cannot reduce uncertainty for their
core technologies. Unlike complex organizations, they have no separate manage-
rial level that can mediate between the technical core and the environment. All
the environmental influences that atomic organizations face are faced at equal
strength by their core technical activities. As argued before (Perrow 1986), small

13Theorem 6 states that the uncertainties on the organizational level and on the technological
level are really identical. It would not be rational of an atomic organization to attempt to reduce
the uncertainties within the organization because such an attempt must fail.
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organizations are trivial organizations, but nevertheless they do occur in great
numbers.

Def.1
Def.4

Ass.5 Ass.6

Thm.3

Thm.6

Lem.2

Lem.5Lem.4

Lem.1

Figure 3.3: Atomic organizations (structure of the theory 3).

In this section, we investigated the possibility of noncomplex organizations.
We defined a predicate, ATO, for atomic or noncomplex organizations (Def.4).
Unfolding the definitions of complex (Def.1) and atomic organizations (Def.4)
characterizes noncomplex organizations as those having no technical suborgani-
zation (Lem.4; see Fig.3.3). We assumed that if the technical core of an orga-
nization is not a suborganization, then we treat the entire organization as the
technical core (Ass.5). We derived that this is the case for noncomplex organiza-
tions (Lem.5). We assumed that one environmental influence can only cause one
type of uncertainty for an organization (Ass.6), and derived that atomic organiza-
tions cannot reduce the uncertainty caused by environmental influences (Thm.6).
This indicates that Thompson’s restriction to complex organizations is not an
arbitrary one: his propositions do not hold for noncomplex organizations.

3.3.4 Buffering and Anticipating

After the intermezzo of the §3.3.3, we will continue with our formalization of
Thompson’s arguments. In this section, we try to prove a formal version of
Thompson’s second proposition: “organizations seek to buffer environmental in-
fluences” (Thompson 1967, p.20), and his fourth proposition: “organization seek
to anticipate and adapt to environmental changes” (p.21).

Theorem 3 in §3.3.2 stated that complex organizations attempt to seal off their
core technologies from environmental influences. This suggests that complex or-
ganizations have some sort of control over influences directed at their (technical)
suborganizations. We introduce a predicate, HC, for “having control.” For exam-
ple, HC(o, i) says that o has control over i. We assume that organizations have
some control over environmental influences directed at their suborganizations:

Assumption 7 Organizations have control over environmental influences on their
suborganizations.
∀x, y, z, v [O(x) ∧ SO(x, y) ∧ ENVI(y, z, v) → HC(x, z)]
(Read: if x is an organization, and y is a suborganization of x, and y is exposed to an
influence z from v, then x has control over z.)
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The idea is that organizations mediate between the environment and subor-
ganizations like the technical core (Thompson 1967, p.11). Note an organization
does not necessarily have complete control over such an environmental influence;
it just means that the organization can undertake some actions that will reduce
the influence (but which may not eliminate it completely). In the rest of this
section, we will discuss some concrete actions for reducing uncertainty.

Next, we assume that if organizations attempt to reduce something (such as
uncertainty), and they have some control over one of its causes, then they will
also attempt to reduce this cause:

Assumption 8 If an organization attempts to reduce something, and has control
over a cause of it, the organization will attempt to reduce the cause.
∀x, y, z, v [RED(x, y, z) ∧ C(v, y) ∧ HC(x, v) → RED(x, v, z)]
(Read: if x attempts to reduce y for z, and v causes y, and x has control over v, then
x attempts to reduce v for z.)

This assumption presupposes the organizational rationality that a reduction
of the cause will result in a reduction of the effect. As Thompson writes, “Instru-
mental action is rooted on the one hand in desired outcomes and on the other
hand in beliefs about cause/effect relationships” (p.14). We can now derive the
following theorem:

Theorem 7 Complex organizations attempt to reduce environmental influences
for their core technologies.
∀x, y, z, v [CO(x) ∧ TC(x, y) ∧ ENVI(y, z, v) → RED(x, z, y)]
(Read: if x is a complex organization, and y is the technical core of x, and y is exposed
to an influence z from v, then x attempts to reduce z for y.)

Proof: (Using lemmas 1 and 2, definition 1, and assumptions 4, 7, and 8.) By
Def.1, complex organizations are organizations, and by Lem.1 the technical core
is a suborganization. By Ass.4, an environmental influence causes uncertainty for
the technical core. By Lem.2, complex organizations attempt to reduce uncer-
tainty for their technical core. Thus, by Ass.7, organizations have control over the
influences on their suborganizations. Therefore, by Ass.8, organizations attempt
to reduce this environmental influence for their technical core.

CO(o1) ∧ TC(o1, tc1) ∧ ENVI(tc1, e1, o2) (by assumption)
⇒ O(o1) (by Def.1)
⇒ SO(o1, tc1) (by Lem.1)
⇒ (∃u1) UC(tc1, u1) ∧ C(e1, u1) (by Ass.4)
⇒ RED(o1, u1, tc1) (by Lem.2)
⇒ HC(o1, e1) (by Ass.7)
⇒ RED(o1, e1, tc1) (by Ass.8)
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The impact of this theorem becomes more clear in its specific predictions for
the two types of environmental influences: fluctuations and constraints. The
reduction of environmental fluctuations by an organization is called “buffering”
in Thompson: “buffering absorbs environmental fluctuations” (p.21). We define
a predicate, BUF, for buffering. For example, BUF(o, f, tc) says that o is buffering
fluctuation f for tc.

Definition 5 Buffering.
∀x, y, z [BUF(x, y, z) ↔ SO(x, z) ∧ FL(z, y, x) ∧ RED(x, y, z)]
(Read: x buffers y for z if and only if z is a suborganization of x, and z is exposed to
a fluctuation y from x, and x attempts to reduce y for z.)

Typical examples of buffering are the stockpiling of materials and supplies, and
the maintaining of warehouse inventories (p.20). We now have the following
corollary:

Corollary 8 (of theorem 7) Complex organizations buffer environmental fluc-
tuations for their core technologies.
∀x, y, z [CO(x) ∧ TC(x, y) ∧ FL(y, z, x) → BUF(x, z, y)]
(Read: if x is a complex organization, and y is the technical core of x, and y is exposed
to a fluctuation z from x, then x buffers z for y.)

Proof: Using theorem 7, lemma 1, and definitions 2, and 5.

CO(o1) ∧ TC(o1, tc1) ∧ FL(tc1, e1, o1) (by assumption)
⇒ SO(o1, tc1) (by Lem.1)
⇒ ENVI(tc1, e1, o1) (by Def.2)
⇒ RED(o1, e1, tc1) (by Thm.7)
⇒ BUF(o1, e1, tc1) (by Def.5)

This corollary is a formal version of Thompson’s proposition 2.2: “Under
norms of rationality, organizations seek to buffer environmental influences by
surrounding their technical cores with input and output components” (p.20).

The theorem also makes a specific prediction in case of environmental con-
straints. The reduction of environmental constraints by an organization is called
“anticipating and adapting” or “forecasting” in Thompson: “To the extent that
environmental fluctuations can be anticipated, however, they can be treated as
constraints on the technical core” (p.22). We define a predicate, ANA, for antic-
ipating and adapting. For example, ANA(o, c, tc) says that o is anticipating and
adapting to constraint c for tc.

Definition 6 Anticipating and adapting.
∀x, y, z [ANA(x, y, z) ↔ SO(x, z) ∧ CS(z, y, x) ∧ RED(x, y, z)]
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(Read: x anticipates and adapts to y for z if and only if z is a suborganization of x,
and z is exposed to a constraint y from x, and x attempts to reduce y for z.)

Anticipation and adaptation typically involves the reallocation of resources ac-
cording to the forecasted market demand or supply constraints. This gives rise
to another corollary:

Corollary 9 (of theorem 7) Complex organizations anticipate and adapt to an
environmental constraint for their core technologies.
∀x, y, z [CO(x) ∧ TC(x, y) ∧ CS(y, z, x) → ANA(x, z, y)]
(Read: if x is a complex organization, and y is the technical core of x, and y is exposed
to a constraint z from x, then x anticipates and adapts to z for y.)

Proof: Using theorem 7, lemma 1, and definitions 2, and 6.

CO(o1) ∧ TC(o1, tc1) ∧ CS(tc1, e1, o1) (by assumption)
⇒ SO(o1, tc1) (by Lem.1)
⇒ ENVI(tc1, e1, o1) (by Def.2)
⇒ RED(o1, e1, tc1) (by Thm.7)
⇒ ANA(o1, e1, tc1) (by Def.6)

This corollary is a formal version of Thompson’s proposition 2.4: “Under
norms of rationality, organizations seek to anticipate and adapt to environmental
changes which cannot be buffered or leveled” (p.21).
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Figure 3.4: Buffering and anticipating (structure of the theory 4).

We have introduced a predicate for “having control,” HC, and assumed that
organizations have (some) control over environmental influences on their subor-
ganizations (Ass.7). We further assumed that if organizations have control over
the cause of something they want to reduce, they will attempt to reduce this
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cause (Ass.8), and we derived that complex organizations attempt to reduce en-
vironmental influences for their technical cores (Thm.7; see Fig.3.4). We defined
buffering as the reduction of fluctuations, BUF (Def.5), defined anticipating and
adapting as the reduction of constraints, ANA (Def.6), and derived that complex
organizations will buffer environmental fluctuations (Cor.8) and anticipate and
adapt to environmental constraints (Cor.9).

3.3.5 Smoothing or Leveling

In this section, we attempt to derive a formal version of Thompson’s third propo-
sition: “organizations seek to smooth out input and output transactions” (p.21).
According to Thompson, organizations also attempt to reduce fluctuations in the
environment (p.21). Apparently, organization have some control over specific el-
ements of their environment. We define a predicate, CEE, for controlled elements
in the environment. For example, CEE(o1, o2) says that o2 is an element in the
environment of o1 over which o1 has some control:14

Definition 7 Controlled environmental elements.
∀x, y [CEE(x, y) ↔ O(x) ∧ ∀z [ENVI(x, z, y) → HC(x, z)]]
(Read: y is an element in x’s controlled environment if and only if x is an organization,
and for all z such that x is exposed to an influence z from y it is the case that x has
control over z.)

This definition, again, does not imply that organizations have unilateral control
over other elements in their environment, the amount of control may be limited.
Using this definition, we can now derive:

Theorem 10 Complex organizations attempt to reduce environmental influences
in their controlled environment for their technical core.
∀x, y, z, v, w [CO(x)∧TC(x, y)∧ENVI(y, z, x)∧CEE(x, v)∧ENVI(x, w, v)∧C(w, z) →
RED(x, w, y)]
(Read: if x is a complex organization, and y is the technical core of x, and y is exposed
to an influence z from x, and v is in the controlled environment of x, and x is exposed
to an influence w from v, and w causes z, then x attempts to reduce w for y.)

Proof: (Using theorem 7, definition 7, and assumption 8.) By Thm.7, com-
plex organizations reduce environmental influences for their technical core. If
this environmental influence is caused by another environmental influence on an
element of the controlled environment of the organization, then, by Def.7, the
organization has some control over the second influence. Therefore, by Ass.8 the

14We wish to thank the reviewer who pointed out a deficiency in an earlier version of this
definition.
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organization will attempt to reduce the second influence for the organization.

CO(o1) ∧ TC(o1, tc1) ∧ ENVI(tc1, e1, o1) ∧ CEE(o1, o2)
∧ENVI(o1, e2, o2) ∧ C(e2, e1) (by assumption)

⇒ RED(o1, e1, tc1) (by Thm.7)
⇒ HC(o1, e2) (by Def.7)
⇒ RED(o1, e2, tc1) (by Ass.8)

We will investigate the impact of this theorem by considering the specific
predictions it makes for environmental fluctuations. Thompson uses the term
“smoothing” for the reduction of fluctuations in the environment: “smoothing
or leveling involves attempts to reduce fluctuations in the environment” (p.21).
We define a predicate, SM, for smoothing. For example, SM(o, f, tc) says that o
smoothes f for tc:

Definition 8 Smoothing.
∀x, y, z [SM(x, y, z) ↔ SO(x, z) ∧ ∃v [FL(x, y, v) ∧ RED(x, y, z)]]
(Read: x smoothes y for z if and only if z is a suborganization of x, and there exists a
v such that x is exposed to a fluctuation y from v, and x attempts to reduce y for z.)

A typical example of smoothing is price mechanisms: by charging premiums dur-
ing peak periods and inducements during slow periods (p.21). Note the difference
between buffering and smoothing: buffering concerns the reduction of fluctuations
within an organization, whereas smoothing concerns the reduction of fluctuation
in the environment. We now have the following corollary:

Corollary 11 (of theorem 10) Complex organizations smooth environmental
fluctuations in their controlled environment for their technical core.
∀x, y, z, v, w [CO(x)∧TC(x, y)∧ FL(y, z, x)∧CEE(x, v)∧ FL(x, w, v)∧C(w, z) →
SM(x, w, y)]
(Read: if x is a complex organization, and y is the technical core of x, and y is exposed
to a fluctuation z from x, and v is in the controlled environment of x, and x is exposed
to a fluctuation w from v, and w causes z, then x smoothes w for y.)

Proof: Using theorem 10, lemma 1 and definitions 2 and 8.

CO(o1) ∧ TC(o1, tc1) ∧ FL(tc1, e1, o1) ∧ CEE(o1, o2)
∧FL(o1, e2, o2) ∧ C(e2, e1) (by assumption)

⇒ ENVI(tc1, e1, o1) ∧ ENVI(o1, e2, o2) (by Def.2)
⇒ RED(o1, e2, tc1) (by Thm.10)
⇒ SO(o1, tc1) (by Lem.1)
⇒ SM(o1, e2, tc1) (by Def.8)
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This corollary is a formal version of proposition 2.3 in Thompson: “Under
norms of rationality, organizations seek to smooth out input and output transac-
tions” (p.21).
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Figure 3.5: Smoothing (structure of the theory 5).

In the above section, we have defined predicates for “controlled environmen-
tal element,” CEE (Def.7), and for smoothing, SM (Def.8). We derived that
complex organizations attempt to reduce environmental influences in their con-
trolled environment (Thm.10; see Fig.3.5). In particular, we derived that complex
organizations attempt to smooth out fluctuations in their controlled environment
(Cor.11).

3.3.6 Beyond Thompson: Negotiating

After proving a corollary on the reduction of fluctuations in the environment
(Cor.11), we come across an interesting question: What about the reduction of
constraints in the environment? Thompson discusses propositions for both the
reduction of fluctuations and the reduction of constraints in the organization but
only discusses one proposition for the reduction of fluctuations in the environ-
ment (see Table 3.2). Can complex organizations, analogous to the reduction of
fluctuations, also reduce constraints in the environment? The general theorem
about the reduction of influences in the environment, theorem 10, suggests that
this is the case. Since there is no corresponding proposition in Thompson, we will
define a new concept that treats the reduction of constraints in the environment.
This term is related to the anticipation and adaptation of definition 6. The dif-
ference is that in case of anticipating and adapting the reduction of constraints
takes place within the organization, whereas here the reduction of constraints
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In the Organization In the Environment
Fluctuations . . Buffering Smoothing

(Cor.8) (Cor.11)
Constraints . . . Anticipating and adapting . . .

(Cor.9)

Table 3.2: Reduction of Constraints in the Environment?

takes place in the environment. For want of a better term, we call the reduction
of constraints in the environment “negotiating” and define a predicate, NEG, for
it. For example, NEG(o, c, tc) says that o negotiates c for tc:

Definition 9 Negotiating.
∀x, y, z [NEG(x, y, z) ↔ SO(x, z) ∧ ∃v [CS(x, y, v) ∧ RED(x, y, z)]]
(Read: x negotiates y for z if and only if z is a suborganization of x, and there exists
a v such that x is exposed to a constraint y from v, and x attempts to reduce y for z.)

The definition of negotiating does not restrict the domain of the theory, it only
defines NEG as shorthand for the reduction of constraints in the environment,
allowing us to formulate statements more concisely.

The corollaries about buffering, smoothing, and anticipating and adapting
are claims of Thompson (propositions 2.2, 2.3, and 2.4 respectively). A corollary
about negotiating is not mentioned in Thompson but would complete the four
logical possibilities to reduce fluctuations and constraints within organizations
and within the environment (see Table 3.2). Using the same set of assumptions
used to derive versions of the other propositions, we can derive the following
corollary:

Corollary 12 (of theorem 10) Complex organizations negotiate environmen-
tal constraints in their controlled environment for their technical core.
∀x, y, z, v, w [CO(x)∧TC(x, y)∧CS(y, z, x)∧CEE(x, v)∧CS(x, w, v)∧C(w, z) →
NEG(x, w, y)]
(Read: if x is a complex organization, and y is the technical core of x, and y is exposed
to a constraint z from x, and v is in the controlled environment of x, and x is exposed
to a constraint w from v, and w causes z, then x negotiates w for y.)

Proof: Using theorem 10, lemma 1 and definitions 2 and 9.

CO(o1) ∧ TC(o1, tc1) ∧ CS(tc1, e1, o1) ∧ CEE(o1, o2)
∧CS(o1, e2, o2) ∧ C(e2, e1) (by assumption)

⇒ ENVI(tc1, e1, o1) ∧ ENVI(o1, e2, o2) (by Def.2)
⇒ RED(o1, e2, tc1) (by Thm.10)
⇒ SO(o1, tc1) (by Lem.1)
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⇒ NEG(o1, e2, tc1) (by Def.9)

Although there is no corresponding proposition in Thompson (1967), this
corollary follows from exactly the same assumptions that we used to derive the
other theorems. Negotiation is a hitherto unknown implication of the theory: the
theory predicts that organizations negotiate constraints in their environment.

The discovery of a new prediction of the theory gives us a new possibility
for the empirical testing of the theory. If the empirical evidence supports the
prediction of the theory, our confidence in the theory is strengthened. If, on
the other hand, the prediction is not conform to the empirical evidence, we have
falsified the theory. That is, we have at least falsified our formal reconstruction of
it. We will discuss the new prediction in the light of some recent findings reported
in the literature.

Can we be more specific about what “negotiating” in the sense of corollary 12
means? Negotiating is defined as attempts to reduce constraints in the environ-
ment. As a result, the reduction of constraints in the environment has an effect for
all organizations that are subject to this constraint. All these organizations share
the benefits of the reduction and therefore have a collective interest in reducing
the constraint in the environment. For the prototypical example of a constraint,
new legislation, this would mean that organizations will attempt to reduce the
effects of legislation. We actually find support for such a claim in recent empir-
ical findings on legalization (Edelman 1992; Sutton, Dobbin, Meyer, and Scott
1994; Sutton and Dobbin 1996). These studies investigate the introduction of
equal employment opportunity and affirmative action (EEO/AA) laws. Their
main finding is that organizations can collectively mediate the impact of these
laws. “Such laws set in motion a process of definition during which organizations
test and collectively construct the form and boundaries of compliance in a way
that meets legal demands yet preserves managerial interests” (Edelman 1992,
p.1532). This presents a clear case in which organizations successfully reduce
environmental uncertainty by what we termed negotiating. Although negotiating
is an implicit consequence of Thompson, it is not an unknown topic in organiza-
tion theory. Finding this new prediction increases our confidence in Thompson’s
theory and in our formal interpretation of it.

Note that negotiating is defined as the action of individual organizations.
However, consider what happens if more than one organization is facing the same
environmental constraint. In that case, corollary 12 predicts that all these orga-
nizations will attempt to reduce this constraint in the environment.15 The NEG

15For example, we can derive for the case of two organizations subject to the same constraint:
∀x1, x2, y1, y2, z1, z2, v, w [CO(x1) ∧ TC(x1, y1) ∧ CS(y1, z1, x1) ∧ CEE(x1, v) ∧ CS(x1, w, v) ∧
C(w, z1) ∧ CO(x2) ∧ TC(x2, y2) ∧ CS(y2, z2, x2) ∧ CEE(x2, v) ∧ CS(x2, w, v) ∧ C(w, z2) →
NEG(x1, w, y1) ∧ NEG(x2, w, y2)]
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predicate captures the rationality of individual organizations to engage in a (col-
lective) attempt to reduce a constraint in the environment. Of course, whether
such an attempt is successful may very well depend on the proportion of organi-
zations participating in these attempts.
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Figure 3.6: Negotiating (structure of the theory 6).

In this section, we defined NEG, a predicate for negotiating (Def.9). Negotiat-
ing is not mentioned in Thompson but can be defined in analogy with smoothing
(Def.8). A corollary on negotiation (Cor.12; see Fig.3.6) can be derived from the
same set of assumptions used for deriving the other theorems. This concludes our
formal theory of Organizations in Action. We derived formal versions of four of
the five propositions in chapter 2 from general axioms of organization theory.

3.4 Discussion and Conclusions

The main benefit of formal theories is that they provide clarity, both about the
theory’s propositions and about its argumentation structure. We have disam-
biguated the theory’s natural language formulation by coding it in a formal lan-
guage. The formal theory contains explicit definitions of complex organizations,
sealing off, buffering, anticipating and adapting, and smoothing. Apart from giv-
ing a formal and precise formulation of the propositions, we also managed to trace
back the argumentation for these propositions by finding reasonable and sufficient

by two applications of corollary 12, and so on.
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underlying assumptions. The formal theory is consistent.16 All lemma’s, theo-
rems, and corollaries in §3.3 are sound consequences of the premises. The proofs
give sound explanations for the claims and show that the claims are unavoidable
consequences of the premises.

In the formal theory of Organizations in Action, we used the predicates listed
in Table 3.3. The theory is parsimonious because it uses only ten primitive predi-

Predicate Meaning
Primitive:
O(o) . . . . . . . . . . . . . . . . . o is an organization
SO(o, so) . . . . . . . . . . . . . so is a suborganization of o
TC(o, tc) . . . . . . . . . . . . . tc is the technical core of o
REVA(o, tc) . . . . . . . . . . . o rationally evaluates tc
UC(o, u) . . . . . . . . . . . . . . o has uncertainty u
RED(o, i, tc) . . . . . . . . . . o attempts to reduce i for tc
FL(tc, f, o) . . . . . . . . . . . . tc is exposed to a fluctuation f from o
CS(tc, c, o) . . . . . . . . . . . . tc is exposed to a constraint c from o
C(i, u) . . . . . . . . . . . . . . . . i causes u
HC(o, i) . . . . . . . . . . . . . . o has control over i

Defined:
CO(o) . . . . . . . . . . . . . . . . o is a complex organization
ENVI(tc, i, o) . . . . . . . . . tc is exposed to an influence i from o
SEFF(o, i, tc) . . . . . . . . . o seals off tc from i
ATO(o) . . . . . . . . . . . . . . . o is an atomic organization
BUF(o, f, tc) . . . . . . . . . . o buffers f for tc
ANA(o, c, tc) . . . . . . . . . . o anticipates and adapts to c for tc
CEE(o1, o2) . . . . . . . . . . . o2 is in o1’s controlled environment
SM(o, f, tc) . . . . . . . . . . . o smoothes f for tc
NEG(o, c, tc) . . . . . . . . . . o negotiates c for tc

Table 3.3: Notation Used in the Formal Theory.

cates or concepts. In a formal theory, there is a clear distinction between primitive
concepts and concepts that are defined in terms of the primitive concepts. A de-
fined concept can be eliminated from the theory by replacing the concept with
the expression it stands for. Note that we may only use defined concepts in the
definition of other concepts if this does not lead to circularity.17 The nine defined

16A formal theory is consistent if it has a model. There are computer programs currently
available that generate models of a formal theory. Formally, such a model is an interpretation
function that assigns objects of the domain to the constants, functions, and predicates of the
theory. We used Mace (Models And Counter-Examples; McCune 1994a) to generate such a
model (and thereby proved the consistency of the theory). Technical details are available upon
request from the authors.

17It is impossible to define all the concepts of a theory: if all concepts were defined in terms
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predicates do not affect the theory’s parsimony because they can be substituted
for by their definiens (and the same theorems would still be derivable). The ten
primitive predicates are general notions of organization theory (see Table 3.3).

The assumptions characterize the application domain of the theory: the the-
ory applies to all domains that satisfy the assumptions.18 Our reconstruction
revealed that Thompson’s argumentation is largely based on fairly basic assump-
tions of organization theory. We used only eight assumptions and two of them
(Ass.5 and 6) are only used for our discussion of noncomplex organizations. The
underlying assumptions are general assumptions about organizations. As a re-
sult, the formal theory of Organizations in Action is a general theory, and the
axiomatic structure of the theory facilitates further extension.

The argumentation structure of the theory was shown in Figure 3.6 in §3.3.6.
The theory consists of two parts: a part about noncomplex organizations (lem-
mas 4 and 5, and theorem 6) and a part about complex organizations (roughly
comparable to Thompson’s propositions). Both parts are related by definition 4,
which defines the notion of atomic organizations as the complement of complex
organizations. There are four possible actions that organizations can perform in
order to seal off their technical cores from environmental influences (see Table 3.2
in §3.3.6). Furthermore, we showed that buffering (corollary 8) and anticipat-
ing and adapting (corollary 9) are corollaries of a more general theorem about
the reduction of environmental influences in the organization (theorem 7). Simi-
larly, smoothing (corollary 11) and negotiating (corollary 12) are corollaries of a
more general theorem about the reduction of influences in the environment (theo-
rem 10). As a result, the (formal) theory of Organizations in Action is a coherent
theory.

When comparing the theorems of our formal theory with the propositions in
the original text, there are some notable differences. We did provide formal ver-
sions of Thompson’s propositions 2.1, 2.2, 2.3, and 2.4. However, we did not give
a formal version of proposition 2.5: “When buffering, leveling, and forecasting do
not protect their technical cores from environmental fluctuations, organizations
under norms of rationality resort to rationing” (Thompson 1967, p.23). Thomp-
son’s propositions 2.1 through 2.4 concern only environmental uncertainty—they
all treat the reduction of environmental influences. Proposition 2.5 about ra-
tioning, in contrast, treats the reduction of the effects of environmental influ-
ences. In chapter 2 of Organizations in Action, Thompson only tells when orga-
nizations resort to rationing: namely, when buffering, leveling (smoothing), and
forecasting (anticipating and adapting) do not protect the technical core. How-
ever, he does not explain why organizations resort to rationing. This explanation
requires more detailed knowledge about the technological dependencies and the

of the other concepts, then some of the definitions have to be circular.
18The definitions are only important for determining the meaning of the defined predicates

used in the assumptions (in our case only definition 2, the definition of environmental influences).
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uncertainty caused by these dependencies. That is, explaining why organizations
resort to rationing requires material properly contained in the other chapters of
Organizations in Action (notably chapter 5 on the interdependence of compo-
nents). Without including the further chapters, we are unable to explain why
organizations resort to rationing, since: “Rationing is an unhappy solution, for
its use signifies that the technology is not operating at its maximum” (p.23).

The formal theory identifies a number of unknown consequences of Thomp-
son’s theory. Thompson (1967) does not discuss noncomplex or atomic organiza-
tions explicitly, although he formulates his propositions for complex organizations.
Atomic organizations form an interesting special case because they are more vul-
nerable to environmental influences. We proved that atomic organizations face
the same uncertainty as their technical cores (theorem 6). Consequently, atomic
organizations cannot comply with one of the main principles of “organizational
rationality” as advocated by Thompson. The explicit treatment of atomic orga-
nizations is important because it gives an explanation for the fact that organi-
zations embed their core technologies in managerial activities. These managerial
activities negotiate between the technical suborganization and those who use
its products. Without them, the organization would be an atomic organization
and therefore open and unprotected to any environmental influence. Having a
managerial level allows complex organizations to seal off their core technologies
from environmental influences (theorem 3 and proposition 2.1 in Thompson). We
also proved that organizations can attempt to reduce environmental uncertainty
by reducing constraints in the environment, which we termed negotiating (corol-
lary 12). Negotiating is not mentioned in Thompson but completes the four logical
possibilities to reduce fluctuations and constraints within the organization and
in the environment. Negotiating is a hitherto unknown implication of Thomp-
son’s theory. In other words, the theory predicts that organizations attempt
reduce constraints in their environment. This negotiating is not an unknown
topic in organization theory: recent empirical findings on legalization (Edelman
1992; Sutton et al. 1994; Sutton and Dobbin 1996) describe how organizations
can (collectively) negotiate the impact of constraints in the environment.

3.4.1 Related and further research

We started this chapter by arguing that, although Thompson’s theory remains
influential, it seems to have lost much of its cachet. Recent literature focuses on
alternative theories for explaining the complex relation between organizations and
their environment, such as new institutionalism (Powell and DiMaggio 1991) and
organizational ecology (Hannan and Freeman 1989). The feeling that Thompson’s
theory still has much to offer to contemporary scholars inspired us to conduct the
formal analysis reported in this chapter.

The formal theory of Organizations in Action presented in this chapter is an
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axiomatic theory in which the underlying assumptions are made explicit.19 Dis-
cussing these underlying assumptions allows us to make comparisons with other
theories in organization theory. We used eight assumptions. Assumption 1 postu-
lates the uniqueness of the technical core. This captures some of the background
knowledge that had to be made explicit in order to derive the theorems. The as-
sumption is a technicality that makes the notion of technical core more clear. The
first major premises, assumptions 2 and 3, capture some the rationality principles
underlying Thompson’s theory. Assumption 2 states that the performance of the
technical core is rationally evaluated, and assumption 3 states that organizations
attempt to reduce uncertainty for rationally evaluated suborganizations. It is the
engine of the theory: all the explanations of the formal theory depend on it. As
Thompson (1967, p.159) states: “Uncertainty appears as the fundamental prob-
lem for complex organizations, and coping with uncertainty, as the essence of the
administrative process.” These two assumptions capture the core of Thompson’s
argument and seem typical for rational adaptation theories, such as contingency
theory (Lawrence and Lorsch 1967) and resource-dependence theory (Pfeffer and
Salancik 1978). Of course, institutional and ecological theorists will not read-
ily agree with them. The (new) institutional theory is explicitly based “on the
rejection of rational-actor models” (DiMaggio and Powell 1991, p.8) and orga-
nizational ecology is constructed as “an alternative to the dominant adaptation
perspective” (Hannan and Freeman 1977, p.929).

One of the key assumptions of an open-systems perspective on organizations
is captured by assumption 4, which states that environmental influences cause
uncertainty. Although much changed since Thompson’s book appeared in the
sixties, this assumption seems as pertinent as ever. And even though one could
argue that, on the one hand, environmental influences seem to generate less un-
certainty due to current information technology and flexible work practices, one
might just as well argue that, on the other hand, this is compensated for by the
increased volatility of the environment. The next two assumptions, assumptions 5
and 6, are only used for the discussion of non-complex or atomic organizations.

19Masuch and Huang (1996) give a different formalization of Thompson in a multi-agent,
action logic. The objectives of their formalization are different from ours: our objective was
to recover the underlying axioms on which Thompson’s argumentation is based, whereas their
primary objective is to experiment with a new formal logic that is specially designed for rep-
resenting actions. They argue: “actions presuppose attitudes and engender change, and both
are notoriously hard to express in the extentional context of standard logics, e.g., First-Order
Logic” (Masuch and Huang 1996, p.72). This may be the case, in the sense that modeling of
actual actions happening in an organizational domain may be overly elaborate or complicated
in first-order logic. However, modeling a theory about actions can very well be expressed in
first-order logic, as we showed in this chapter. This corresponds with the findings of Masuch
and Huang (1996) since, as it turned out, they did not need to use either the multi-agent or the
action features of their logic. Due to the different objectives, the formal theory of Organizations
in Action presented in this chapter makes the underlying argumentation structure of Thomp-
son explicit, whereas Masuch and Huang use a series of abstract goal definitions (characterizing
particular rational agents) to explain the propositions.
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Assumption 5 postulates that we treat the whole organization as its technical
core if it has no suborganizations. This assumption is not based on Thompson’s
text but expresses a convention that allowed us to discuss noncomplex or atomic
organizations. Assumption 6 is a technicality that states that single influence
causes a single uncertainty (a minor restriction on assumption 4). This assump-
tion makes explicit the background knowledge that allows for the discussion of
atomic organizations.

The next assumption, assumption 7, states that organizations have (some)
control over influences directed at their suborganizations. This is one of the core
assumptions of rational adaptation theories but will certainly be challenged by
institutional and especially ecological theorists. However, these different views
may be less orthogonal than they appear to be at first glance. Assumption 7
by no means implies that organizations can control their environments. First,
the amount of control that organizations have may be very limited. Second,
even if organizations have control, in principle, over influences, their capability
to effectively use this control may depend on their capability to predict such
influences. Third, even if an organization can foresee an influence, it may lack the
ability to react decisively, due to complex internal decision procedures, rendering
their control useless.

Finally, assumption 8 states another rationality principle underlying the the-
ory: if an organization attempts to reduce something, and has some control over
the cause of it, the organization will attempt to reduce the cause. As Thompson
(1967, p.14) writes “Instrumental action is rooted on the one hand in desired out-
comes and on the other hand in beliefs about cause/effect relationships.” This
assumption is an important part of the explanation for theorems 7 and 10 and
the corollaries about buffering, smoothing, and anticipating and adapting (as
well as negotiating). Assumption 8 is a general principle of rationality that seems
generally acceptable. Of course, ecologists will de-emphasize the organization’s
capability to entertain beliefs about cause/effect relationships or, even more so,
question the capacity to have control over causes. However, institutionalists and
ecologists would agree that in the (according to them, improbable) event that the
antecedent is satisfied, the consequent should hold as well.

The formal reconstruction revealed that Thompson’s theory can be related to
several alternative theories such as organizational ecology (Hannan and Freeman
1989) and new institutionalism (Powell and DiMaggio 1991). Although organi-
zational ecology was originally presented as an alternative to rational adaptation
theory, their position turns out to be more qualified. Organizational ecologists
carefully distinguish between the individual intentions of organizations and the
organizational outcomes. The part of Organizations in Action we analyzed in
this chapter is treating organizational intentions (or desired outcomes in Thomp-
son’s parlance). Organizational ecologists do not necessarily reject Thompson’s
assumptions about the rational intentions of individual organizations but would
argue that the relation between these intentions and organizational outcomes is
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weak—resulting in organizations being relatively inert and unable to change their
structure to better match the environment (Hannan and Freeman 1984). Also
Thompson does not believe that intentions and organizational outcomes are in
perfect relation, for example, when he argues that “the basic threat to orga-
nizational success lies in interdependence with an uncooperative environment”
(Thompson 1967, p.160). And ecologists, on the other hand, are “acknowledging
that organizational changes of some kinds occur frequently and that organizations
sometimes even manage to make radical changes in strategies and structures”
(Hannan and Freeman 1984, p.149). The views of organizational ecologists and
Thompson are not in contradiction, as can be evaluated by comparing this chapter
with the formalization of organizational ecology’s inertia theory (Péli et al. 1994).
Although not in contradiction, there is a noticeable difference in the degree in
which organizations are believed to be able to successfully realize their intentions
in organizational outcomes. Several authors have made proposals for reconcil-
ing adaptation and evolutionary selection perspectives (Tushman and Romanelli
1985; Levinthal 1991; Amburgey, Kelly, and Barnett 1993).

Institutionalists have been more radical in their rejection of the rational adap-
tation perspective and explicitly focus on “properties of supra-individual units of
analysis that cannot be reduced to aggregations or direct consequences of individ-
uals’ attributes or motives” (DiMaggio and Powell 1991, p.8). Rather surprisingly,
the formal reconstruction revealed that Thompson’s theory can be directly related
to new institutionalism. We proved corollary 12, stating that organizations at-
tempt to reduce constraints in the environment, which corresponds to findings
reported in institutional theory (Edelman 1992; Sutton et al. 1994; Sutton and
Dobbin 1996). The formal theory suggests that adaptation theories and insti-
tutional theories are not mutually inconsistent. Moreover, adaptation theories
can offer explanations for phenomena that are usually conceived as requiring in-
stitutional argumentation. This affirms that adaptation theories may have been
discarded too soon: they can even offer explanations beyond the domains with
which they are traditionally associated.

Deriving the corollary on negotiating in the environment strengthens the con-
nection of Organizations in Action with related adaptation theories such as the
resource-dependence theory. Pfeffer and Salancik (1978, pp.154–157) analyze in-
terorganizational behaviors from the perspective of uncertainty reduction. The
fact that traditional adaptation theories and neoinstitutional theories can offer
alternative explanations raises some interesting research questions on the limits of
both approaches to organization theory. For example, Sutton and Dobbin (1996,
p.794) observe two types of responses to legal uncertainty, which “sustain the
neoinstitutional argument, but offer new support for efficiency and labor-control
hypothesis.” There seem to be no a priori reasons to reject adaptation-based
explanations (nor to reject institutional explanations). Kraatz and Zajac (1996,
p.812) explored the limits of neoinstitutional theory, and their “findings reveal
surprisingly little support for neoinstitutional predictions.” This leads them to
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conclude that “current research on organization-environment relations may un-
derestimate the power of traditional adaptation-based explanations in organiza-
tional sociology” (p.812). Further research is needed to elucidate the relation
between (rational) adaptation theories and (neo)institutional theories and to in-
vestigate how adaptation theories might be embedded in institutional theory and
vice versa. The formalization of one dominant adaptation theory is only a small
step toward clarifying the relation between adaptation theories and institutional
theories.

One of our future research directions is to extend the material by incorporating
further chapters of Thompson. Our main focus has been on the propositions in
chapter 2. This chapter provides the crucial link between organizations that strive
to use the rationality of closed-systems strategies in an open-systems environment
by attempting to seal off their core technology from influences of the environment.
Thompson (1967, p.1) argues that the two basic sources for uncertainty for organi-
zations are technologies and environments. The part of Thompson we formalized
in this chapter concerns uncertainty that is strictly caused by the environment.
We intend to incorporate also those uncertainties that are caused by technologies
or by a combination of technologies and environments. This would then allow for
explaining why organizations have to resort to unhappy solutions like rationing
(the missing proposition 2.5). The axiomatic structure of the theory facilitates
such further extension.

Building a deductive theory of Organizations in Action explicated the un-
derlying assumptions of the framework that Thompson proposes. Making the
underlying assumptions explicit implies that they too can become the subject of
discussion and criticism. Although we made particular efforts to motivate these
assumptions by the text itself, we do not claim that we have always chosen the
single best solution. However, by being explicit about our assumptions, any de-
bate about the theory and its assumptions can be unambiguously pointed down.
This allows for a constructive mode of theory building in which alternatives can
be generated, evaluated on their merits, and well-argued choices can be made.



Chapter 4

Criteria for Formal Theory Building

This chapter provides practical operationalizations of criteria for evaluating scien-
tific theories, such as the consistency and falsifiability of theories and the sound-
ness of inferences, that take into account definitions. The precise formulation of
these criteria is tailored to the use of automated theorem provers and automated
model generators—generic tools from the field of automated reasoning. The use
of these criteria is illustrated by applying them to a first-order logic representation
of a classic organization theory, Thompson’s Organizations in Action.

4.1 Introduction

Philosophy of science’s classical conception of scientific theories is based on the
axiomatization of theories in (first-order) logic. In such an axiomatization, the
theory’s predictions can be derived as theorems by the inference rules of the
logic. In practice, only very few theories from the empirical sciences have been
formalized in first-order logic. One of the reasons is that the calculations involved
in formalizing scientific theories quickly defy manual processing. The availability
of automated reasoning tools allows us to transcend these limitations. In the
social sciences, this has led to renewed interest in the axiomatization of scientific
theories (Péli et al. 1994; Péli and Masuch 1997; Péli 1997; Bruggeman 1997;
Hannan 1998; Kamps and Pólos 1999). These authors present first-order logic
versions of heretofore non-formal scientific theories.

The social sciences are renowned for the richness of their vocabulary (one of the
most noticeable differences with theories in other sciences). Social science theories
are usually stated using many related concepts that have subtle differences in
meaning. As a result, a formal rendition of a social science theory will use a large
vocabulary. We recently started to experiment with the use of definitions as a
means to combine a rich vocabulary with a small number of primitive terms.

Now definitions are unlike theorems and unlike axioms. Unlike the-
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orems, definitions are not things we prove. We just declare them by
fiat. But unlike axioms, we do not expect definitions to add substan-
tive information. A definition is expected to add to our convenience,
not to our knowledge. (Enderton 1972, p.154)

If dependencies between different concepts are made explicit, we may be able to
define some concepts in terms of other concepts, or in terms of a smaller number
of primitive concepts. If the theory contains definitions, the defined concepts can
be eliminated from the theory by expansion of the definitions. Eliminating the
defined concepts does not affect the theory, in the sense that the models and
theorems of the theory remain the same.

This chapter provides practical operationalizations of criteria for evaluating
scientific theories, such as the consistency and falsifiability of theories and the
soundness of inferences. In earlier discussion of the criteria for evaluating theories,
we did not distinguish between different types of premises (Kamps 1998a). Here,
we want to consider cases in which some of the theory’s premises are definitions.1

In this chapter, we will provide practical operationalizations of these criteria that
take definitions into account, and illustrate their use on a formal fragment of
organization theory.

4.2 Logical formalization

Most social science theories are stated in ordinary language (except, of course,
for mathematical theories in economics). The main obstacle for the formalization
of such a discursive theory is their rational reconstruction: interpreting the text,
distinguishing important claims and argumentation from other parts of the text,
and reconstructing the argumentation. This reconstruction is seldom a straight-
forward process, although there are some useful guidelines (Fisher 1988). When
the theoretical statements are singled-out, they can be formulated in first-order
logic. The main benefit of the formalization of theories in logic is that it provides
clarity by providing an unambiguous exposition of the theory (Suppes 1968).

1Following (Enderton 1972), predicate definitions are formulas of the form:

∀x1, . . . , xn [P(x1, . . . , xn) ↔ ϕ(x1, . . . , xn)]

where P is a (new) n-ary relation symbol, and ϕ a formula in the original language (i.e., not
containing P) in which only x1,. . . ,xn may occur free. Function definitions are formulas of the
form:

∀x1, . . . , xn+1 [f(x1, . . . , xn) = xn+1 ↔ ψ(x1, . . . , xn+1)]

where f is a (new) n-ary function symbol, and ψ a formula in the original language (i.e., not
containing f) in which only x1,. . . ,xn+1 may occur free. A function f is well defined if and only
if the theory contains

∀x1, . . . , xn∃!xn+1 [ψ(x1, . . . , xn+1)]

Defined symbols are only allowed in the defining formulas if this does not lead to circularity.
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Moreover, the fields of logic and philosophy of science have provided a number
of criteria for evaluating formal theories, such as the consistency and falsifiability
of theories and the soundness of inferences. Our aim is to develop support for
the axiomatization of theories in first-order logic by giving specific operational-
izations of these criteria. These specific formulations are chosen such that the
criteria can be established in practice with relative ease, i.e., such that existing
automated reasoning tools can be used for this purpose.2

4.2.1 Criteria for Evaluating Theories

We will use the following notation. Let Σ denote the set of premises of a theory.
A formula ϕ is a theorem of this theory if and only if it is a logical consequence,
i.e., if and only if Σ |= ϕ. The theory itself is the set of all theorems, in symbols,
{ϕ | Σ |= ϕ}.

Consistency The first and foremost criterion is the consistency of a theory:
we can tell whether a theory in logic is contradiction-free. We can prove the
consistency of a theory by generating a model of the premises. This model will
be a model of the entire theory, i.e., all derivable theorems will necessarily hold
in it. If a theory is inconsistent, it cannot correspond to its intended domain
of application. Therefore, empirical testing should focus on identifying those
premises that do not hold in its domain. The formal theory can suggest which
assumptions are problematic by identifying (minimal) inconsistent subsets of the
premises.

The theory is consistent if we can find a model A such that the premises are
satisfied: A |= Σ. A theory is inconsistent if we can derive a contradiction, ⊥,
from the premises: Σ ` ⊥.

Soundness Another criterion is the soundness of arguments in a theory: we
can tell whether a claim undeniably follows from the given premises. Many of our
basic propositions are inaccessible for direct empirical testing. Such propositions
can be indirectly tested by their testable implications (Hempel 1966). In case of
unsound argumentation, examining the counterexamples provides useful guidance
for revision of the theory.

A theorem ϕ is sound if it can be derived from the premises Σ ` ϕ. A theorem
ϕ is unsound (i.e., ϕ is no theorem) if we can construct a counterexample, that
is, a model A in which the premises hold, and the theorem is false: A |= Σ and
A 6|= ϕ.

2Of course, we hope that this will be regarded as an original contribution, but the claim to
originality is a difficult one to establish. The novelty is in the combination of ideas from various
fields and our debts to the fields of logic and philosophy of science fan out much further than
specific citations indicate.
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Falsifiability Falsifiability of a theorem means that it is possible to refute the
theorem. Self-contained or tautological statements are unfalsifiable—their truth
does not depend on the empirical assumptions of the theory. Falsifiability is an
essential property of scientific theories (Popper 1959). If no state of affairs can
falsify a theory, empirical testing can only reassert its trivial validity. A theory
is falsifiable if it contains at least one falsifiable theorem.

An initial operationalization of falsifiability is: a theorem ϕ is unfalsifiable if
it can be derived from an empty set of premises: ` ϕ and falsifiable if we can
construct a model A (of the language) in which the theorem is false: A 6|= ϕ. Note
that we cannot require this model to be a model of the theory. A theorem is nec-
essarily true in all models of the theory (otherwise it would not be a theorem). We
should therefore ignore the axioms of the theory, and consider arbitrary models
of the language. This initial formulation works for some unfalsifiable statements
like tautologies, but may fail in the context of definitions. Consider the following
simple example: a theory that contains a definition of a Bachelor predicate.

∀x [Bachelor(x) ↔ Man(x) ∧ Unmarried(x)]

In such a theory, we will have the following theorem.

∀x [Bachelor(x) → Man(x)]

Using falsifiability as formulated above, we would conclude that this statement is
falsifiable. It is easy to construct models (of the language) in which the theorem is
false, that is, models in which an object a occurs such that Bachelor(a) is assigned
true and Man(a) is false. However, if we expand the definition, then the theorem
becomes

∀x [Man(x) ∧ Unmarried(x) → Man(x)]

This expanded version of the theorem is tautologically true and therefore unfal-
sifiable by the above formulation. This is problematic, since “we do not expect
definitions to add substantive information” (Enderton 1972, see the above quo-
tation). Therefore, the elimination of defined concepts should also not affect any
of the criteria for evaluating theories. Although we have to ignore the axioms, we
must take the definitions into account when establishing falsifiability.

In the context of definitions Σdef ⊆ Σ, a theorem ϕ is falsifiable if there exists
a model A in which the definitions hold, and the theorem is false: A |= Σdef and
A 6|= ϕ. A theorem ϕ is unfalsifiable if the theorem can be derived from only the
set of definitions: Σdef ` ϕ.

Satisfiability Satisfiability is the counterpart of falsifiability. Satisfiability of
a theorem ensures that it can be fulfilled. Self-contradictory statements are un-
satisfiable. It makes no sense to subject an unsatisfiable theorem to empirical
testing, since it is impossible to find instances that corroborate the theorem.
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In the context of definitions Σdef ⊆ Σ, a theorem ϕ is satisfiable if there exists
a model A in which the definitions hold, and the theorem is true: A |= Σdef and
A |= ϕ. A theorem ϕ is unsatisfiable if we can derive a contradiction from only
the set of definitions and the theorem: Σdef ∪ {ϕ} ` ⊥.

Contingency Theorems that can both be fulfilled and refuted are called con-
tingent—their validity strictly depends on the axioms, they are neither tautolog-
ically true, nor self-contradictory. The empirical investigation of non-contingent
theorems does not make any sense because the outcome is predetermined.

A theorem is contingent if it is both satisfiable and falsifiable. A theorem is
non-contingent if it is unsatisfiable or unfalsifiable (or both).3

Independence The set of premises should contain no superfluous premises,
that is to say each premise should be independent of the other premises. An set
of premises is independent if all premises are independent of the other premises.

A premise σ is independent of the other premises if neither its truth, nor its
falsity is implied by the other premises: if Σ \ {σ} 6` σ and Σ \ {σ} 6` ¬σ. The
first part amounts to finding a model A such that A |= Σ \ {σ}∪{σ}, which is of
course a model A |= Σ, equivalent to our operationalization of consistency. The
second part amounts to finding a model B such that B |= Σ \ {σ} ∪ {¬σ}.

Further advantages Making the inference structure of a theory explicit will
make it possible to assess the theory’s explanatory and predictive power (by look-
ing at the set of theorems because these are the predictions of the theory, and
the proofs give explanations for them); its domain or scope (by investigating the
models of the theory); its coherence (for example, a theory may turn out to have
unrelated or independent parts); its parsimony (for example, it may turn out that
some assumptions are not necessary, or can be relaxed); and other properties.

This list of criteria should not be considered as final, and may be extended
with various other criteria if they appear useful. For example, one of the criteria
that is frequently discussed is completeness. A theory is complete if of any two
contradictory sentences formulated in terms of theory under consideration at least
one sentence can be proved in that theory (Tarski 1946, p.135). One attempts
to formulate a set of axioms that would allow for the derivation of the largest
possible set of statements that can be established as valid (and not a single false
one). Due to a logical law, the law of the excluded middle, one of every two
contradictory sentences must be true. Hence, this would ultimately lead to a
complete theory (provided that the vocabulary is finite). It is clear that none
of the sociological axiomatizations we discuss realizes this ultimate ideal, it is

3We can also apply the above operationalizations to the definitions. All definitions turn out
to be non-contingent, since any definition will be unfalsifiable. This neatly corresponds to the
fact that definitions should not add to our knowledge (Enderton 1972, p.154).
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even unclear whether there will ever be a complete axiomatization of a significant
empirical science theory.

4.2.2 Computational tools

The above operationalizations require particular proof or model searches for es-
tablishing the criteria. The field of automated reasoning has provided us with
automated theorem provers and model generators—generic tools that can directly
be used for computational testing of the criteria. Automated theorem provers,
such as Otter (McCune 1994b), are programs that are designed to find proofs
of theorems. Typical theorem provers use reductio ad absurdum, that is, the pro-
gram attempts to derive a contradiction from the premises and the negation of
the theorem. A theorem prover can also be used to prove that a theory is in-
consistent if it can derive a contradiction from the set of premises of the theory.
Automated model generators, such as Mace (McCune 1994a), are programs that
can find (small) models of sets of sentences. A model generator can prove the
consistency of a theory, if it can generate a model of the premises. It can also be
used to prove underivability of a conjecture, by attempting to generate a model
of the premises in which the conjecture is false. Table 4.1 summarizes how to test

Criterion Otter Mace
Consistency (∃A)A |= Σ
Inconsistency Σ ` ⊥
Soundness Σ ∪ {¬ϕ} ` ⊥
Unsoundness (∃A)A |= Σ ∪ {¬ϕ}
Falsifiability (∃A)A |= Σdef ∪ {¬ϕ}
Unfalsifiability Σdef ∪ {¬ϕ} ` ⊥
Satisfiability (∃A)A |= Σdef ∪ {ϕ}
Unsatisfiability Σdef ∪ {ϕ} ` ⊥
Independence (∃A)A |= Σ and

(∀σ ∈ Σ)(∃B) B |= Σ \ {σ} ∪ {¬σ}
Note: Σ denotes a premise set, with Σdef ⊆ Σ the definitions in this set and σ ∈ Σ an
individual premise, and ϕ a conjecture or theorem.

Table 4.1: Criteria and Automated Reasoning Tools.

for the criteria.4

The decision to use either automated theorem provers or model generators is
not an arbitrary one. Although (syntactic) proof-theoretic and (semantic) model-

4Otter and Mace are companion programs that can read the same input format. This
facilitates switching between theorem proving and model searching, depending on which type
of tool is most suitable for the specific proof or disproof attempt at hand. Kamps (1998a)
discusses the use of these tools for formal theory building in detail.
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theoretical characterizations are logically equivalent, determining the criteria is a
different matter. First, there is a fundamental restriction on what we can hope to
achieve because first-order logic is undecidable. Although undecidable, first-order
logic is semi-decidable—we can prove Σ ` ⊥ if it is true. We suggest the use of
theorem provers only for cases in which a contradiction can be derived. The other
cases are, in general, undecidable (causing theorem provers to run on for ever).
However, finding finite models is, again, decidable—we can find a finite model A
such that A |= Σ if there exists such a finite model. Current model generators
can only find finite models—even only models of small cardinalities. We have no
solution for those cases in which only infinite models exist (or only models that
are too large for current programs). Second, the tests we suggest to evaluate the
criteria do not only prove a criterion, but also present a specific proof or model
that is available for further inspection. In simple cases theorem provers may
terminate after exhausting their search space without finding a contradiction,
proving indirectly that the problem set is consistent, or that a conjecture is not
derivable. Even in these cases a direct proof is far more informative, for example,
if we can find specific counterexamples to a conjecture, it is immediately clear
why our proof attempt has failed.

4.3 Case Study: A Formal Theory of Organiza-

tions in Action

We will illustrate the criteria outlined above by applying them to the formal the-
ory of Organizations in Action (Kamps and Pólos 1999), a formal rendition of
(Thompson 1967). Thompson (1967) is one of the classic contributions to or-
ganization theory: it provides a framework that unifies the perspective treating
organizations as closed systems, with the perspective that focuses on the de-
pendencies between organizations and their environment. This framework has
influenced much of the subsequent research in organization theory. Thompson
(1967) is an ordinary language text, in which only the main propositions are
clearly outlined. Kamps and Pólos (1999) provide a formal rendition of the first
chapters of the book, by reconstructing the argumentation used in the text.

The formal theory uses the predicate symbols reprinted in Table 4.2. Al-
though the text of (Thompson 1967) does not contain explicit definitions, the use
of terminology in the text strongly suggests strict dependencies between several
important concepts. This allowed for the definition of these concepts in terms of
a small number of primitive notions of organization theory. Table 4.3 lists the
premises (both definitions and assumptions) and theorems of the formal theory.
In the formal theory, the key propositions of (Thompson 1967) can be derived as
theorems (theorem 3, corollaries 8, 9, and 11). The proofs of these theorems are
based on a reconstruction of the argumentation in the text (assumptions 1–8).
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Predicates
Primitive:
O(o) o is an organization
SO(o, so) so is a suborganization of o
TC(o, tc) tc is the technical core of o
REVA(o, tc) tc is rationally evaluated by o
UC(o, u) o has uncertainty u
RED(o, i, tc) o attempts to reduce i for tc
FL(tc, f, o) tc is exposed to a fluctuation f from o
CS(tc, c, o) tc is exposed to a constraint c from o
C(i, u) i causes u
HC(o, i) o has control over i

Defined:
CO(o) o is a complex organization
ENVI(tc, i, o) tc is exposed to an influence i from o
SEFF(o, i, tc) o seals off tc from i
ATO(o) o is an atomic organization
BUF(o, f, tc) o buffers f for tc
ANA(o, c, tc) o anticipates and adapts to c for tc
CEE(o1, o2) o2 is in o1’s controlled environment
SM(o, f, tc) o smoothes f for tc
NEG(o, c, tc) o negotiates c for tc

Table 4.2: Predicates (Kamps and Pólos 1999).
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Premises and Theorems

Premises:
Def.1 ∀x [CO(x) ↔ O(x) ∧ ∃y [SO(x, y) ∧ TC(x, y)]]
Def.2 ∀x, y, z [ENVI(x, y, z) ↔ FL(x, y, z) ∨ CS(x, y, z)]
Def.3 ∀x, y, z [SEFF(x, y, z) ↔ SO(x, z)∧∃v, w [ENVI(z, y, v)∧UC(z, w)∧C(y, w)∧

RED(x,w, z)]]
Def.4 ∀x [ATO(x) ↔ O(x) ∧ ¬CO(x)]
Def.5 ∀x, y, z [BUF(x, y, z) ↔ SO(x, z) ∧ FL(z, y, x) ∧ RED(x, y, z)]
Def.6 ∀x, y, z [ANA(x, y, z) ↔ SO(x, z) ∧ CS(z, y, x) ∧ RED(x, y, z)]
Def.7 ∀x, y [CEE(x, y) ↔ O(x) ∧ ∀z [ENVI(x, z, y) → HC(x, z)]]
Def.8 ∀x, y, z [SM(x, y, z) ↔ SO(x, z) ∧ ∃v [FL(x, y, v) ∧ RED(x, y, z)]]
Def.9 ∀x, y, z [NEG(x, y, z) ↔ SO(x, z) ∧ ∃v [CS(x, y, v) ∧ RED(x, y, z)]]
Ass.1 ∀x, y, z [TC(x, y) ∧ TC(x, z) → y = z]
Ass.2 ∀x, y [TC(x, y) → REVA(x, y)]
Ass.3 ∀x, y, z [SO(x, y) ∧ REVA(x, y) ∧ UC(y, z) → RED(x, z, y)]
Ass.4 ∀x, y, z [ENVI(x, y, z) → ∃v [UC(x, v) ∧ C(y, v)]]
Ass.5 ∀x, y [O(x) ∧ TC(x, y) ∧ ¬SO(x, y) → x = y]
Ass.6 ∀x, y, z, v, w [ENVI(x, y, z)∧UC(x, v)∧C(y, v)∧UC(x,w)∧C(y, w) → v = w]
Ass.7 ∀x, y, z, v [O(x) ∧ SO(x, y) ∧ ENVI(y, z, v) → HC(x, z)]
Ass.8 ∀x, y, z, v [RED(x, y, z) ∧ C(v, y) ∧ HC(x, v) → RED(x, v, z)]

Theorems:
Lem.1 ∀x, y [CO(x) ∧ TC(x, y) → SO(x, y)]
Lem.2 ∀x, y, z [CO(x) ∧ TC(x, y) ∧ UC(y, z) → RED(x, z, y)]
Thm.3 ∀x, y, z, v [CO(x) ∧ TC(x, y) ∧ ENVI(y, z, v) → SEFF(x, z, y)]
Lem.4 ∀x [ATO(x) ↔ O(x) ∧ ¬∃y [SO(x, y) ∧ TC(x, y)]]
Lem.5 ∀x, y [ATO(x) ∧ TC(x, y) → x = y]
Thm.6 ∀x, y, z, v, w [ATO(x) ∧ TC(x, y) ∧ ENVI(y, v, z) ∧ UC(y, w) ∧ C(v, w) →

∃u [UC(x, u) ∧ C(v, u) ∧ w = u]]
Thm.7 ∀x, y, z, v [CO(x) ∧ TC(x, y) ∧ ENVI(y, z, v) → RED(x, z, y)]
Cor.8 ∀x, y, z [CO(x) ∧ TC(x, y) ∧ FL(y, z, x) → BUF(x, z, y)]
Cor.9 ∀x, y, z [CO(x) ∧ TC(x, y) ∧ CS(y, z, x) → ANA(x, z, y)]
Thm.10 ∀x, y, z, v, w [CO(x) ∧ TC(x, y) ∧ ENVI(y, z, x) ∧ CEE(x, v) ∧ ENVI(x,w, v) ∧

C(w, z) → RED(x,w, y)]
Cor.11 ∀x, y, z, v, w [CO(x)∧TC(x, y)∧FL(y, z, x)∧CEE(x, v)∧FL(x,w, v)∧C(w, z) →

SM(x,w, y)]
Cor.12 ∀x, y, z, v, w [CO(x)∧TC(x, y)∧CS(y, z, x)∧CEE(x, v)∧CS(x,w, v)∧C(w, z) →

NEG(x,w, y)]

Table 4.3: A Formal Theory of Organizations in Action (Kamps and Pólos 1999).
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Consistent Sound Falsifiable Satisfiable Contingent

Lem.1 yes yes yes yes
Lem.2 yes yes yes yes
Thm.3 yes yes yes yes
Lem.4 yes no yes no
Lem.5 yes yes yes yes
Thm.6 yes yes yes yes yes
Thm.7 yes yes yes yes
Cor.8 yes yes yes yes
Cor.9 yes yes yes yes
Thm.10 yes yes yes yes
Cor.11 yes yes yes yes
Cor.12 yes yes yes yes

Table 4.4: Evaluating the Theory.

Additionally, the formal theory explains why the theory is restricted to a particu-
lar type of organizations (theorem 6). Moreover, it derives a heretofore unknown
implication of the theory (corollary 12) that relates Thompson’s theory to recent
empirical findings and current developments in organization theory. For detailed
discussion we refer the reader to (Kamps and Pólos 1999).

The criteria of the previous section played an important role during the con-
struction of the formal theory. Table 4.4 give an assessment of the final version
of the theory in terms of the criteria.

Consistency Using an automated model generator it is easy to find models of
the theory. Mace produced a model of cardinality 4 within a second (a model
having universe {0, 1, 2, 3}, reprinted in tables 4.5 and 4.6). This is a prototypical
model of the theory corresponding to the claims of theorem 3, theorem 7, and
corollary 8. It represents an organization that seals its core technologies off from
environmental fluctuations, by the use of buffering (for example the stockpiling
of materials and supplies). It is easy to verify that all premises (and theorems)
hold in the model—the model proves that the theory is consistent.

Finding any arbitrary model of the theory is, formally speaking, sufficient to
prove its consistency. We can find models on smaller cardinalities. For example,
on cardinality 1 there exists a trivial model that assigns false to all predicates.
In practice, we try to find more natural models of the theory. That is, we can
examine the models and see if they conform to our mental models of the theory.
This is an easy safeguard against hidden inconsistencies—theories that are only
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O
0 T
1 F
2 F
3 F

SO 0 1 2 3
0 F T F F
1 F F F F
2 F F F F
3 F F F F

TC 0 1 2 3
0 F T F F
1 F F F F
2 F F F F
3 F F F F

REVA 0 1 2 3
0 F T F F
1 F F F F
2 F F F F
3 F F F F

UC 0 1 2 3
0 F F F F
1 F F F T
2 F F F F
3 F F F F

RED(0, 3, 1) = T and
RED(0, 2, 1) = T and
RED(x, y, z) = F other-
wise.

FL(1, 2, 0) = T and
FL(x, y, z) = F other-
wise.

CS(x, y, z) = F for all
x, y, z in {0, 1, 2, 3}.

C 0 1 2 3
0 F F F F
1 F F F F
2 F F F T
3 F F F F

HC 0 1 2 3
0 F F T F
1 F F F F
2 F F F F
3 F F F F

Table 4.5: A Model of the Theory (only primitives).

CO
0 T
1 F
2 F
3 F

ENVI(1, 2, 0) = T and
ENVI(x, y, z) = F other-
wise.

SEFF(0, 2, 1) = T and
SEFF(x, y, z) = F other-
wise.

BUFF(0, 2, 1) = T and
BUFF(x, y, z) = F other-
wise.

Table 4.6: Selected Defined Predicates (extending Table 4.5).
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consistent because background knowledge has remained implicit.5 We can look
for prototypical models of the theory directly by adding premises that express
appropriate initial conditions (typically existential statements). If we find a model
of this enlarged set of premises, it is obviously also a model of the theory.

Soundness In the final formal theory (as reprinted in Table 4.3), all theorems
are derivable. Figure 4.1 shows the inference structure of the formal theory. None

Def.1

Def.1 Def.2
Def.3

Def.4

Def.5

Def.6

Def.7 Def.8

Def.9

Ass.1
Ass.2
Ass.3

Ass.4

Ass.5 Ass.6

Ass.7
Ass.8

Cor.12

Cor.11Thm.10

Cor.9

Cor.8

Thm.7

Thm.3

Thm.6

Lem.2

Lem.5Lem.4

Lem.1

Figure 4.1: Inferences in the Formal Theory

of the proofs is very complex (the automated theorem prover Otter required only
12 seconds for the longest proof).

The original text of the theory presupposes common background knowledge—
assumptions taken for granted in the substantive field. In order for the theorems

5Consider the following simple example:

∀x [Dog(x) → Bark(x)]
Rottweiler(Johnny)
¬Bark(Johnny)

Can we find a model of this theory? Yes, although inspection of the models will reveal that in
every model of the theory, Johnny the rottweiler is not a dog. These models are nonintended
models because of the (implicit) background knowledge that rottweilers are a particular breed
of dogs.

∀x [Rottweiler(x) → Dog(x)]

Adding this assumption to the theory will make it inconsistent, that is, we can then derive a
contradiction from it.
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to be deductively derivable, several implicit assumptions had to be added to the
theory (notably assumptions 1, 6 and 7). Which precise background assumptions
to add is one of the thorniest problems in the formalization of a theory, requiring
a deep understanding of the substantive field under consideration. Fortunately,
the formal tools can help: suppose we cannot derive a theorem due to a missing
background assumption. We can prove that the theorem is underivable by gen-
erating counterexamples, that is, models of the premises in which the theorem is
false. If the unsoundness of the theorem is due to missing background knowledge,
inspection of the counterexamples will reveal that they are nonintended models—
models that violate our common sense, or implicit background assumptions from
the substantive domain. For example, we found models of organizations having
more than one operational core (conflicting with assumption 1, which is implicit
in the original text). We can make the theorem derivable if we add sufficient
assumptions to exclude these nonintended models from the theory.

Falsifiability We tried to prove the falsifiability of the theorems as discussed
above: by finding a model in which the definitions hold and the theorem is false.
We failed to find such a model for lemma 4. As it turns out, lemma 4 can be
derived from just definitions 1 and 4—proving that this lemma is unfalsifiable.
Lemma 4 is true by definition, and therefore does not make an empirical claim.
If we would subject lemma 4 to empirical testing, we will be unable to refute it,
but can at best reassert the trivial validity of the statement.

Fortunately, the other theorems of the formal theory are falsifiable. For each
of these theorems, we can find models of the definitions in which the theorem is
false (not reproduced here). Mace generated these models in a matter of seconds.

Satisfiability/Contingency For proving the satisfiability of the theorems, we
need to find models that make both the definitions and the theorem true. The
model of tables 4.5 and 4.6 also proves the satisfiability of all theorems. As
a result, we can conclude that only lemma 4 is non-contingent—it is not an
empirical statement, but its truth is determined by virtue of the definitions only.
The other theorems make empirical claims that can, in principle, be corroborated
or refuted by empirical testing.

Independence For proving independence of the premises, we need to show that
neither the truth, nor the falsity of a premise is implied by the other premises.
The model of tables 4.5 and 4.6 also proves that the falsity of each premise
cannot be implied by the other premises. We can show that neither the truth is
implied by, for each premise, generating models in which the premise is false, and
the other premises hold. Mace has no problems generating these models (not
reproduced here), thereby proving that the premises are independent—none of
them is superfluous.
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4.4 Discussion and Conclusions

This chapter discussed the axiomatization of scientific theories in first-order logic.
We provided practical operationalizations of criteria for evaluating scientific the-
ories, such as the consistency and falsifiability of theories and the soundness of
inferences. The precise formulation of these criteria is tailored to the use of
computational support. The tests for the criteria, in practice amounting to par-
ticular proof or model searches, can be directly performed by existing automated
reasoning tools.

The efficient treatment of definitions is one of the basic research problems in
automated reasoning (Wos 1988, Problem 30). A naive approach is to eliminate
all defined predicates and functions from the problem set by expansion of the
definitions. This, however, also eliminates useful ways chunking information and
as a result it “increases the likelihood that a program will get lost” (Wos 1988,
p.62).6 Since only few problems are provable without the expansion of (some of)
the definitions, dealing with definitions is a difficult challenge for automated rea-
soning tools. As a result, most automated theorem provers treat definitions and
axioms alike (a notable exception is [Giunchiglia and Walsh 1989]). Interestingly,
the above argument does not seem to apply to automated model generators.7 The
search space of automated model generators is the set of all possible models, i.e.,
all possible interpretation functions of the vocabulary. Reducing the vocabulary
of the formal language by eliminating the defined concepts will proportionally
reduce this search space. Moreover, after eliminating the defined concepts, the
definitions themselves can be removed from the problem set, which reduces the
number of “constraints” that need to be taken into account when deciding whether
a particular interpretation is a model of the problem set.

We used the criteria to evaluate a formal rendition of a classic organization
theory (Kamps and Pólos 1999). Assessing the criteria allows for an exact eval-
uation of the merits of a theory. In some cases, this may reveal important facts
about the theory, for example, the case study showed that one of the derived
statements is unfalsifiable—empirical investigation of it is futile. However, we
do not view the criteria as rigid, final tests. Quite the opposite, in our experi-
ence the criteria are especially useful during the process of formalizing a theory.
During the construction of a formal theory, the criteria can provide useful feed-
back on how to revise the theory in case of a deficiency. For example, examining

6This is substantiated by the theory in our case study: after eliminating all defined pred-
icates, Otter proved several theorems slightly faster, but some others slower. These are
preliminary observations without taking into account the time needed expand the definitions
(a preprocessing step that is done once for any number of queries). This expansion was done
manually but is of no great complexity: since definitions are not allowed to be circular, we only
need to expand each definition once.

7For the theory in our case study, eliminating defined concepts gave significantly better
performance on all model searches (roughly halving Mace’s processor and memory usage).
Again, these are preliminary observations that do not consider the preprocessing of definitions.
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counterexamples can reveal which implicit (background) assumptions need to be
added to the theory. There are, of course, important principled and practical lim-
itations to the axiomatization of theories in first-order logic: the undecidability
of first-order logic, the scientific knowledge available in the substantive domains,
or the availability of resources like processor power, memory, and time. There is
yet no equivocal answer to the question whether it is possible, or even desirable,
to axiomatize large parts of substantive domains. Axiomatization is often viewed
as the ultimate step in the lifetime of a scientific theory—the axioms are frozen
in their final form, and active research moves on to areas where still progress can
be made. The main motivation for the research reported in this chapter is that
the formalization of theories can play a broader role: it need not end the life of a
theory, but rather contribute to its further development.





Chapter 5

The Process of Axiomatizing
Scientific Theories

This chapter discusses the axiomatization of scientific theories in formal logic.
Such an axiomatization is traditionally viewed as the ultimate step in the jus-
tification of a theory. A first-order logic rendition of a theory gives an explicit,
unambiguous exposition of the theory. This allows, in turn, for testing for a num-
ber of criteria (such as consistency, soundness of derivations, satisfiability and
falsifiability of theorems) that can be evaluated using generic tools from auto-
mated reasoning. We can make a rigorous evaluation of a scientific theory by
assessing these criteria. However, as it turns out, these criteria exceed their use
as rigid, final tests and are especially useful during the process of formalizing a
theory. The criteria can provide useful feedback on how to revise the theory in
case of a deficiency. For example, they can identify implicit (background) as-
sumptions of the theory. As a result, the tools of the context of justification can
also play an important role in the revision of the theory—an activity belonging
to the context of discovery.

We will give a detailed illustration by the formalization of a theory fragment
from Zetterberg’s “On Theory and Verification in Sociology.”

5.1 Introduction

In recent years, several authors started working on the formal reconstruction of
ordinary language, social science theories. The main focus is on organization
theory, and especially on the branch based on a natural selection perspective on
organizations (Hannan and Freeman 1989). This resulted in the logical formal-
ization or axiomatization of several parts of “organizational ecology”: The inertia
theory was formalized in (Péli et al. 1994); the life-history theory in (Péli and
Masuch 1997); the niche width theory in (Péli 1997; Bruggeman 1997); and the

87
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age-dependence theory in (Hannan 1998). Further efforts were directed at a clas-
sical version of contingency theory, Thompson (1967) “Organizations in Action,”
as formalized in (Kamps and Pólos 1999) and at several relatively simple theo-
ries, such as Hage (1965) “An axiomatic theory of organizations” as formalized
in (Kamps 1998a) and a theory from Zetterberg (1965) “On Theory and Verifi-
cation in Sociology” that we treat as a case study in this chapter. These efforts
resulted in first-order logic versions of previously non-formal scientific theories,
which reconstruct the textual argumentation of the original texts by rendering
it in formal logic. A notable exception is Hannan (1998), who uses the logical
formalization to develop new theory “to clarify an area of research characterized
by conflicting claims and divergent empirical findings” (p.126).

Following Reichenbach (1938, pp.6–7), scientific activities are traditionally di-
chotomized into the context of justification and the context of discovery. The
axiomatization of theories in (first-order) logic is traditionally viewed as the final
step in the justification of a theory. A first-order logic rendition of a theory gives
an explicit, unambiguous exposition of the theory. This allows, in turn, for testing
for a number of criteria (such as consistency, soundness of derivations, satisfiabil-
ity and falsifiability of theorems) that can be evaluated using generic tools from
automated reasoning. We can make a rigorous evaluation of a scientific theory
by assessing these criteria. However, as it turns out, these criteria exceed their
use as rigid, final tests and are especially useful during the process of formalizing
a theory. The criteria can provide useful feedback on how to revise the theory
in case of a deficiency—an activity belonging to the context of discovery. For
example, they can identify implicit (background) assumptions of the theory. As
a result, the tools of the context of justification can also play an important role
in the context of discovery.

This chapter is structured as follows: First, in §5.2, we will discuss the ax-
iomatization of theories; next, in §5.3, we will illustrate this by axiomatizing the
theory of (Zetterberg 1965); in §5.4 we will critically review and repeatedly revise
the formal theory; and finally, in §5.5, we will draw conclusions and discuss issues
related to our work.

5.2 Axiomatizing Theories

5.2.1 The Product of Formalization

The axiomatization or logical formalization of non-formal theories consists of
the interlinked activities of rational reconstruction (reconstructing the claims,
premises, and argumentation of a theory) and formal modeling (capturing the
claims as theorems that are provable from explicit assumptions). The main benefit
of the formalization of theories in logic is that it provides clarity (Suppes 1968). It
will provide an unambiguous exposition of the theory, containing explicit axioms
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and theorems. Moreover, the logic allows us to formulate a number of criteria
for evaluating theories. In the previous chapter, we discussed various criteria for
evaluating theories, including the consistency of the theory and the soundness of
derivations. These criteria can be used for assessing relevant properties of the
theory.

5.2.2 The Process of Formalization

Most social science theories are stated in ordinary language (for example in arti-
cles in social science journals). As a result, the main obstacle for logical formaliz-
ing such a discursive theory is their rational reconstruction: interpreting the text,
distinguishing important claims and argumentation from other parts of the text,
and reconstructing the argumentation. This reconstruction is seldom a straight-
forward process, although there are some useful guidelines (see, for example, the
method in Fisher 1988). When the theoretical statements are singled-out, they
can be formulated in first-order logic. This initial formalization can be evaluated
by the criteria such as consistency, and soundness of arguments.

A strict justification point of view would stop after evaluating the theory by
these criteria. However, since theories stated in ordinary language are typically
partial and incomplete, it is highly unlikely that our initial formalization of the
theory is completely satisfactory. For example, the initial formalization may turn
out to be inconsistent, or some of the claims may not be derivable. Finding such
undesirable properties does reveal deficiencies of our initial formal rendition of
the theory. Is it justified to pass this verdict on to the original theory? This is
not necessarily the case and, instead, we may attempt to revise our initial formal-
ization such that it is a better reconstruction of the original theory. Fortunately,
analyzing the criteria can provide useful feedback for the revision of our initial
formalization.

Recover from Inconsistency

Although theories in natural language rarely contain conspicuous contradictions,
the ambiguities of ordinary language can easily obscure them. As a result, our
initial formalization of a theory may turn out to be inconsistent.

The proof of the inconsistency of the theory (as provided by an automated
theorem prover) is a derivation of a contradiction from a specific subset of the
premises. Examining this proof will clarify what caused the inconsistency, which
may, in turn, suggest how to resolve the contradiction. For example, by changing
a definition, or by making some assumption weaker. After revising the premises
we have to repeat the test for consistency, to ensure that the modifications are
sufficient. Also, a premise set may contain several different contradictions. In
these cases, repeated testing for inconsistencies allows for a piecemeal revision of
the theory.
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Recover from Unsound Argumentation

Since authors typically assume a body of common background knowledge, it is
unlikely that all needed premises are mentioned in the source text. One of the
thorniest problems during the logical formalization of a theory, is to make these
implicit background assumptions explicit. As a result, some of the theory’s claims
may turn out to be underivable in our initial formalization of the theory. Of
course, it can also be the case that a claim turns out to be a false conjecture.

The proof that the derivation of a claim is unsound (as provided by an au-
tomated model generator) is a counterexample, that is, a model of the premises
in which the claim is false. Examining this model gives important feedback for
possible revision of the theory. On the one hand, it may be the case that, al-
though a model of the premises, it is a non-intended model in the sense that it
seems highly unlikely that the author intended this model to belong to his or
her theory. For example, the model may conflict with common sense, or with
common background knowledge in the domain of the theory. In this case we have
to add this common sense or background knowledge to the premises of the theory,
and see if we can now derive the claim. There may be several implicit underlying
assumptions, which give rise to different counterexamples. On the other hand,
the model may be an intended, faithful model of the theory and in this model the
claim is false. In this case, the original claim is too strong to be supported by the
theory, and we have to modify the claim. A typical example is the case in which
the claim is overstated, and the model presents a known exception that should be
taken into account. After revising the claim we can test whether we can derive
this weaker claim. There may be other exceptions to the claim and repeated
tests for unsoundness allows for a piecemeal treatment of them. In some cases,
the claim may have to be retracted altogether, or we are forced to add further
assumptions that will restrict the theory’s domain of application such that the
claim will hold on this restricted domain of the theory.

As a result, the process of formalizing theories proceeds through several it-
erations—it is a cyclic process in which the formal theory is repeatedly revised.
Moreover, these modifications may have an impact on the original theory. Con-
sider the case in which the original theory is inconsistent. If we can resolve the
inconsistency in the formal rendition, we can translate this revision back to the
original theory. Consider the case in which the original theory contains a hia-
tus. If we can find reasonable assumptions that make the claims derivable in
the formal theory, we can, again, translate these added assumptions back to the
original theory. It may also be the case that the formal theory reveals that cer-
tain restricting assumptions of the original theory are not necessary or can be
relaxed. In short, in these cases the formal theory and the original theory evolve
in parallel.

In the next section, we will give a detailed illustration of this process by
discussing the formalization of a theory fragment from Zetterberg (1965)’s ‘On
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Theory and Verification in Sociology.’

5.3 Case Study: Zetterberg’s Theory

This section contains a logical formalization of Zetterberg’s On Theory and Verifi-
cation in Sociology (1965). Zetterberg’s theory is stated in ordinary language—it
is not a formal theory—but the main propositions are clearly outlined. It is an
‘axiomatic theory’ consisting of 10 propositions.1 The ten propositions are about
five ‘variables’ of social groups (p.159):

1. the number of associates per member in the group;

2. the solidarity of the group;

3. the consensus of the beliefs, values, and norms in the group;

4. the division of labor in the group; and

5. the extent to which persons are rejected (excluded) from the group when
they violate norms.

Unfortunately, Zetterberg does not elaborate on the sociological meaning of
these concepts, and leaves their further interpretation to the reader.2 Presum-
ably, the number of associates per member is indicating the (average) number of
members with whom a particular member interacts. In some groups with a well-
defined role structure, members may only interact with few other members, while
in some small groups virtually every pair of members interacts. The solidarity of
the group typically indicates the community of interests and objectives (usually
viewed as the counterpart of competition between members). The distinction
between solidarity and consensus of the beliefs, values, and norms in the group
is rather elusive, although it is of course possible that there is consensus about
the differences of interests or objectives of individual members (they are, so to
say, ‘agreeing to disagree’). The division of labor in a group refers to the struc-
tural necessity of members to interact in order to function as a group. Finally,
the number of rejections per deviant indicates the extent to which persons are
rejected (excluded) from the group when they violate norms. In closely knitted

1Note that it is exceptional for a sociological theory to be stated in an axiomatic form. This
perspicuous structure makes Zetterberg (1965) a suitable candidate for a case study for we can
focus on the formal modeling of the theory without doing an extensive reconstruction of the
argumentation.

2This can be explained in part by the fact that Zetterberg is mainly interested in methodol-
ogy. An earlier version of this theory was introduced as a “fictitious example” to illustrate the
advantages of axiomatic theory for sociological research (Zetterberg 1955, p.534). He also refers
to it as “a somewhat distorted version of Durkheim’s theory of division of labor” (Zetterberg
1965, p.160).
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groups, minor deviations may result in exclusion of members, whereas in loosely
affiliated groups major deviations are permissible.

Table 5.1 lists ten propositions relating these five variables. Zetterberg regards

P.1 The greater the division of labor, the greater the consensus.
P.2 The greater the solidarity, the greater the number of associates

per member.
P.3 The greater the number of associates per member, the greater

the consensus.
P.4 The greater the consensus, the smaller the number of rejections

per deviant.
P.5 The greater the division of labor, the smaller the number of re-

jections per deviant.
P.6 The greater the number of associates per member, the smaller

the number of rejections per deviant.
P.7 The greater the division of labor, the greater the solidarity.
P.8 The greater the solidarity, the greater the consensus.
P.9 The greater the number of associates per member, the greater

the division of labor.
P.10 The greater the solidarity, the smaller the number of rejections

per deviant.

Note: All propositions are from Zetterberg (1965, pp.159–160).

Table 5.1: The propositions of Zetterberg’s theory.

the last four propositions (labeled 7 through 10) as axioms of the theory. These
last four propositions show, according to Zetterberg, some relation to Durkheim’s
classical work on the division of labor (Durkheim 1893). The first six propositions
(labeled 1 through 6) are claimed to be derivable from the four axioms using “the
deduction rules of ordinary language” (p.163). According to Zetterberg, we can
make the following derivations (p.161): Proposition P.1 can be inferred from P.7
and P.8; Proposition P.2 from P.7 and P.9; Proposition P.3 from P.8 and
derived proposition P.2; Proposition P.4 from P.8 and P.10; Proposition P.5
from P.7 and P.10; and Proposition P.6 from P.9 and derived proposition P.5.

5.3.1 Formalization

We use first-order logic to formalize Zetterberg’s propositions. In the formaliza-
tion we use unary functions to represent the five variables (see Table 5.2).
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napm(x) number of associates per member in group x
soli(x) solidarity of group x
cons(x) consensus of the beliefs, values, and norms in group x
dlab(x) division of labor in group x
nrpd(x) number of rejections per deviant in group x
x > y x is greater than y (or y is smaller than x)

Table 5.2: Functions and predicates.

5.3.2 Axioms

Zetterberg (1965, p.160) regards Propositions 7 through 10 as axioms of the the-
ory. A rendering of these propositions in first-order logic is presented in Table 5.3.

A.7 ∀x, y [dlab(x) > dlab(y) → soli(x) > soli(y)]
A.8 ∀x, y [soli(x) > soli(y) → cons(x) > cons(y)]
A.9 ∀x, y [napm(x) > napm(y) → dlab(x) > dlab(y)]
A.10 ∀x, y [soli(x) > soli(y) → nrpd(y) > nrpd(x)]

Table 5.3: A formalization of Propositions 7–10.

Is the (formal) theory consistent? The theory is consistent if it has a model.
We used the automated model generator Mace in an attempt to generate models
of the axioms. Table 5.4 shows a model of Propositions 7–10.3 We can easily verify

napm soli cons dlab nrpd
0 0 1 1 1 0
1 0 0 0 0 1

> 0 1
0 F F
1 T F

Table 5.4: A model of Axioms 7–10.

that the axioms hold in the model of Table 5.4: Axiom 7 holds because the group
with greater division of labor (0) has also a greater solidarity; Axiom 8 holds
because the group with greater solidarity (0) also has greater consensus; Axiom 9
holds vacuously because there is no group with greater number of associates per
member; and finally, Axiom 10 holds because the group with greater solidarity
(0) has a smaller number of rejections per deviant. Zetterberg’s theory has a
model, therefore it is consistent.

3On domain size 2, Mace generates 1024 models of the axioms.
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5.3.3 Theorems

We will now investigate the explanatory or predictive power of the theory. Zetter-
berg claims that “these four propositions [7–10] can be used to derive the other
findings which thus become theorems” (p.161). In these derivation he uses “the
deduction rules of natural language” (p.163). A first-order logic rendering of these
(intended) theorems is presented in Table 5.5.

T.1 ∀x, y [dlab(x) > dlab(y) → cons(x) > cons(y)]
T.2 ∀x, y [soli(x) > soli(y) → napm(x) > napm(y)]
T.3 ∀x, y [napm(x) > napm(y) → cons(x) > cons(y)]
T.4 ∀x, y [cons(x) > cons(y) → nrpd(y) > nrpd(x)]
T.5 ∀x, y [dlab(x) > dlab(y) → nrpd(y) > nrpd(x)]
T.6 ∀x, y [napm(x) > napm(y) → nrpd(y) > nrpd(x)]

Table 5.5: A formalization of Propositions 1–6.

We used the automated theorem prover Otter to attempt proving Propo-
sitions 1–6 from the four axioms. We can find proofs of Proposition 1, 3, 5,
and 6.

Theorem 1 The greater the division of labor, the greater the consensus :

∀x, y [dlab(x) > dlab(y) → cons(x) > cons(y)]

Proof: Otter can derive T.1 from A.7 and A.8.

Theorem 3 The greater the number of associates per member, the greater the
consensus :

∀x, y [napm(x) > napm(y) → cons(x) > cons(y)]

Proof: Otter can derive T.3 from A.9, A.7, and A.8.

Theorem 5 The greater the division of labor, the smaller the number of rejec-
tions per deviant :

∀x, y [dlab(x) > dlab(y) → nrpd(y) > nrpd(x)]

Proof: Otter can derive T.5 from A.7 and A.10.

Theorem 6 The greater the number of associates per member, the smaller the
number of rejections per deviant :

∀x, y [napm(x) > napm(y) → nrpd(y) > nrpd(x)]
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Proof: Otter can derive T.6 from A.9, A.7, and A.10.

However, we cannot derive Propositions 2, the greater the solidarity, the
greater the number of associates per member:

∀x, y [soli(x) > soli(y) → napm(x) > napm(y)]

Nor can we derive Proposition 4, the greater the consensus, the smaller the num-
ber of rejections per deviant:

∀x, y [cons(x) > cons(y) → nrpd(y) > nrpd(x)]

According to Zetterberg is Proposition 2 derivable from Proposition 7 and 9
(p.161). We can prove that the derivation of T.2 is unsound if we can find a
counterexample, that is, if we can find a model of the axioms in which the intended
theorem does not hold. As it turns out, we can construct a counterexample to
this claim (see Table 5.6). Finding this counterexample proves that T.2 is not

napm soli cons dlab nrpd
0 0 0 0 0 0
1 1 0 0 0 0

> 0 1
0 T F
1 F F

Table 5.6: Counterexample to Propositions 2.

a consequence of A.7–10. Zetterberg also claims that Proposition 4 is derivable
from Proposition 8 and 10 (p.161). Again, we can construct a counterexample
to this claim (see Table 5.7). These counterexamples prove that Propositions 2

napm soli cons dlab nrpd
0 0 0 0 0 0
1 0 0 1 0 0

> 0 1
0 F T
1 F F

Table 5.7: Counterexample to Propositions 4.

and 4 are no theorems of the axioms. On the positive side, we can derive a new
proposition as theorem:

Theorem 11 The greater the number of associates per member, the greater the
solidarity :

∀x, y [napm(x) > napm(y) → soli(x) > soli(y)]

Proof: Otter can derive T.11 from A.9 and A.7.

Theorem 11 is the converse of the (underivable) Proposition 2. Of course,
there are also many trivial theorems that can be derived, such as all tautologies
or theorems already subsumed by the spelled-out theorems.
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5.3.4 Recapitulating

We formalized Zetterberg’s propositions as T.1–6 and A.7–10 in Table 5.5
and 5.3 respectively. The resulting theory contains propositions T.1, T.3, T.5,
and T.6 as theorems that can be derived from the four axioms, A.7–10. However,
we proved that propositions T.2 and T.4 cannot be derived and are no theorems
of the theory. We are able to prove theorem T.3 despite the suggestion that its
proof depends upon theorem T.2. Fortunately, we could find a (different) proof
of T.3 using axioms A.9, A.7, and A.10 (or, equivalently, using axiom A.9 and
theorem T.1).4 The proofs of T.1, T.5, and T.6 are according to the suggested
inferences. Table 5.8 compares the verbal theory with our formal version. Our

Verbal theory: Formal theory:
P.1 from P.7 and P.8 T.1 from A.7 and A.8

√

P.2 from P.7 and P.9 No theorem T.2
P.3 from P.8 and derived P.2 T.3 from A.9, A.7 and A.8

√
(!)

P.4 from P.8 and P.10 No theorem T.4
P.5 from P.7 and P.10 T.5 from A.7 and A.10

√

P.6 from P.9 and derived P.5 T.6 from A.9, A.7 and A.10
√

Table 5.8: The Verbal and Formal Theory

formalization attempt seems moderately successful: we could derive four of the
six intended theorems.

5.4 Revision

Our formalization of Zetterberg’s theory prompts a number of questions: How do
these results in the formal version of the theory relate to the original version? Have
we uncovered a deficiency in the original theory? Went something wrong in our
reconstruction of his arguments? Can we come up with a different interpretation
in which all the intended theorems are derivable? We will try to answer these
questions in this section.

5.4.1 Limit Explanatory/Predictive Power

One option is to do nothing: We have given, arguably, the most natural first-
order rendition of the propositions. If two of the conjectures are not derivable in
the formal version of the theory, then we have an important argument to discard
these propositions as false conjectures. That is, we keep Axioms 7–10 as stated

4In fact, the situation would not change much if we could prove T.2, since the derivation of
T.3 from T.2 and A.8 is unsound!
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formalized in Table 5.3, and reduce the set of theorems to Theorem 1, 3, and
5–6 as stated in Table 5.5. As Zetterberg (1965, p.163) remarks, “our deductions
are not too precise, so long as our concepts are defined in normal prose, and the
deduction rules of ordinary language are used.” It may be not unreasonable to
assume that now that we use formal logic, having a precisely defined language
and a strict notion of deduction, we have to discard two of the intended, ordinary
language theorems as false conjectures.

5.4.2 Nonintended Models and Real Counterexamples

Before passing such a severe verdict on the theory, it seems more reasonable to first
make a detailed examination of the evidence. It is important to note that we did
more than proving that the two conjectures are underivable, since we produced
the counterexamples that prove the underivability. These counterexamples are
available for inspection.

When analyzing the counterexample of Table 5.6, we immediate find a strange
feature. The model gives an unnatural interpretation of the “>”-relation: (0 > 0)
is true, whereas (0 > 1), (1 > 0), and (1 > 1) are false. This model is not one
of the models we intended to be models of the theory. It seems unreasonable
to discard a conjecture because of the existence of such a nonintended model—a
model that violates our commonsense or background knowledge of the substantive
domain. Any exposition of a theory presupposes a set of common background
knowledge. In a formal exposition of a theory, relevant parts of this implicit back-
ground knowledge have to be added explicitly to the theory. Finding counterex-
amples that are nonintended models clearly indicates what background knowledge
should be added to the formal theory. We would assume that the “>”-relation
denotes a strictly larger relation (Meaning Postulate 1) and that on the domain
{0, 1} it holds that (1 > 0) (Meaning Postulate 2). We decide to add these axioms
to the theory (see Table 5.9).

MP.1 ∀x, y ¬[(x > y) ∧ (y > x)]
MP.2 (1 > 0)

Table 5.9: Background assumptions.

Adding these two background assumptions to the theory will substantially
reduce the number of models of the theory. Specifically, and more importantly,
the models in Tables 5.6 and 5.7 (that were counterexamples to T.2 and T.4) do
no longer belong to the theory. This means that we can retry to prove T.2 and
T.4. Unfortunately, Otter is still unable to prove either of them: there must
exist other counterexamples to Propositions 2 and 4.

Mace proves that Proposition 2 is still underivable by generating the coun-
terexamples in Table 5.10 (without loss of generality, we use only A.7, A.9,
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MP.1, and MP.2).5 Similarly, for Proposition 4 we find the counterexamples in

soli dlab napm
0 0 0 0
1 1 0 0
0 0 0 1
1 1 0 1
0 0 0 0
1 1 1 0
0 0 0 1
1 1 1 1
0 0 1 0
1 1 1 0
0 0 1 0
1 1 1 0

> 0 1
0 F F
1 T F

Table 5.10: Counterexamples to Propositions 2.

Table 5.11 (without loss of generality, we use only A.8, A.10, MP.1, and MP.2).6

The models in Tables 5.10 and 5.11 cannot easily be discarded as nonintended

cons soli nrpd
0 0 0 0
1 1 0 0
0 0 0 0
1 1 0 1
0 0 0 0
1 1 0 1
0 0 1 0
1 1 1 0
0 0 1 0
1 1 1 1
0 0 1 1
1 1 1 1

> 0 1
0 F F
1 T F

Table 5.11: Counterexamples to Propositions 4.

models, they seem to be genuine counterexamples to propositions 2 and 4. We
will now explore different ways of dealing with them.

5Mace finds twelve models on domain size 2. Table 5.10 lists six of them, the other six are
copies with arguments 0 and 1 interchanged.

6Mace finds twelve models on domain size 2, those listed in Table 5.11 and the six copies
with arguments 0 and 1 interchanged.
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5.4.3 Weaken Theorems

We will now regard the counterexamples as faithful models of the theory. There-
fore, if we want to retain Propositions 2 and 4, we must reformulate them such
that they hold in the models that are counterexamples to their initial formula-
tion, e.g., in models such as in Tables 5.10 and 5.11 respectively. In order to
hold in a larger set of models, the reformulated propositions must be weaker than
the original formulations. We will attempt to find reformulated propositions that
are provable from the axioms, yet still close to the original formulation of the
theorems. Note that this does not change the theory: we will only change our
exposition of the theory by singling out more consequences of the axioms explic-
itly. Since all consequences of the axiom set are, by definition, part of the theory,
the theory does not change if we single out more of them.

In case of Proposition 2, ‘the greater the solidarity, the greater the number of
associates per member ’, the new formulation must hold in (at least) the models of
Table 5.10. Let us analyze these models: they all have the form soli(1) > soli(0)
and napm(0) = napm(1). A weaker version of Proposition 2 that also holds in
these models is: ‘The greater the solidarity, the greater or equal the number of
associates per member ’:

T.2− ∀x, y [soli(x) > soli(y) → ¬(napm(y) > napm(x))]

Now that we have reformulated Proposition 2, we can retry to prove it. (We
have not changed the axioms, so the model in Table 5.4 still proves that the
theory is consistent.) Although we have dealt with the (type of) counterexamples
in Table 5.10, there may still be other counterexamples. There turn out to be
none, since we can prove the reformulated theorem.

Theorem 2− The greater the solidarity, the greater or equal the number of
associates per member :

∀x, y [soli(x) > soli(y) → ¬(napm(y) > napm(x))]

Proof: Otter can derive T.2− from A.7, A.9, and MP.1.7

We can try to apply the same strategy to Proposition 4. Let us analyze the
models in Table 5.11. There are counterexamples of the form cons(1) > cons(0)
and nrpd(0) = nrpd(1) and counterexamples of the form cons(1) > cons(0) and
nrpd(0) > nrpd(1). Moreover, there are also models in which Proposition 4 holds
(so, these are not counterexamples), and these have the form cons(1) > cons(0)
and nrpd(1) > nrpd(0) (for example, the model in Table 5.4).

7Note that the proof of T.2− requires the background assumption MP.1. If we had not
discovered the relevance of this assumption earlier, then all counterexamples would be non-
intended models violating MP.1. In other words, we would have discovered this background
assumption now by investigating counterexamples to T.2−.
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It seems like the axioms put hardly any constraint on the relation between
consensus and number of rejections per deviant! A weaker version of Proposition 4
that holds in all these models must be very weak—so weak that is a tautology.
For example: ‘The greater the consensus, the smaller, or equal, or higher the
number of rejections per deviant.’ Theorem 4− is derivable from an empty premise
set.8

Theorem 4− The greater the consensus, the smaller, or equal, or higher the
number of rejections per deviant :

∀x, y [cons(x) > cons(y) → (nrpd(y) > nrpd(x)

∨ (¬(nrpd(x) > nrpd(y)) ∧ ¬(nrpd(y) > nrpd(x)))

∨ nrpd(x) > nrpd(y))]

Proof: Otter can derive T.4− from an empty premise set.

As a result, the statement of T.4− makes no empirical claim and is unfalsi-
fiable. Summarizing: we can derive a (weaker) version of Proposition 2 (Theo-
rem 2−), but this does not help in deriving Proposition 4.

5.4.4 Strengthen Axioms

A final option is to regard the counterexamples as models that are outside the
intended domain of the theory. That is, the theorems do hold but on a smaller
domain. Therefore, we must reformulate the axioms such that models such as
those in Tables 5.10 and 5.11 are no longer models of the revised axioms. In order
to hold in a smaller set of models, the revised axioms must be stronger than the
original axioms. There are several ways to make Proposition 2 derivable. We
choose a way that follows the original argumentation as closely as possible.

Zetterberg argues that Proposition 2 is derivable from Proposition 7 and 9. As
stated above, the counterexamples of Table 5.10 have the form soli(1) > soli(0)
and napm(0) = napm(1). A natural way to exclude these counterexamples is
to add as an axiom that the greater the solidarity, the greater the number of
associates per member :

∀x, y [soli(x) > soli(y) → napm(x) > napm(y)]

However, that would mean that we add Proposition 2 as an axiom (which means
that we can trivially derive it).

A second way to exclude the counterexamples is to add as axioms that the
greater the solidarity, the greater the division of labor (the converse of Proposi-
tion 7):

8We interpret here equal as ‘not smaller than’ and ‘not higher than.’
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A.12 ∀x, y [soli(x) > soli(y) → dlab(x) > dlab(y)]

and the greater the division of labor, the greater the number of associates per
member (the converse of Proposition 9):

A.13 ∀x, y [dlab(x) > dlab(y) → napm(x) > napm(y)]

Adding these two axioms takes care of (the type of) counterexamples in Ta-
ble 5.10 (Axiom 12 removes models 1–2, and 5–6; Axiom 13 removes models 3–4).
We can now make a new attempt at proving Proposition 2 using the revised set of
axioms. If this attempt succeeds, the revision has removed all counterexamples.
As it turns out, we can indeed prove Proposition 2.

Theorem 2 The greater the solidarity, the greater the number of associates per
member :

∀x, y [soli(x) > soli(y) → napm(x) > napm(y)]

Proof: Otter can derive T.2 from A.12 and A.13.

In case of Proposition 4 we must take care of the counterexamples in Table 5.11
(after adding Axioms 12 and 13, Proposition 4 is still not derivable, and the same
counterexamples remain). All counterexamples in Table 5.11 are of the form
cons(1) > cons(0) and soli(0) = soli(1),

To restore the argumentation for Proposition 4 we only need to add an axiom
stating that the greater the consensus, the greater the solidarity (the converse of
Axiom 8):

A.14 ∀x, y [cons(x) > cons(y) → soli(x) > soli(y)]

This takes care of all counterexamples, because a new proof attempt of Propo-
sition 4 succeeds.

Theorem 4 The greater the consensus, the smaller the number of rejections per
deviant :

∀x, y [cons(x) > cons(y) → nrpd(y) > nrpd(x)]

Proof: Otter can derive T.4 from A.14 and A.10.

One way to view the revisions above, is to regard this as adding three extra
axioms, A.12–14. But there is another way: the initial formal version of Propo-
sitions 7, 8, and 9 can be combined with their converses, axioms A.12, A.14,
and A.13 respectively, into a revised version of these propositions as presented
in Table 5.12. Viewed in this way, we have revised our formalization of Propo-
sitions 7–9, by interpreting the natural language statements like ‘the greater the
solidarity, the greater the consensus ’ as a logical biconditional. That is, as ‘the
solidarity is greater if and only if the consensus is greater.’ This interpretation is
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A.7? ∀x, y [dlab(x) > dlab(y) ↔ soli(x) > soli(y)]
A.8? ∀x, y [soli(x) > soli(y) ↔ cons(x) > cons(y)]
A.9? ∀x, y [napm(x) > napm(y) ↔ dlab(x) > dlab(y)]

Table 5.12: Revised formalization of Propositions 7–9.

justifiable by considering the inherent ambiguity of the ordinary language state-
ments. Moreover, it is warranted by the author’s explicit remark to “let us assume
that the research suggests that the link between determinant and result in these
propositions is necessary and reversible” Zetterberg (1965, p.160).

We have now revised the axioms of the theory, so we must again pose the
question: Is the formal theory (still) consistent? Our earlier model in Table 5.4
is no longer a model of the theory, because the stronger version of Proposition 7
(axiom A.7?) does not hold in it. Fortunately, there are still models of our
revised versions of Zetterberg’s Propositions 7–10, for example the model shown
in Table 5.13.9

napm soli cons dlab nrpd
0 1 1 1 1 0
1 0 0 0 0 1

> 0 1
0 F F
1 T F

Table 5.13: A model of Axioms A.7?, A.8?, A.9?, and A.10.

We can easily verify that the revised axioms hold in the model of Table 5.13:
Axiom A.7? holds because the group with greater division of labor (0) has also
a greater solidarity; Axiom A.8? holds because the group with greater solidarity
(0) also has greater consensus; Axiom A.9? holds because the group with greater
number of associates per member has a greater division of labor; and finally,
Axiom A.10 holds because the group with greater solidarity (0) has a smaller
number of rejections per deviant. This revised version of Zetterberg’s theory has
a model, therefore it is consistent.

Now all (intended) theorems are provable: the proofs of Proposition 1, 3, 5,
and 6 (and 11) are still valid because we have only added axioms (or strength-
ened them); Proposition 2 is derivable from 7 and 8 (both in their revised form);

9On domain size 2, Mace generates 66 models of the revised axioms (and the background
assumptions). The model in Table 5.13 is a prototypical model of the theory. There are two
“ideal types” of groups (Zetterberg 1955, p.539):

Mechanical groups marked by: 1) low division of labor; 2) low solidarity; 3) small
membership; and 4) strong rejection of deviates from group norms.
Organic groups marked by: 1) high division of labor; 2) high solidarity; 3) large
membership; and 4) little rejection of deviates.

Group 0 in the model is an organic group, and group 1 is a mechanical group.
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Proposition 4 is derivable from 8 (in its revised form) and the original Proposi-
tion 10.

Moreover, there are two more theorems derivable.

Theorem 15 the greater the consensus, the greater the division of labor :

T.15 ∀x, y [cons(x) > cons(y) → dlab(x) > dlab(y)]

Proof: Otter can derive T.15 from A.14 and A.12.

Theorem 16 the greater the consensus, the greater the number of associates
per member :

T.16 ∀x, y [cons(x) > cons(y) → napm(x) > napm(y)]

Proof: Otter can derive T.16 from A.14, A.12, and A.13.

Similar to the axioms, we can combine the Theorems 1, 2, and 3, with (new)
Theorems 15, 11, and 16 respectively, as Theorems T.1?, T.2?, and T.3? in
Table 5.14.

T.1? ∀x, y [dlab(x) > dlab(y) ↔ cons(x) > cons(y)]
T.2? ∀x, y [soli(x) > soli(y) ↔ napm(x) > napm(y)]
T.3? ∀x, y [napm(x) > napm(y) ↔ cons(x) > cons(y)]

Table 5.14: A revised formalization of Theorems 1–3.

We have now re-formalized three of the four axioms as biconditionals, i.e.,
A.7?, A.8?, and A.9?, which allows us to derive all intended theorems, T.1–6.
Moreover, we can derive three of these theorems as stronger biconditionals, i.e.,
T.1?, T.2?, and T.3?.

Adding axioms allows us to derive all propositions, including the missing
Propositions 2 and 4. Moreover, the stronger formulations of Axioms 7–9, i.e.,
A.7?, A.8?, and A.9?, also restore the intended inference patterns. For example,
unlike in our initial formalization, Proposition 3 (T.3?) can now be inferred from
Proposition 2 (T.2?) and Proposition 8 (A.8?).

5.4.5 Proposition 10

We have now formalized three of the four axioms as biconditionals (A.7?, A.8?,
and A.9?), and left the remaining axiom in its original version (A.10). Although
strictly speaking not necessary for proving the theorems, one could argue that it
is more natural to formalize the fourth axiom, Proposition 10, in a similar way
as the other axioms. Let us explore this option.
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A.10? ∀x, y [soli(x) > soli(y) ↔ nrpd(y) > nrpd(x)]

Table 5.15: Revised formalization of Propositions 10.

Assume Proposition 10 is reformalized as A.10? in Table 5.15: the solidarity
is greater if and only if the number of rejections per deviant is smaller.

The stronger version of Proposition 10 allows for the derivations of three more
theorems derivable.

Theorem 17 the greater the number of rejections per deviant, the smaller the
consensus :

T.17 ∀x, y [nprd(x) > nprd(y) → cons(y) > cons(x)]

Proof: Otter can derive T.17 from A.10? and A.8.

Theorem 18 the greater the number of rejections per deviant, the smaller the
division of labor :

T.18 ∀x, y [nprd(x) > nprd(y) → dlab(y) > dlab(x)]

Proof: Otter can derive T.18 from A.10? and A.12.

Theorem 19 the greater the number of rejections per deviant, the smaller the
number of associates per member :

T.19 ∀x, y [nprd(x) > nprd(y) → napm(y) > napm(x)]

Proof: Otter can derive T.19 from A.10?, A.12, and A.13.

Again, we can combine the (new) Theorems 17, 18, and 19 with Theorems 4,
5, and 6 respectively as Theorems 4?, 5?, and 6? in Table 5.16. We now have for-

T.4? ∀x, y [cons(x) > cons(y) ↔ nrpd(y) > nrpd(x)]
T.5? ∀x, y [dlab(x) > dlab(y) ↔ nrpd(y) > nrpd(x)]
T.6? ∀x, y [napm(x) > napm(y) ↔ nrpd(y) > nrpd(x)]

Table 5.16: A revised formalization of Theorems 4–6.

malized all 10 propositions in the same way (both axioms A.7?–10? and theorems
T.1?–6? as biconditionals). Table 5.17 compares the verbal theory with our last
formal version. In this version, all suggested theorems are derivable. Moreover,
they are derivable by the suggested inferences.
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Verbal theory: Formal theory:
P.1 from P.7 and P.8 T.1? from A.7? and A.8? √

P.2 from P.7 and P.9 T.2? from A.7? and A.9? √

P.3 from P.8 and derived P.2 T.3? from A.9?, A.7? and A.8? √

P.4 from P.8 and P.10 T.4? from A.8? and A.10? √

P.5 from P.7 and P.10 T.5? from A.7? and A.10? √

P.6 from P.9 and derived P.5 T.6? from A.9?, A.7? and A.10? √

Table 5.17: The Verbal and Formal Theory

Is the (formal) theory still consistent? The theory is consistent if it has a
model. The model in Table 5.13 is also a model of Axioms A.7?, A.8?, A.9?,
and A.10?.10

5.4.6 Recapitulating

We have now presented four formalizations of Zetterberg’s natural language the-
ory as summarized in Table 5.18.

Premises: Theorems:
(1) A.7, A.8, A.9, A.10 T.1, T.3, T.5, T.6
(2) A.7, A.8, A.9, A.10, MP.1 T.1, T.2−, T.3, T.5, T.6
(3) A.7?, A.8?, A.9?, A.10 T.1?, T.2?, T.3?, T.4, T.5, T.6
(4) A.7?, A.8?, A.9?, A.10? T.1?, T.2?, T.3?, T.4?, T.5?, T.6?

Table 5.18: Four Formal Version of the Theory.

Versions 1 and 2 use the same axioms, therefore they characterize the same
theory.11 If we would choose between these first two versions, then the exposition
in version 2 is closer to the natural language exposition of the theory because it
presents a version of theorem 2.

Version 3 allows us to derive all propositions, including Proposition 4, and is
therefore a more natural representation of the natural language theory. The price
for deriving all propositions is a set of stronger axioms, which narrows down the
theory’s domain of application. Version 3 allows use to derive the propositions
using the suggested inferences. In version 3 of the theory, some propositions
(T.1?, T.2?, T.3?, A.7?, A.8?, and A.9?) are represented using biconditionals,
whereas other propositions (T.4, T.5, T.6, and A.10) are represented as normal
conditionals. The difference in the translation of propositions is admittedly ad

10On domain size 2, Mace generates 34 models of the revised axioms (and the background
assumptions).

11In the table, we only list the background assumptions if they are needed in the derivations.
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hoc: we have reinterpreted those axioms that were necessary for deriving at least
a conditional version of the theorems.

Version 4 reinterprets all axioms as biconditionals, and as a result allows for
also deriving biconditional statements. Version 4 gives a natural reconstruction of
Zetterberg’s theory in first-order logic. It gives a uniform, formal interpretation
of all propositions (both axioms and theorems), it is consistent, the derivations of
theorems are sound, and all theorems are satisfiable and falsifiable.12 Our goal is
to formalize Zetterberg’s theory, and, arguably, version 4 is our best candidate: it
seems to model the natural language of the original theory closely, and it satisfies
all the logical criteria we formulated.

The explanatory power of version 4 comes at a price: we had to reformalize the
axioms as biconditionals. These versions of the axioms are strong. Consequently,
they restrict the domain of the theory. We can investigate the domain of the
theory by looking at its models. Table 5.19 shows the number of models of

Premises: Models on {0, 1}:
(1) A.7, A.8, A.9, A.10 1024
(2) A.7, A.8, A.9, A.10, MP.1, MP.2 142
(3) A.7?, A.8?, A.9?, A.10, MP.1, MP.2 66
(4) A.7?, A.8?, A.9?, A.10?, MP.1, MP.2 34

Table 5.19: Number of Models on a Simple Domain.

universe {0, 1}. On domain size two, version 4 of the theory has models similar
to the model presented in Table 5.13, and there are models in which all variables
are equal for both groups (i.e., for group 0 and group 1).13 The axioms are so
strong that all five variables become virtually identical, trivializing the theory.
Although version 4 of the theory is a more natural translation of the natural
language wording, its strong axioms seem unrealistic. To a lesser extent, the
same holds for version 3 in which four of the five variables are virtually identical.
Although, version 2 of the theory does not derive a version of proposition 4, it is
perhaps the most promising candidate.

12For proving the satisfiability of a theorem, we have to find a model (ignoring the axioms)
where it holds. All theorems are satisfied in the model in Table 5.13. For proving falsifiability
of a theorem, we have to construct a model (ignoring the axioms) in which the theorem is does
not hold. For example, the models in Table 5.10 still prove the falsifiability of proposition 2
(note that these models do no longer belong to the revised theory).

13The model presented in Table 5.13 is one of the 34 models on domain size 2 that are
produced by the automated model generator Mace. No less than 32 of these models make
all axioms (and theorems) vacuously true! In these 32 models all variables are equal for both
groups (both 0 or both 1 for the five variables yield 25 = 32 models). In the model in Table 5.13
all five variables are unequal, and the copy with arguments 0 and 1 interchanged is the last
remaining model.
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5.5 Discussion and Conclusions

The axiomatization of scientific theories in formal logic dates back, at least, to the
logical positivists (Ayer 1959). A formal theory is defined as the deductive clo-
sure of its set of axioms and theoretical explanations and predictions correspond
to deductions from the set of premises (Popper 1959). Formal logic provides
several criteria for evaluating the theory, such as the consistency of the theory
and soundness of deductions—criteria traditionally associated with the context
of justification. We argued that these criteria can also play an important role in
the revision of a theory—an activity traditionally associated with the context of
discovery. The tests we suggested do not only prove the criteria, but also give
a particular derivation or model that explains why a certain criterion holds or
fails to hold. Examining these proofs or models provides crucial information for
revising the formal theory. Moreover, this revision may have an impact on the
original theory. This can be of great importance since even a minor modification
of the original theory may avoid the costs involved in the empirical testing of
incorrect or irrelevant hypotheses. The criteria facilitate a piecemeal revision of
the theory, resulting in a cyclic process of theory development.14

The detection of nonintended models deserves special attention: the implica-
tions of this simple result are quite fundamental. The mechanization or autom-
atization of human intelligence is an age-old problem. Human intelligence has
a bewildering richness of latent knowledge available that plays a crucial role in
human reasoning (Boden 1998). Two of the most fundamental problems in the
formalization of human intelligence are how to unearth this background knowl-
edge, and how to determine which parts of it are relevant for the problem at
hand. Finding counterexamples that are nonintended models provides a partial
solution: in a sense, the formal theory can tell us what it is missing. Moreover,
the underlying human knowledge is often tacit, making its articulation beyond
the owner’s control (Polanyi 1958). Notice that even a model violating a theo-
rist’s tacit domain knowledge can still be recognized by him/her as a nonintended
model. Furthermore, confronting a theorist with such a nonintended model can
make him/her aware of the underlying tacit understanding and can provide crucial
help in its articulation.

The process of revision is essentially interactive. We attempt to use compu-
tational support for those tasks for which computers are better equipped. For
example, we use automated reasoning tools for finding proofs or models. Notice
that humans theorizers have often difficulty in finding counterexamples that are
non-intended models. Theorizers tend to ignore these models since they conflict
with their common-sense or with their understanding of the substantive domain.
Fortunately, an automated model generator does not have such a bias. On the

14Much like the essay on the polyhedra conjecture in (Lakatos 1976) to which our case study
in §5.3 shows some remarkable resemblance.
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other hand, a human theorizer can use this knowledge to distinguish between non-
intended models and genuine counterexamples. This decision is crucial because
it determines whether we need to revise the premises (in case of a non-intended
model) or whether we need to revise the conjecture (in case of a genuine coun-
terexample). This decision is difficult to make for automated systems because it
would require a full axiomatization of all relevant common, background knowl-
edge.

The product of an axiomatization attempt, a first-order logic rendition of a
theory, is a deductive theory. Although we advocate deductive theories, we do
not want to de-emphasize other modes of reasoning. Quite the contrary. Con-
sider, for example, the step to revise the theory to account for a counterexample.
Such an attempt to revise the theory is abductive. In fact, this step is using an
extended form of abduction, since we may either decide to change the premises
to explain the claim (traditional abduction, see for example Aliseda 1997), or de-
cide to change the claim such that it can be explained by the original premises.15

Although the product of an axiomatization is a deductive theory, the process of
axiomatizing a theory is essentially non-deductive.

15Note that only in the first case we really modify the formal theory—being all logical con-
sequences of the premise set. In the second case only the exposition of the theory changes.



Chapter 6

Partial Deductive Closure

In formal logic, the deductive closure of a theory is taken for granted—in fact,
the formal definition of a “theory” is a set of sentences closed under the rules
of inference. In reality, however, it is impossible to generate the complete de-
ductive closure of a premise set, for the resulting set is infinite (since it contains
all tautologies, i.e., expressions that are always true and hence follow from any
set). In consequence, the complete deductive closure of a premise set is neither
realizable nor desirable—only partial deductive closures provide useful results. In
this chapter, we present an algorithm that performs an efficient partial deductive
closure for an important class of formulas, i.e., conditional formulas that relate
two relevant domain properties. Statements of this form provide the backbone of
any empirical social science; arguably, it is the most important class of empirical
statements in the social sciences.

The implemented program is applied to an important organization theory,
Organizational Ecology. The algorithm generates more theorems than the original
discursive theory made explicit, some of which are of theoretical interest.

6.1 Introduction

Computer simulation has become a standard tool in Management Science. A
domain is represented in a formal language, and the properties of the domain are
investigated through the properties of the formal representation (the “simulation
model”). Traditionally, such representations used equational mathematics, e.g.,
numerical differential equations, as the formal language (Forrester 1961; Cohen,
March, and Olsen 1972; Burton and Obel 1984). Recent years, however, have
seen various efforts to use “qualitative” or “declarative” representation languages
instead (Baligh, Burton, and Obel 1990; Glorie et al. 1990; Blanning 1992; Car-
ley and Prietula 1994; Péli et al. 1994; Kamps and Péli 1995). These efforts are
usually inspired by progress in Artificial Intelligence—and by domains so com-
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plex that they defy numerical representation. The researcher may not know the
numerical value of a variable, but still want to incorporate this variable in the
model. For this reason, qualitative languages are an attractive alternative for
numerical languages.

With the advent of expert systems, a large variety of qualitative languages
became available. The common denominator of these languages is usually (a
fragment of) First-Order Logic (FOL), the best known formal logic. This com-
monality has focussed attention on the use of formal logic as a representation lan-
guage, both in Management Science and elsewhere (Kimbrough and Lee 1988a,b;
Kimbrough 1990; Masuch 1992; Bhargava and Kimbrough 1994). As a logic, FOL
has considerable expressive power and has useful features for developing better
theories. For example, FOL provides precise criteria for theoretical consistency
(is a theory contradiction-free?), soundness (are the explanations of a theory
logically correct?) and contingency (is the theory falsifiable?).

By testing a theory for these properties, the researcher can develop better
theories with the help of logic. The researcher formulates his theory in a logical
language, and the computer investigates the logical properties of this represen-
tation. The logical representation itself could then play the role of a simulation
model, where the computation of the “outcome” is done through logical inferenc-
ing.

Now, if one wants to spell out the logical consequences of a set of assumptions,
then one is, technically speaking, working on the “deductive closure” of this
set “under the rules of inference.” In formal logic, the deductive closure of a
theory is taken for granted—in fact, the formal definition of a “theory” is a set of
assumptions closed under the rules of inference (Tarski 1956). In reality, however,
it is impossible to generate the complete deductive closure of a premise set, for
the resulting set is infinite (since it contains all tautologies, i.e., expressions that
are always true and hence follow from any set). In consequence, the complete
deductive closure of a premise set is neither realizable nor desirable—only partial
deductive closures provide useful results.

In this chapter, we present an algorithm that performs an efficient partial
deductive closure for an important class of formulas. We call this class SPtSP,
(“single property to single property”); it comprises conditional formulas that link
one property of an object to another property of an object. Examples include: if
the size of an organization increases, then its inertia increases ; and if the inertia
of an organization increases, then its survival chance increases. Statements of
this form provide the backbone of any empirical social science; arguably, it is the
most important class of empirical statements in the social sciences.

Section 6.2 discusses the role of formal logic in theory-building; in analogy to
the empirical cycle in social science research (De Groot 1961, 1969), we describe
a logical cycle of theory development. Section 6.3 describes the algorithm. The
next two sections (6.4 and 6.5) show the algorithm in action, working on the
“inertia” fragment of an important organization theory, Organizational Ecology
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(Hannan and Freeman 1984, 1989). As it turns out, our algorithm generates
more theorems than the original discursive theory of organizational inertia made
explicit, some of which are of theoretical interest. The last section discusses some
limits to our approach, regarding both the algorithm and the use of FOL as a
representation language.

The research reported in this chapter is part of a larger effort at the Center for
Computer Science in Organization and Management (CCSOM) of the University
of Amsterdam to develop a formal methodology of theory analysis and theory
building. This effort includes the application of standard logics to existing the-
ories in organization and management (Péli et al. 1994; Péli and Masuch 1994;
Bruggeman 1997), the development of “non-standard” logics especially suited for
the representation of action theories (Pólos and Masuch 1995; Huang, Masuch,
and Pólos 1996; Masuch and Huang 1996), and the development of software that
supports theory building using formal logic (Ó Nualláin 1993).

6.2 Developing Theories with Logical Tools

Theories can be seen as propositional systems, and logic is traditionally used to
order such systems. Logic provides the rationale for theoretical explanations;
explanations, in turn, provide the justification for a theory. In this view, the
“implications” of a theory are crucial for its justification: the better a theory, the
better its “predictions.” The formal definition of a theory is a set of statements
“closed” under the rules of inference (Tarski 1956), which would suggest that
the logic itself does the job of providing the implications. In practice, however,
the logical closure of a theory is not a given; some agent is needed to make
logic happen, and to carry out the deductions. As a consequence, we need to
distinguish between a premise set (an explicitly stated set of premises), a complete
theory (the premise set closed under the rules of inference), and intermediate
theories that represent the premise set plus some, but not necessarily all, of its
logical consequences. In addition, we must recognize that theories are not always
conceived as explicitly stated sets of formulas; they can also be perceived as
some kind of knowledge of a theoretician regarding a domain, regardless how
this knowledge is represented. For want of a better term, we call this kind of
knowledge theoretical expectation. Obviously, theoretical expectations depend on
their bearer and may change as the theory evolves (Lakatos and Musgrave 1970).

Formal inferencing and theoretical expectations interact. Conclusions that
confirm earlier expectations strengthen confidence in the theory and unearth new
ways to test it. Unexpected conclusions invite the theoretician to revise either
his expectations or the original theory. If the theory does not make the right
predictions, it must change, so finding out which conclusions are implied by a
theory is an important part of theory building. Much like the empirical cycle in
social science research (problem identification; hypothesis formulation; research
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design; data collection; data analysis; hypothesis testing), there is a logical cycle
in the interaction between theoretical expectations and formal inferencing.

The logical cycle can be described using the terminology introduced above
(Figure 6.1): Theoretical expectations (TE) are formalized, yielding an interme-
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Figure 6.1: The logical cycle.

diate theory (IT). The intermediate theory may or may not be consistent. If it
is inconsistent, either the formalization or the theoretical expectations require
revisions. If it is consistent, continued theorizing yields a partial closure of the
original IT. New conclusions (NC) can (1) confirm the theoretical expectations,
(2) transcend the theoretical expectations, or (3) contradict the theoretical ex-
pectation. In the first case, the partial closure can continue; in the second case,
the theoretical expectations need to be updated; in the third case, either the for-
malization of the original expectations or the expectations themselves need to be
revised. The cycle is never truly complete, since the deductive closure of any set
is infinite. But not all conclusions that are technically derivable from a given set
are of interest. For example, tautologies are derivable from any set of premises.
But because they are always true, they tell us nothing about the domain—they
are true regardless of the structure of the domain.

Although everybody agrees that theoretical labor is an important part of a
researcher’s work—thinking a theory through, taking it to its logical conclusions,
ascertaining its consistency and coherence, and so on—the logical cycle has re-
ceived very little attention in the literature. In the past, there was no method to
guide the researcher more systematically through a maze of potential conclusions.
With the advent of logical programming, however, we can now automate a partial
deductive closure of a given set of assumptions.
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6.3 Deduction of Theorems

We can get a partial deductive closure of a set of premises by applying inference
rules to deduce new expressions (in technical terms “well-formed formulas,” or
“formulas” for short). In this section, we describe an algorithm that performs
a partial deductive closure of an important class of theorems. Our algorithm
focuses on theorems that relate two properties of the domain. We call this class of
statements “single property to single property” (SPtSP); it comprises conditional
formulas that link one property of an object to another property of an object, as
noted above. The algorithm is called PDC-1.

6.3.1 Informal Description of the Algorithm

The algorithm uses premises of the form SPtSP. An SPtSP expression relates one
quantifiable property to another, such as higher inertia yields to higher survival
chances. Additionally, such an expression may have constraints that restrict it to
certain types of objects, e.g., to reorganization-free organizations : reorganization-
free organizations with higher inertia have higher survival chances. Assume that
a domain is characterized by the following premises:

Constraints1 ∧ Property1 → Property2

Constraints2 ∧ Property2 → Property3

Constraints3 ∧ Property3 → Property4

A theorem that relates Property1 with Property4 can be deduced from these three
premises by “cutting out” Property2 and Property3:

Constraints1 ∧ Constraints2 ∧ Constraints3 ∧ Property1 → Property4

As cases in point, we take three premises from the domain of Organizational
Ecology. The following notation is used to represent SPtSP class expressions:
[Constraints] ∧ Property1 → Property2. The Property1 and Property2 are referring
to two quantifiable properties of the domain. The [Constraints] are the restricting
conjuncts (either one or more conjuncts). The square brackets “[· · ·]” are used
to differentiate the conjuncts of the Constraints from Property1 in the antecedent.
These brackets are added only to improve readability, and are ignored by the
formal machinery.

Assume we have the following premises (assumption 5, 3b and 2a in section 6.4
respectively):

• Larger organizations have higher inertia than smaller organizations of the same
class:
∀c, i1, i2, s1, s2, t1, t2, x, y([O(x, t1) ∧ O(y, t2) ∧ Class(x, c, t1) ∧ Class(y, c, t2)
∧ Size(x, s1, t1) ∧ Size(y, s2, t2) ∧ Iner(x, i1, t1) ∧ Iner(y, i2, t2)]
∧ (s2 > s1) → (i2 > i1))
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(Read: for all c, i1, i2, s1, s2, t1, t2, x, y if x and y are organizations of the same
class c at time t1 and t2, and s1 and i1 are, respectively, the size and inertia of x
at t1 and s2 and i2 are, respectively, the size and inertia of y at t2, and s2 exceeds
s1, then i2 exceeds i1.)

• Reorganization-free organizations with higher inertia have higher reproducibility:
∀i1, i2, rp1, rp2, t1, t2, x, y([O(x, t1) ∧ O(y, t2) ∧ Reorg free(x, t1, t1)
∧ Reorg free(y, t2, t2) ∧ Iner(x, i1, t1) ∧ Iner(y, i2, t2) ∧ Repr(x, rp1, t1)
∧ Repr(y, rp2, t2)] ∧ (i2 > i1) → (rp2 > rp1))
(Read: for all i1, i2, rp1, rp2, t1, t2, x, y if x and y are organizations not in reor-
ganization at time t1 and t2 respectively, and i1 and rp1 are, respectively, the
inertia and reproducibility of x at t1, and i2 and rp2 are, respectively, the inertia
and reproducibility of y at t2, and i2 exceeds i1 then rp2 exceeds rp1.)

• Organizations with higher reproducibility have higher reliability/accountability:
∀ra1, ra2, rp1, rp2, t1, t2, x, y([O(x, t1)∧O(y, t2)∧Repr(x, rp1, t1)∧Repr(y, rp2, t2)
∧ Relacc(x, ra1, t1) ∧ Relacc(y, ra2, t2)] ∧ (rp2 > rp1) → (ra2 > ra1))
(Read: for all ra1, ra2, rp1, rp2, t1, t2, x, y if x and y are organizations at time t1
and t2 respectively, and rp1 and ra1 are, respectively, the reproducibility and
reliability/accountability of x at t1, and rp2 and ra2 are, respectively, the repro-
ducibility and reliability/accountability of y at t2, and rp2 exceeds rp1 then ra2

exceeds ra1.)

These premises are used to create a new theorem relating size and reliabil-
ity/accountability, by following the same steps as in the abstract example. The set
of constraints on this theorem is the superset of the constraints on the individual
premises. Identical conjuncts in this set can be removed (since (p∧p) ↔ p). This
leads to the following new theorem:

• Larger reorganization-free organizations have higher reliability/accountability than
smaller organizations of the same class:
∀c, ra1, ra2, s1, s2, t1, t2, x, y([O(x, t1) ∧ O(y, t2) ∧ Reorg free(x, t1, t1)
∧Reorg free(y, t2, t2)∧Class(x, c, t1)∧Class(y, c, t2)∧Size(x, s1, t1)∧Size(y, s2, t2)
∧ Relacc(x, ra1, t1) ∧ Relacc(y, ra2, t2)] ∧ (s2 > s1) → (ra2 > ra1))
(Read: for all c, ra1, ra2, s1, s2, t1, t2, x, y if x and y are organizations of the same
class c and not in reorganizational period at time points t1 and t2 respectively,
and s1 and ra1 are, respectively, the size and reliability/accountability of x at t1,
and s2 and ra2 are, respectively, the size and reliability/accountability of y at t2,
and s2 exceeds s1 then ra2 exceeds ra1.)

6.3.2 Formal Specification

The partial deductive closure of a premise set is generated in three steps:

Filter premises The premises of the domain are filtered for SPtSP premises.
Only these premises are used to construct new theorems.
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Deduce new theorems The construction of new theorems. The algorithm uses
the SPtSP premises to derive new SPtSP theorems.

Filter new theorems The set of constructed theorems is refined by removing:
1) vacuously true theorems, 2) weaker versions of other theorems in the set,
and 3) superfluous conjuncts.

Table 6.1 introduces the notation we use to refer to the premise set and the
derived theorems:

Symbol Description
Σ the original premise set used as a starting point for the algorithm
Σ? the subset of SPtSP premises in the original premise set Σ
Σ′ the set of SPtSP theorems derived from Σ?

Σ+ the resulting set of premises and theorems Σ ∪ Σ′, i.e., a partial
closure of Σ

Table 6.1: Premise sets and theorems.

Filter Premises

The algorithm PDC-1 first identifies the premises that are in SPtSP form, that
is, of the form:

[Constraintsi] ∧ Propertyi → Propertyj

Let Σ? denote the premise set Σ restricted to SPtSP premises. Define Σ? as
follows:

1. For every premise σ ∈ Σ:

(a) IF σ belongs to the SPtSP class
THEN σ ∈ Σ?

ELSE σ 6∈ Σ?

2. Nothing else is in Σ?

Deduce New Theorems

PDC-1 constructs new theorems for each pair of properties described in the SPtSP
premises. The algorithm uses a depth-first, forward-chaining strategy.

Let Σ? denote the set of SPtSP premises and Φ the set of properties described
in Σ?. Let σij denote an SPtSP formula ([Constri]∧Propi → Propj). The deduced
theorems are denoted by Σ′, the set of SPtSP theorems derived from Σ?.
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Step 1 The algorithm constructs new theorems for each pair {Propa, Propb} of
properties in Φ. Pairs of the same properties {Propa, Propa} are excluded,
since they would yield tautologies like organizations with higher inertia have
higher inertia.

Step 2 For each pair of properties {Propa, Propb} the algorithm uses a premise
having Propa in the antecedent:

[Constra] ∧ Propa → Prop1

to construct an initial formula σa1, which is refined step by step. If there
are no (more) premises that relate Propa to another property, there are no
(more) theorems that relate Propa and Propb. The algorithm terminates for
{Propa, Propb} and continues with the next pair of properties.

Step 3 The formula σai that relates Propa and Propi

[Constrai] ∧ Propa → Propi

is refined if the algorithm can find a premise that relates Propi and Propi+1:

[Constri] ∧ Propi → Propi+1

This results in a formula σa(i+1) that relates Propa and Propi+1:

[Constrai ∧ Constri] ∧ Propa → Propi+1

The antecedent of this formula contains the combined constraints of σai

and σi(i+1), we refer to these constraints of σa(i+1) as simply Constra(i+1).
To avoid cycles in this refinement process, the algorithm only considers
premises that introduce a new property. For example, if an initial formula
relating inertia and reproducibility is found in Step 2, then a premise relat-
ing reproducibility and inertia is not applied in Step 3, since the property
inertia was used before. This prevents the construction of some tautologies
(like organizations with higher inertia have higher inertia).

If the formula σai cannot be further refined (there is no (further) premise
that relates Propi and Propi+1), the algorithm has reached a dead end. The
algorithm retracts the last refinement σai and attempts to construct other
refinements of σa(i−1) (the previous version of σai).

Step 4 The refinement of formula σai is completed if a theorem is constructed
that relates Propa and Propb (in other words Propi+1 in Step 3 is the de-
sired Propb). The new theorem σab is added to Σ′, the set of deduced
SPtSP theorems. Since there may be more than one theorem that relates
Propa and Propb, the algorithm retracts the last refinement of σai to σab
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after a successful theorem construction in Step 4 in order to find formu-
las constructed using different combinations of premises. This allows for
the construction of theorems relating to different contexts, like the survival
chance of reorganizing organizations decreases with time and the survival
chance of reorganization-free organizations increases with time.

Otherwise, if Propi+1 in Step 3 is not the desired Propb, Step 3 is repeated.

PDC-1 uses a standard algorithm for variable unification (Robinson 1965) in
Step 3. This variable unification is necessary to determine that a formula, such
as ∀o1, ta(O(o1, ta)), can be made equal to another formula, such as ∀x, y(O(x, y)),
because the variables can be unified, in this case x with o1 and y with ta.

Filter Theorems

We have three filters to refine the set of constructed theorems. The first filter
removes vacuously true theorems, the second removes weaker or identical versions
of theorems, and the last filter removes superfluous conjuncts in theorems. The
filters create a more concise set of theorems by removing non-interesting theorems.

Vacuously true theorems Sometimes premises cannot be combined directly,
since different premises may have incompatible constraints. If we construct a new
candidate theorem with incompatible premises, i.e., premises having contradic-
tory constraints. For example, we create a vacuously true theorem by combining
premises for reorganizing organizations with premises for reorganization-free orga-
nizations. A vacuously true theorem has an antecedent that can never be fulfilled
in the context of the premises (there is no model that satisfies both the antecedent
and the premises). Recall that the theorems have the form of an if-then statement:
if the antecedent holds then the consequent must hold. Therefore, we can prove
any consequent from the theorem’s antecedent if the antecedent never holds. In
the truth table for the logical conditional, if p is false then the conditional p → q
is always true, regardless of q’s truth value.

Suppose that the premise set contains the following premise:

An organization cannot be reorganization-free and reorganizing at the same
time:
∀x, t1, t2(¬(Reorg free(x, t1, t2) ∧ Reorg(x, t1, t2)))

Assume that we have constructed a theorem with the following constraints:

For all reorganization-free organizations under reorganization . . .
∀x, t1, t2, . . .([O(x, t1)∧Reorg free(x, t1, t2)∧Reorg(x, t1, t2)∧. . .]∧. . .→ . . .)

In this case, the antecedent of the theorem is inconsistent with the premise
set, and the theorem is true regardless of the consequent (which may be even the
falsum).
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In sum, if we can substitute the falsum for the consequent in a theorem, and
this theorem still holds, then the theorem is vacuously true. Such a theorem only
holds because of the (hidden) contradiction in its antecedent. Vacuously true
theorems do not provide any theoretical insights, therefore, their removal does
not affect the theory.

Filter out weaker versions of a theorem Different premises can lead to dif-
ferent theorems that relate the same pair of properties. Sometimes these theorems
are complementary: for example, one theorem is restricted to reorganizations, and
another to reorganization-free periods, like the survival chance of reorganizing or-
ganizations decreases with time and the survival chance of reorganization-free
organizations increases with time. But in other cases, one of them may subsume
the other: for example, if one theorem states that the inertia of organization x is
larger than the inertia of organization y and another theorem that the inertia of
organization x is larger than or equal to the inertia of organization y, the latter
theorem is weaker. In this case weaker versions of the same theorem are removed.
The filter evaluates for every theorem whether it is the unique or strongest ver-
sion of the formula. Identical theorems and theorems with weaker antecedents or
stronger consequents are removed. Identical or weaker versions of a theorem are
uninteresting because they can be derived from a stronger version. For example,

[O(o1) ∧ O(o2)] ∧ (Prop1(o1) ≥ Prop1(o2)) → (Prop2(o1) > Prop2(o2))

is preferable to

[O(o1) ∧ O(o2) ∧ Reorg(o1) ∧ Reorg(o2)] ∧ (Prop1(o1) > Prop1(o2))
→ (Prop2(o1) ≥ Prop2(o2))

since (i) [O(o1)∧O(o2)] is implied by [O(o1)∧O(o2)∧Reorg(o1)∧Reorg(o2)]; (ii)
(Prop1(o1) ≥ Prop1(o2)) is implied by (Prop1(o1) > Prop1(o2)); and finally (iii)
(Prop2(o1) > Prop2(o2)) implies (Prop2(o1) ≥ Prop2(o2)).

Simplify theorems A constructed theorem may require the existence of “in-
termediate” conjuncts. The formula relating size and reliability/accountability
derived in the example of section 6.3.1 would actually read:

∀c, i1, i2, ra1, ra2, rp1, rp2, s1, s2, t1, t2, x, y([O(x, t1)∧O(y, t2)∧Reorg free(x, t1, t1)
∧Reorg free(y, t2, t2)∧Class(x, c, t1)∧Class(y, c, t2)∧Size(x, s1, t1)∧Size(y, s2, t2)
∧ Iner(x, i1, t1) ∧ Iner(y, i2, t2) ∧Repr(x, rp1, t1) ∧Repr(y, rp2, t2)
∧ Relacc(x, ra1, t1) ∧ Relacc(y, ra2, t2)] ∧ (s2 > s1) → (ra2 > ra1))

The inertia and reproducibility conjuncts must exist for the conditions of the
premises to be fulfilled. If their existence is postulated (as is the case in the
formal inertia theory), these conjuncts can be removed from the constraints.

• For every organization, there is some inertia that it has:
∀x, t(O(x, t) → ∃i(Iner(x, i, t)))
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• For every organization, there is some reproducibility that it has:
∀x, t(O(x, t) → ∃rp(Repr(x, rp, t)))

The inertia and reproducibility conjuncts can now be derived from the organization
conjuncts. The set of constraints is simplified (this was tacitly done in sec-
tion 6.3.1):

∀c, ra1, ra2, s1, s2, t1, t2, x, y([O(x, t1) ∧ O(y, t2) ∧ Reorg free(x, t1, t1)
∧Reorg free(y, t2, t2)∧Class(x, c, t1)∧Class(y, c, t2)∧Size(x, s1, t1)∧Size(y, s2, t2)
∧ Relacc(x, ra1, t1) ∧ Relacc(y, ra2, t2)] ∧ (s2 > s1) → (ra2 > ra1))

This concludes the description of our algorithm for the partial closure of SPtSP
formulas. In the next two sections, we show the algorithm in action; it is applied
to a fragment of an important organization theory, the “inertia” part of Orga-
nizational Ecology (OE). We first give a brief account of OE, then provide a
formalization of the inertia part of OE, and finally show how the algorithm per-
forms the partial deductive closure of this part.

6.4 Inertia Fragment of Organizational Ecology

Most organizational theories regard organizations as agents that adapt rationally
to changing environments (Thompson 1967; Mintzberg 1979). Organizational
Ecology, in contrast, sees organizational structures evolving through environmen-
tal selection. When environmental conditions change, new organizations emerge,
and maladapted organizations die.

Organizational ecology employs analogies from biology. Genes determine the
action repertoire of organisms, whereas organizations’ repertoires are fixed by
their core features. Organizations of the same form make up a population (just
as organisms of the same form make up a species). Several factors inhibit the
flexibility and adaptation of organizations, such as sunk costs, political coalitions,
or the hazards of lost legitimacy.

Organizational ecology considers changes in the environment to be largely un-
predictable. Organizations are characterized by structural inertia—if they adapt,
they do so slowly. Contrary to the rational adaptation approach, however, suc-
cessful organizations are inert, not flexible. Organizations must produce their
products or services reliably and account for their actions rationally. To do so,
they must be able to reproduce their structures smoothly. But the factors that fa-
cilitate their reproducibility make organizations resistant to change. Thus, inertia
is a byproduct of reproducibility.

Organizational ecology does recognize the possibility of rational adaptation.
To adapt, organizations must reorganize. Organizations can change their struc-
tures to a certain degree, but reorganizations typically involve changes in core
features. Such changes are dangerous; they involve large resources, and organi-
zational learning must start anew and higher up on the learning curve. Even if
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an organization survives a major reorganization, its environment may change in
unexpected ways and the reorganization might be in vain. So if organizations
attempt to adapt, they are not likely to succeed. Inert organizations—those that
resist the temptation to reorganize—may be less at risk than flexible organiza-
tions.

The inertia part of OE is originally described in (Hannan and Freeman 1984).
Table 6.2 reprints the core of the theory of organizational inertia as published

Label Content
Assumption 1 Selection in populations of organizations in modern societies

favors forms with high reliability of performance and high
levels of accountability.

Assumption 2 Reliability and accountability require that organizational
structures be highly reproducible.

Assumption 3 High levels of reproducibility of structure generate strong in-
ertial pressures.

Theorem 1
(from Ass.1–3)

Selection within populations of organizations in modern soci-
eties favors organizations whose structures have high inertia.

Assumption 4 Reproducibility of structure increases monotonically with
age.

Theorem 2
(from Ass.2,4)

Structural inertia increases monotonically with age.

Theorem 3
(from Ass.4,Thm.1)

Organizational death rates decrease with age.

Assumption 5 The level of structural inertia increases with size for each class
of organizations.

Assumption 6 The process of attempting reorganization lowers reliability of
performance.

Theorem 4
(from Ass.1,6)

Attempts at reorganization increase death rates.

Assumption 7 Organizational death rates decrease with size.
Assumption 8 Structural reorganization produces a liability of newness.
Assumption 9 The death rate of organizations attempting structural change

rises with the duration of the reorganization.
Assumption 10 Complexity increases the expected duration of reorganiza-

tion.
Theorem 5
(from Ass.9,10)

Complexity increases the risk of death due to reorganization.

Note: All propositions are from (Hannan and Freeman 1984).

Table 6.2: The Inertia Fragment of Organizational Ecology.

there. The authors explicitly list the assumptions on which the theorems are
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based, and the intended inference structure of the theory.1 A formalization of
this theory in FOL has been published in (Péli et al. 1994). We use the formulas
representing the premises of (Péli et al. 1994) as input, and let our algorithm
derive the theorems. The premises will be discussed in this section, and the
derivable theorems in section 6.5. Table 6.3 characterizes the relation symbols

Symbol Description
Class(x, c, t) object x is a member of class c at time t
Compl(x, cp, t) object x is characterized by complexity cp at time t
Iner(x, i, t) object x has a value of inertia i at time t
O(x, t) object x is an organization at time t
Relacc(x, ra, t) object x has a value of reliability/accountability ra

at time t
Reorg(x, t1, t2) object x reorganizes between times t1 and t2
Reorg free(x, t1, t2) object x has a reorganization-free period between

times t1 and t2
Reorg type(x, rt, t) object x is in a reorganization of type rt at time t
Repr(x, rp, t) object x has a value of reproducibility rp at time t
Sc(x, p, t) the chance of survival of object x is p at time t
Size(x, s, t) object x has a size s at time t
Time(t) object t is a time-point
x > y value x is larger than value y

Table 6.3: The meaning of the relation symbols.

that are used in the formulas of the inertia fragment.
As noted above, OE stipulates that inertia—not flexibility—helps organiza-

tions to survive (Theorem 1), the reason being that inertia is associated with
reliability and other features that help organizations to survive. Assumptions 1–
3 are put forward to justify Theorem 1 (the original justification in [Hannan and
Freeman 1984] is not sound, but one can derive the theorem by strengthening the
assumptions, as shown in [Péli et al. 1994]).

Assumption 1 Organizations with higher reliability and accountability have higher
survival chance:
∀p1, p2, ra1, ra2, t1, t2, x, y([O(x, t1) ∧ O(y, t2) ∧ Relacc(x, ra1, t1) ∧ Relacc(y, ra2, t2)
∧ Sc(x, p1, t1) ∧ Sc(y, p2, t2)] ∧ (ra2 > ra1) → (p2 > p1))

Assumption 2a Organizations with higher reproducibility have higher reliability and
accountability:
∀ra1, ra2, rp1, rp2, t1, t2, x, y([O(x, t1) ∧ O(y, t2) ∧ Relacc(x, ra1, t1) ∧ Relacc(y, ra2, t2)
∧ Repr(x, rp1, t1) ∧ Repr(y, rp2, t2)] ∧ (rp2 > rp1) → (ra2 > ra1))

1Note that the theory is not very parsimonious: assumption 5, 7 and 8 are not used for any
derivation according to the theory.
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Assumption 2b Organizations with higher reliability and accountability have higher
reproducibility:
∀ra1, ra2, rp1, rp2, t1, t2, x, y([O(x, t1) ∧ O(y, t2) ∧ Relacc(x, ra1, t1) ∧ Relacc(y, ra2, t2)
∧ Repr(x, rp1, t1) ∧ Repr(y, rp2, t2)] ∧ (ra2 > ra1) → (rp2 > rp1))

Assumption 3a Reorganization-free organizations with higher reproducibility have
higher inertia:
∀i1, i2, rp1, rp2, t1, t2, x, y([O(x, t1) ∧ O(y, t2) ∧ Reorg free(x, t1, t1) ∧ Reorg free(y, t2, t2)
∧Repr(x, rp1, t1)∧Repr(y, rp2, t2)∧Iner(x, i1, t1)∧Iner(y, i2, t2)]∧(rp2 > rp1) → (i2 > i1))

Assumption 3b Reorganization-free organizations with higher inertia have higher re-
producibility:
∀i1, i2, rp1, rp2, t1, t2, x, y([O(x, t1) ∧ O(y, t2) ∧ Reorg free(x, t1, t1) ∧ Reorg free(y, t2, t2)
∧Repr(x, rp1, t1)∧Repr(y, rp2, t2)∧Iner(x, i1, t1)∧Iner(y, i2, t2)]∧(i2 > i1) → (rp2 > rp1))

The next two theorems spell out the consequences of environmental selection
through time: (surviving) organizations will tend to become increasingly inert
(Theorem 2), so their survival chances increase (Theorem 3). Justifying these
theorems requires the assumption that “reproducibility of structure increases
monotonically with age” (Assumption 4).

Assumption 4 The reproducibility of reorganization-free organizations increases with
time:
∀rp1, rp2, t1, t2, x([Time(t1) ∧ Time(t2) ∧ O(x, t1) ∧ O(x, t2) ∧ Reorg free(x, t1, t2)
∧ Repr(x, rp1, t1) ∧ Repr(x, rp2, t2)] ∧ (t2 > t1) → (rp2 > rp1))

Under the heading of ‘reorganization,’ Theorem 4 covers organizational change:
organizations may attempt structural change, but such change puts the organi-
zation more at risk than inertia. Hannan and Freeman (1984) claim that The-
orem 4 relies on the assumptions that reorganization lowers the reliability of
organizational performance (Assumption 6), and that the structural inertia of an
organization increases with size (for organizations belonging to the same class;
Assumption 5).

Assumption 5 Larger organizations of the same class have higher inertia:
∀c, i1, i2, s1, s2, t1, t2, x, y([O(x, t1)∧O(y, t2)∧Class(x, c, t1)∧Class(y, c, t2)∧Size(x, s1, t1)
∧ Size(y, s2, t2) ∧ Iner(x, i1, t1) ∧ Iner(y, i2, t2)] ∧ (s2 > s1) → (i2 > i1))

Assumption 6 The reliability and accountability of reorganizing organizations de-
creases with time:
∀ra1, ra2, t1, t2, x([Time(t1) ∧ Time(t2) ∧ O(x, t1) ∧ O(x, t2) ∧ Reorg(x, t1, t2)
∧ Relacc(x, ra1, t1) ∧ Relacc(x, ra2, t2)] ∧ (t2 > t1) → (ra1 > ra2))

The last and fifth theorem of the inertia fragment states that “complexity
increases the risk of death due to reorganization.” To simplify the setup, the
fifth theorem is added as a premise (Assumption 7); this gives a total of seven
assumptions.2

2The fifth theorem is a kind of meta-theorem. It takes as an assumption that complexity
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Assumption 7 (Theorem 5) More complex organizations of the same class have
lower survival chances after reorganizations of the same type:
∀c, c1, c2, p, p1, p2, re, ta, tb, tc, x, y([O(x, ta)∧O(y, ta)∧O(x, tc)∧O(y, tc)∧Class(x, c, ta)
∧ Class(y, c, ta) ∧ Sc(x, p, ta) ∧ Sc(y, p, ta) ∧ Reorg(x, ta, tb) ∧ Reorg(y, ta, tc)
∧ Reorg type(x, re, ta) ∧ Reorg type(y, re, ta) ∧ Reorg free(x, tb, tc) ∧ Sc(x, p1, tc)
∧ Sc(y, p2, tc) ∧ Compl(x, c1, ta) ∧ Compl(y, c2, ta)] ∧ (c2 > c1) → (p1 > p2))

In addition, the premise set contains twelve premises that formulate the nec-
essary background knowledge, e.g., organizations are either reorganizing or not
reorganizing. These premises are implicitly used in the original text (Meaning
Postulates 1–12).

Meaning Postulate 1 Reorganization-free from t1 to t2 means reorganization-free at
t1 and at t2:
∀x, t1, t2(Reorg free(x, t1, t2) → Reorg free(x, t1, t1) ∧ Reorg free(x, t2, t2))

Meaning Postulate 2 Something which is equal cannot be larger, and something
that is larger cannot be smaller:
∀x, y(¬((x > y) ∧ (x = y)) ∧ ¬((x > y) ∧ (y > x)))

Meaning Postulate 3 If x is larger than y and y is larger than z then x is larger
than z:
∀x, y, z((x > y) ∧ (y > z) → (x > z))

Meaning Postulate 4 A reorganization takes time:
∀x, ta, tb(Reorg(x, ta, tb) → (tb > ta))

Meaning Postulate 5 An organization cannot be reorganization-free and reorganiz-
ing at the same time:
∀x, t1, t2(¬(Reorg free(x, t1, t2) ∧ Reorg(x, t1, t2)))

Meaning Postulate 6 An organization cannot change its class without reorganizing:
∀x, t1, t2, c1, c2(O(x, t1) ∧O(x, t2) ∧ Reorg free(x, t1, t2) ∧ Class(x, c1, t1) ∧ Class(x, c2, t2)
→ (c1 = c2))

Meaning Postulate 7 If an organization exists at t1 and at t2 then this organization
exists between t1 and t2:
∀x, t, t1, t2(O(x, t1) ∧ O(x, t2) ∧ (t > t1) ∧ (t2 > t) → O(x, t))

Meaning Postulate 8 For every organization, there is some reliability and account-
ability that it has:
∀x, t(O(x, t) → ∃ra(Relacc(x, ra, t)))

causes longer reorganization periods. Due to the fact that survival chance increases during
reorganization-free periods (Theorems 3) and decreases during reorganization (Theorem 4), it
concludes that complexity decreases the survival chance due to reorganization. This meta-
reasoning requires a slightly more complex form of the algorithm than the version presented
in this chapter. We treat the original fifth theorem as an assumption (Assumption 7), which
enables us to use the simpler version of the PDC-1 algorithm and still derive the same number
of theorems.
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Meaning Postulate 9 For every organization, there is some reproducibility that it
has:
∀x, t(O(x, t) → ∃rp(Repr(x, rp, t)))

Meaning Postulate 10 For every organization, there is some survival chance that it
has:
∀x, t(O(x, t) → ∃p(Sc(x, p, t)))

Meaning Postulate 11 For every organization, there is some inertia that it has:
∀x, t(O(x, t) → ∃i(Iner(x, i, t)))

Meaning Postulate 12 For every organization, there is some class to which it be-
longs:
∀x, t(O(x, t) → ∃c(Class(x, c, t)))

6.5 Application of PDC-1 to the Inertia Frag-

ment

This section exemplifies the results of the PDC-1 when applied to the inertia
part of OE. Starting with the seven assumptions and twelve background assump-
tions listed in section 6.4, PDC-1 generates a total of seventeen theorems—twelve
more than are presented in the original text. Several of the new theorems are
theoretically important. The first five theorems coincide with the theorems of
the original text; their theoretical importance has been justified in (Hannan and
Freeman 1984).

Theorem 1 Reorganization-free organizations with higher inertia have higher survival
chances:
∀i1, i2, p1, p2, t1, t2, x, y([Reorg free(x, t1, t1) ∧ Reorg free(y, t2, t2) ∧ Iner(x, i1, t1)
∧ Iner(y, i2, t2)∧O(x, t1)∧O(y, t2)∧ Sc(x, p1, t1)∧ Sc(y, p2, t2)] ∧ (i2 > i1) → (p2 > p1))

Theorem 2 The inertia of reorganization-free organizations increases with time:
∀i1, i2, t1, t2, x([Time(t1) ∧ Time(t2) ∧ Reorg free(x, t1, t2) ∧ O(x, t1) ∧ O(x, t2)
∧ Reorg free(x, t1, t1) ∧ Reorg free(x, t2, t2) ∧ Iner(x, i1, t1) ∧ Iner(x, i2, t2)]
∧ (t2 > t1) → (i2 > i1))

Theorem 3 The survival chance of reorganization-free organizations increases with
time:
∀p1, p2, t1, t2, y([Sc(y, p1, t1) ∧ Sc(y, p2, t2) ∧ Time(t1) ∧ Time(t2) ∧ O(y, t1) ∧ O(y, t2)
∧ Reorg free(y, t1, t2)] ∧ (t2 > t1) → (p2 > p1))

Theorem 4 The survival chance of reorganizing organizations decreases with time:
∀p1, p2, t1, t2, y([Sc(y, p1, t1) ∧ Sc(y, p2, t2) ∧ Time(t2) ∧ Time(t1) ∧ O(y, t2) ∧ O(y, t1)
∧ Reorg(y, t2, t1)] ∧ (t1 > t2) → (p2 > p1))

Theorem 5 (Assumption 7) More complex organizations of the same class have
lower survival chances after reorganizations of the same type:
∀c, c1, c2, p, p1, p2, re, ta, tb, tc, x, y([O(x, ta)∧O(y, ta)∧O(x, tc)∧O(y, tc)∧Class(x, c, ta)
∧ Class(y, c, ta) ∧ Sc(x, p, ta) ∧ Sc(y, p, ta) ∧ Reorg(x, ta, tb) ∧ Reorg(y, ta, tc)
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∧ Reorg type(x, re, ta) ∧ Reorg type(y, re, ta) ∧ Reorg free(x, tb, tc) ∧ Sc(x, p1, tc)
∧ Sc(y, p2, tc) ∧ Compl(x, c1, ta) ∧ Compl(y, c2, ta)] ∧ (c2 > c1) → (p1 > p2))

Theorems 6 and 7 are straightforward extensions of Assumptions 4 and 6.

Theorem 6 The reliability and accountability of reorganization-free organizations in-
creases with time:
∀ra1, ra2, t1, t2, y([Relacc(y, ra1, t1) ∧ Relacc(y, ra2, t2) ∧ Time(t1) ∧ Time(t2) ∧ O(y, t1)
∧ O(y, t2) ∧ Reorg free(y, t1, t2)] ∧ (t2 > t1) → (ra2 > ra1))

Theorem 7 The reproducibility of reorganizing organizations decreases with time:
∀rp1, rp2, t1, t2, x([Time(t1)∧Time(t2)∧Reorg(x, t1, t2)∧O(x, t2)∧O(x, t1)∧Repr(x, rp1, t2)
∧ Repr(x, rp2, t1)] ∧ (t2 > t1) → (rp2 > rp1))

The first important new theorem, Theorem 8, says that organizational size has
a positive impact on survival chance. It hinges on Assumption 5, and confirms
the theoretical expectation regarding the context of environmental selection. It
helps build confidence in the premise set as an adequate representation of OE.

Theorem 8 Larger reorganization-free organizations of the same class have higher
survival chances:
∀c, p1, p2, s1, s2, t1, t2, x, y([Class(x, c, t1) ∧ Class(y, c, t2) ∧ Size(x, s1, t1) ∧ Size(y, s2, t2)
∧Reorg free(x, t1, t1)∧Reorg free(y, t2, t2)∧O(x, t1)∧O(y, t2)∧Sc(x, p1, t1)∧Sc(y, p2, t2)]
∧ (s2 > s1) → (p2 > p1))

Theorems 9 and 10 follow from Theorem 8 on the basis of the reasoning leading
to Theorem 1. They are extensions of Theorem 8.

Theorem 9 Larger reorganization-free organizations of the same class have higher
reproducibility:
∀c, rp1, rp2, s1, s2, t1, t2, x, y([Reorg free(x, t1, t1) ∧ Reorg free(y, t2, t2) ∧ Repr(x, rp1, t1)
∧ Repr(y, rp2, t2) ∧ O(x, t1) ∧ O(y, t2) ∧ Class(x, c, t1) ∧ Class(y, c, t2) ∧ Size(x, s1, t1)
∧ Size(y, s2, t2)] ∧ (s2 > s1) → (rp2 > rp1))

Theorem 10 Larger reorganization-free organizations of the same class have higher
reliability and accountability:
∀c, ra1, ra2, s1, s2, t1, t2, x, y([Class(x, c, t1)∧Class(y, c, t2)∧Size(x, s1, t1)∧Size(y, s2, t2)
∧ Reorg free(x, t1, t1) ∧ Reorg free(y, t2, t2) ∧ O(x, t1) ∧ O(y, t2) ∧ Relacc(x, ra1, t1)
∧ Relacc(y, ra2, t2)] ∧ (s2 > s1) → (ra2 > ra1))

Theorem 11, however, is unexpected: the normal expectation is that organi-
zations can decrease in size without reorganizing. Theorem 11 points either to a
weakness in the premise set as the formal representation of OE, or to a limitation
of OE itself. On closer inspection, the premise set appears to provide an ade-
quate representation of the theory’s assumptions (fortunately, the original text
[Hannan and Freeman 1984] gives an explicit list of both assumptions and theo-
rems). So we may conclude that Theorem 11 points to a limitation of OE. OE
appears less general than expected, or, to put it more formally, its apparent class
of models is smaller than expected. In fact, OE appears to imply a dichotomy
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between (1) organizations under “normal” conditions and (2) organizations under
reorganization. OE’s theoretical setup dictates that any decrease in size requires
reorganization, so Theorem 11 gives a different meaning to the term “reorganiza-
tion,” or, rather points out how general the meaning of this term is in the theory
of OE.

Theorem 11 The size of reorganization-free organizations of the same class does not
decrease with time:
∀c, s1, s2, t1, t2, x([Time(t1) ∧ Time(t2) ∧ Reorg free(x, t1, t2) ∧ Reorg free(x, t2, t2)
∧ Reorg free(x, t1, t1)∧O(x, t2)∧O(x, t1)∧ Class(x, c, t2)∧ Class(x, c, t1)∧ Size(x, s2, t2)
∧ Size(x, s1, t1)] ∧ (t2 > t1) → ¬(s1 > s2))

Theorems 12 through 13 are expected, but they, too, show in subtle ways
the limits of OE by demonstrating the equivalence of inertia, reliability, and
reproducibility. This equivalence is not intended by the original text, but is
required to establish the soundness of Theorem 1 (as argued in [Péli et al. 1994]).
By implication, Theorems 12–13 reiterate a problem in the explanatory structure
of the original theory.

Theorem 12 Organizations with higher reproducibility have higher survival chance:
∀p1, p2, rp1, rp2, t1, t2, x, y([Repr(x, rp1, t1) ∧ Repr(y, rp2, t2) ∧ O(x, t1) ∧ O(y, t2)
∧ Sc(x, p1, t1) ∧ Sc(y, p2, t2)] ∧ (rp2 > rp1) → (p2 > p1))

Theorem 13a Reorganization-free organizations with higher inertia have higher reli-
ability and accountability:
∀i1, i2, ra1, ra2, t1, t2, x, y([Reorg free(x, t1, t1) ∧ Reorg free(y, t2, t2) ∧ Iner(x, i1, t1)
∧ Iner(y, i2, t2)∧O(x, t1)∧O(y, t2)∧ Relacc(x, ra1, t1)∧ Relacc(y, ra2, t2)] ∧ (i2 > i1) →
(ra2 > ra1))

Theorem 13b Reorganization-free organizations with higher reliability and account-
ability have higher inertia:
∀i1, i2, ra1, ra2, t1, t2, x, y([Reorg free(x, t1, t1) ∧ Reorg free(y, t2, t2) ∧ Iner(x, i1, t1)
∧Iner(y, i2, t2)∧O(x, t1)∧O(y, t2)∧Relacc(x, ra1, t1)∧Relacc(y, ra2, t2)]∧(ra2 > ra1) →
(i2 > i1))

The next three theorems, Theorems 14–16, point out some implications of
Theorem 5, and so does Theorem 17, but Theorem 17 unexpectedly points to a
specific relationship between complexity and size under conditions of reorganiza-
tion.

Theorem 14 More complex organizations of the same class have lower or equal relia-
bility and accountability after reorganizations of the same type:
∀c, c1, c2, p, ra1, ra2, re, ta, tb, tc, x, y([O(x, ta) ∧ O(y, ta) ∧ Class(x, c, ta) ∧ Class(y, c, ta)
∧ Sc(x, p, ta) ∧ Sc(y, p, ta) ∧ Reorg(x, ta, tb) ∧ Reorg(y, ta, tc) ∧ Reorg type(x, re, ta)
∧Reorg type(y, re, ta)∧Reorg free(x, tb, tc)∧Compl(x, c1, ta)∧Compl(y, c2, ta)∧O(x, tc)
∧ O(y, tc) ∧ Relacc(x, ra1, tc) ∧ Relacc(y, ra2, tc)] ∧ (c2 > c1) → ¬(ra2 > ra1))

Theorem 15 More complex organizations of the same class have lower or equal repro-
ducibility after reorganizations of the same type:
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∀c, c1, c2, p, re, rp1, rp2, ta, tb, tc, x, y([O(x, ta) ∧ O(y, ta) ∧ Class(x, c, ta) ∧ Class(y, c, ta)
∧ Sc(x, p, ta) ∧ Sc(y, p, ta) ∧ Reorg(x, ta, tb) ∧ Reorg(y, ta, tc) ∧ Reorg type(x, re, ta)
∧Reorg type(y, re, ta)∧Reorg free(x, tb, tc)∧Compl(x, c1, ta)∧Compl(y, c2, ta)∧O(x, tc)
∧ O(y, tc) ∧ Repr(x, rp1, tc) ∧ Repr(y, rp2, tc)] ∧ (c2 > c1) → ¬(rp2 > rp1))

Theorem 16 More complex organizations of the same class have lower or equal inertia
after reorganizations of the same type:
∀c, c1, c2, i1, i2, p, re, ta, tb, tc, x, y([O(x, ta) ∧ O(y, ta) ∧ Class(x, c, ta) ∧ Class(y, c, ta)
∧ Sc(x, p, ta) ∧ Sc(y, p, ta) ∧ Reorg(x, ta, tb) ∧ Reorg(y, ta, tc) ∧ Reorg type(x, re, ta)
∧Reorg type(y, re, ta)∧Reorg free(x, tb, tc)∧Compl(x, c1, ta)∧Compl(y, c2, ta)∧O(x, tc)
∧ O(y, tc) ∧ Reorg free(x, tc, tc) ∧ Reorg free(y, tc, tc) ∧ Iner(x, i1, tc) ∧ Iner(y, i2, tc)]
∧ (c2 > c1) → ¬(i2 > i1))

Theorem 17 More complex organizations of the same class have lower or equal size
after reorganizations of the same type:
∀c, c1, c2, new c, p, re, s1, s2, ta, tb, tc, x, y([O(x, ta)∧O(y, ta)∧Class(x, c, ta)∧Class(y, c, ta)
∧ Sc(x, p, ta) ∧ Sc(y, p, ta) ∧ Reorg(x, ta, tb) ∧ Reorg(y, ta, tc) ∧ Reorg type(x, re, ta)
∧ Reorg type(y, re, ta) ∧ Reorg free(x, tb, tc) ∧ Compl(x, c1, ta) ∧ Compl(y, c2, ta)
∧ Reorg free(x, tc, tc) ∧ Reorg free(y, tc, tc) ∧ O(x, tc) ∧ O(y, tc) ∧ Class(x, new c, tc)
∧ Class(y, new c, tc) ∧ Size(x, s1, tc) ∧ Size(y, s2, tc)] ∧ (c2 > c1) → ¬(s2 > s1))

In sum, the partial closure through PDC-1 has improved the theory. The-
orems 6 through 10 confirm the theoretical expectations. Theorem 11 is un-
expected, and contradicts the theoretical expectation. Since the intermediate
theory appeared to be adequate, we revised the theoretical expectations instead.
The consequence is that the apparent class of models of the theory is reduced.
Theorems 12–13 are expected (given the revised theoretical expectations). The
next three theorems, Theorems 14–16, strengthen the original theoretical expec-
tations, but the last, Theorem 17, is also unexpected, and forces an update of the
theoretical expectations. The premises of the inertia fragment and the theorems
derived by PDC-1 are shown in Figure 6.2. The nodes represent the theorems
(a theorem relates the top-node with the node); the arrows denote the premises
that yield the theorems.

6.6 Discussion and Conclusions

We have argued that formal logic helps researchers to improve a theory in var-
ious ways. In a static perspective, logic can help them to answer questions of
consistency and explanatory soundness. In a dynamic perspective, logic can help
to discover hidden implications of a given theory, or, more precisely, implications
of a formal representation of the theory in logical terms. As the logical cycle
demonstrates, the partial closure can advance a theory in various ways, either
by reinforcing original theoretical expectations about a domain, or by suggesting
a modification of those expectations. Conversely, if there is no reason to mod-
ify the expectations, the partial closure can point out weaknesses in the formal
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Figure 6.2: The assumptions (An) and theorems (Tn) of the inertia fragment.

representation of the theory.
PDC-1 has its limits, of course.
First, the algorithm works only on a fragment of FOL, namely on formulas

that we called “single property to single property.” This fragment is arguably
important—important enough to allow for a formalization of the inertia part of
OE—but it does not have the full expressive power of FOL.

Second, FOL itself has its limits. There has been a lively debate in philosophy
about the use of FOL as a tool for formalizing scientific theories (Ayer 1959).
Many scientific theories involve notions that FOL cannot handle directly, such
as counterfactual conditions and intensional constructs. One could even argue
that scientific laws are not material implications as provided by FOL. Because
of this, there is a broad agreement that FOL on its own is too weak to formalize
all scientific theories. However, our goals are more modest; we focus on theories
that do not transcend the expressive boundaries of FOL. Even if scientific laws
are not material implications they do imply material implications (as was kindly
pointed out to us by one reviewer), and it remains of interest to generate implicit
consequences thereof. Organizational ecology, the domain theory examined in this
chapter, is restricted to object-related statements about properties and relations.

Third, FOL is not necessarily the most elegant or efficient language. Once a
representation in FOL has been generated for a specific domain, simpler, or more
parsimonious representations may suggest themselves (Newell and Simon 1972;
Brachman and Levesque 1985). But the general experience in natural language
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representation points to a trade off between specificity and flexibility. For specific
domains, specialized languages may appear more appropriate, but such languages
are not easily generalizable to other domains. Conversely, a general language
may not give the most efficient representation for a particular domain, but it
carries over more easily to other domains; because of this, a general language
is more appropriate for a generic application for theorem-finding. Using FOL
has one additional, very important advantage: its formal properties are well-
understood. The formal properties of specialized ad hoc languages are, as a rule,
not known. For example, without a formal semantics, one has no criteria for
soundness; without a proof theory, one has no machinery for derivations.

Fourth, PDC-1 is restricted to finding the logical implications of a given set
of premises. It cannot generate new conclusions in a logical sense. In fact, once
the logic plus a set of premises are fixed, no deductive procedure can generate
logically new conclusions; logically new conclusions require new premises or a
new logic. The motivation for this research was to generate theorems that are
“new” in an empirical sense: implied by the logic but (perhaps) unknown to
the researcher. Such conclusions may or may not be of particular interest—in
this sense the choice to focus on SPtSP formulas is of a heuristic nature. There
is no guarantee that PDC-1 (or more general algorithms, for that matter) will
always generate interesting (empirically) new theorems. In our case study the
algorithm does generate interesting theorems, but more cases are needed to settle
this empirical matter.

The usefulness of PDC-1 was demonstrated for an important organization
theory, Organizational Ecology; the algorithm generated a set of new theorems,
including some of real theoretical importance, notably theorem 11. The fact
that the theory implies that organizations cannot decrease in size under normal
conditions is clearly important for gauging the OE’s scope and setup. Of course,
the algorithm’s job could also have been done “by hand.” In fact, some of the new
theorems had already been detected by hand, as reported in (Péli et al. 1994);
but then, some had not.

Our tool can also be used during the original formalization of the theory. Re-
call that the algorithm also identified all previously known theorems from the
premises, so it could have been used to check the soundness of the original the-
ory. In fact, the investigation of the inertia fragment by our method would have
revealed several more or less serious flaws in the explanatory structure of the
original presentation of the theory. In particular, it would have pointed out that
the derivation of Theorem 1 (selection favors inertia), arguably the most impor-
tant theorem of the inertia part, is unsound, and that a sound derivation requires
additional qualifications that reduce the scope of the original theory quite consid-
erably, see (Péli et al. 1994). Furthermore, the algorithm can help to enlarge the
scope of the theory by helping the theoretician to find out “what would happen
if” he would add new assumptions to the original premise set. In this way, PDC-1
makes an important step towards an application for logical simulation.
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As a direct follow-up of the reported research, we want to extend the PDC-1
algorithm to other classes of theorems. Taking into account that a complete de-
ductive closure will comprise infinitely many theorems (most of them completely
uninteresting), extending the PDC-1 algorithm should be done with care. The
job of the algorithm is not only to derive a particular class of theorems, but also
to ensure that nothing else is derived.



Chapter 7

Qualitative Reasoning beyond the
Physics Domain

The ability to reason qualitatively about physical systems is important to under-
standing and interacting with the physical world for both humans and intelligent
machines. Accordingly, its study has become an important subject of research
in artificial intelligence. Qualitative reasoning techniques are traditionally asso-
ciated with the domain of physics, although the domain of application is, in fact,
much broader. This chapter investigates the application of qualitative reasoning
techniques beyond the domain of physics. It presents a case study of application
in the social sciences: the density dependence theory of organizational ecology. It
discusses how the different nature of soft science domains will complicate the pro-
cess of model building. Furthermore, it shows that the “model building” process
can also help making theoretically important decisions, and, as a result, have an
impact on the original theory. This will require a shift in focus from the “model
simulation” process towards the “model building” process.

7.1 Introduction

During the last decades, Qualitative Reasoning (QR) has been an active area
of research (Weld and de Kleer 1990; Kuipers 1994). The field has reached a
consensus on the main issues. As a consequence of this, the time has come to
think about extending its domain of application. QR is traditionally associated
with the physics domain. This domain of application has been so dominant
that qualitative reasoning is often called qualitative physics (for example, Forbus
1988). Extending the domain of QR prompts an interesting question: is the
dominant relation between QR and physics based on ontological arguments?

The application of QR outside the traditional physics domain seems, in-
deed, possible. Kuipers (1994) lists applications in biology (irreversible pop-
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ulation change, predator-prey ecology), chemistry (chemical engineering), eco-
nomics (supply and demand, micro-economics), and medicine (glaucoma, drug
metabolism).1 The answer to our question appears to be negative, there are no
ontological reasons to explain why the majority of QR-research deals with physics
applications. Does the lack of ontological arguments mean that the relation be-
tween QR and physics is purely accidental? Probably not, there may be other,
pragmatical arguments to explain this relation. A plausible explanation for the
historical choice to reason about physical systems is the formal, well-understood
nature of the physics domain. This indicates that QR outside physics, albeit pos-
sible, may still not be the very same as QR inside physics. The different nature
of the domain may require different emphases. This prompts another question:
does the application of QR outside physics require a change in methodology?

It is with these questions in mind that we performed the case study reported
in this chapter. The intention of the chapter is to investigate the differences
between physics and other domains in the context of QR. Therefore, a natural
choice of domain for this case study is a “soft” science domain. The soft sciences
are in many respects the opposite of physics, in being highly non-formal, less well-
understood. We have chosen to build a QR-application in the social sciences.

This chapter is organized in the following way. Section 7.2 gives a short
introduction to the framework for qualitative reasoning that we used for our
research. Section 7.3 and 7.4 introduce the domain of our case study, i.e., the
density dependence theory of organizational ecology. Section 7.5 describes the
qualitative density dependence model, and summarizes its qualitative behavior
prediction. Section 7.6 lists the results that were obtained during the construction
and use of the qualitative model. And finally, in section 7.7 we evaluate our case
study in retrospect, trying to answer the questions posed above.

7.2 Representational Context

The model of this chapter is implemented in a domain-independent qualitative
reasoning shell called garp (Bredeweg 1992). Garp incorporates many features
of the component-centered (De Kleer and Brown 1984), and the process-centered
(Forbus 1984) approaches in QR. Initial conditions are described in case models,
the theory itself in model fragments (consisting of conditions and givens). Case
models and model fragments can be expressed in terms of: entities (like liquid),
quantities (like amount), values and derivatives (like {−, 0, +}), and dependencies
(like (in)equalities, proportionalities, influences, etc.); or in terms of other model
fragments.

The behavior of a system during a particular time period is described by the
set of applicable model fragments. The behavior over time periods is determined
by the application of transition rules between states of behavior.

1Several other authors have also reported applications of QR outside physics.
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7.3 The Density Dependence Theory

Mainstream organizational theories regard organizations as agents that adapt
rationally to changing environments (Thompson 1967; Mintzberg 1979). These
theories describe organizations from an individual viewpoint. Complementarily,
a change in environmental resource conditions affects the whole population of
organizations. For example, if resource conditions deteriorate, the total popula-
tion of organizations will decline (despite the efforts of individuals to avoid this
fate). Organizational ecology (Hannan and Freeman 1989) describes the process
by which organizational populations grow and decline due to changing environ-
mental conditions. Organizational ecology abstracts from the rational behavior
of individuals, populations are solely dependent on the environmental conditions.

The density dependence theory (Hannan and Carroll 1992) is at the heart of
organizational ecology: it describes the dynamics that underlie the growth of an
isolated population as a function of the population’s density. It serves as a base
model for other parts of organizational ecology that investigate the demographic
behavior of different (sub)populations under changing environmental conditions
(e.g., niche strategists, life history strategists) or during reorganization (e.g., the
inertia-fragment [Hannan and Freeman 1989; Péli et al. 1994]). The density de-
pendence theory assumes that the founding and mortality rates of a population
are affected by two opposing forces: by the degree of legitimation that the pop-
ulation enjoys and by the intensity of competition between the members of the
population.

Legitimation reflects the institutional standing of the population. A high
level of legitimation means that the organizational population has the status of a
taken-for-granted solution to given problems. Organizations of high legitimation
are desirable partners for other organizations when making exchange relations.
Moreover, founding new organizations in a highly legitimated population is also
easier. The theory assumes that the founding rate is directly proportional to the
legitimation of the population, and that the mortality rate is inversely propor-
tional to it. Legitimation increases monotonically with density. The beneficial
effect of growing density is especially important when there are only a few or-
ganizations in the environment. If organization density is high already, then the
founding of an additional organization does not improve the population’s insti-
tutional standing significantly. The higher the density of a population is, the
smaller is the legitimating effect of additional organizations.

An intensifying competition between the member organizations of the popula-
tion increases the mortality. It also decreases the founding rate of the population:
managers are reluctant to initiate new organizations if the chance of success is low.
The theory assumes that the intensity of competition is directly proportional to
the mortality rate and inversely proportional to the founding rate. Since compe-
tition is about resources, the intensity of competition increases with density. The
density dependence theory claims that increasing density intensifies competition
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at an increasing rate.
The beneficial effects of legitimation prevail at low densities, while the negative

effects of competition dominate if density is high. As a result, the demographic
rates change with density in a non-monotonic way. The founding rate increases
over the lower density range and decreases above a certain value. On the other
hand, the mortality rate decreases at low densities, and increases later. When the
two rates becomes equal, the population reaches its equilibrium size: this value
is called the carrying capacity of the given resource environment.

Hannan and Carroll (1992, chap.2) give the following description of the intu-
itive theory specified above:

Competition The intensity of competition, C, increases with density, N , at an
increasing rate. That is, C = ϕ(N); and ϕ′ > 0 and ϕ′′ > 0.

Legitimation The intensity of legitimation, L, increases with density at a de-
creasing rate. That is, L = υ(N); and υ′ > 0 and υ′′ < 0.

Founding Rate The founding rate of an organizational population, λ, is in-
versely proportional to the intensity of competition within the population,
and directly proportional to the legitimation. That is, λ ∝ 1/C and λ ∝ L.

Mortality Rate The mortality rate of an organizational population, µ, is di-
rectly proportional to the intensity of competition within the population,
and inversely proportional to the legitimation. That is, µ ∝ C and µ ∝ 1/L.

For environments with a positive carrying capacity, it is assumed that legitima-
tion exceeds competition at low densities, that is, Li ≥ Ci for i < N . To avoid
negative founding and mortality rates, the range of the legitimation and competi-
tion functions also has to be confined to non-negative numbers. Since legitimation
and competition occur in the denominator of the mortality and the founding rate,
respectively, their value cannot be zero either. The theory assumes that L > 0
and C > 0.

The legitimation and competition functions are depicted in Figure 7.1. Com-
petition increases with density at an increasing rate, and legitimation increases
with density at a decreasing rate. In this figure, N0 denotes the initial point, and
Ncc denotes the point where legitimation and competition are equal.

7.4 Applying the Theory

Our aim is to simulate the growth pattern of populations, in other words, how
the density of a population changes over time. Hannan and Freeman (1989) use
the Lotka-Volterra definition of growth rate, ρ, as the difference between founding
and mortality rates of the population. That is, ρ = λ−µ. The growth rate can be
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NN0

competition

legitimation

densitycc

Figure 7.1: Legitimation and competition as functions of density.

calculated from legitimation and competition directly: if λ = L/C and µ = C/L
then ρ = L/C − C/L.2

NN0

growth rate

densitycc

Figure 7.2: Growth rate as a function of density.

Figure 7.2 depicts the growth rate of an organizational population, based on
the legitimation and competition functions in Figure 7.1.

We can now investigate the theory’s predictions about the change of popu-
lation size. If the environment is initially empty (Figure 7.3), then the density
dependence theory predicts a sigmoid (or S-shaped) population growth. This
growth pattern is the well-known logistic curve of the Lotka-Volterra model.

2In fact, founding and mortality rates may differ by a factor. That is, λ = a ∗ L/C and
µ = b ∗ C/L. We ignore these factors to allow for the direct calculation of the growth rates,
because the use of a simple model helps to convey the main point of our argument. Moreover,
if the factors a and b are given we can rescale the C and L functions to C? and L?, so that
λ = L?/C? and µ = C?/L?. The rescaled C? (L?) still satisfies the criteria of increasing at an
increasing (decreasing) rate.
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Figure 7.3: Expected behavior for an empty environment.

7.5 Qualitative Density Dependence

In section 7.4 we have established that growth rate ρ = L/C−C/L. Having only
positive legitimation and competition values, this means that ρ > 0 if L > C,
ρ = 0 if L = C, and ρ < 0 if C > L. The sign of L−C equals the sign of ρ. The
qualitative model of growth rate therefore is ρ =Q L− C.3

Section 7.3 also gives constraints on legitimation and competition. Legitima-
tion is increasing with density at a decreasing rate, δL/δN > 0 and δ2L/δN2 < 0.
Competition is increasing with density at an increasing rate, δC/δN > 0 and
δ2C/δN2 > 0. But instead of derivatives to density, derivatives to time are
needed. If legitimation is greater than competition (a growing population) den-
sity will increase with time. This means that we can use the derivatives listed
above. This qualitative behavior can be modeled as follows: L ∝Q N , δL ∝Q 1/N ,
C ∝Q N , and δC ∝Q N .

If legitimation is smaller than competition (a declining population) density
will decrease with time. This means that we have to read Figure 7.1 from the
right to the left. In this part, competition is decreasing with decreasing density at
an increasing rate (i.e, the derivative is negative, but the second-order derivative
is positive), and legitimation is decreasing with decreasing density at a decreasing
rate. This means that the signs of the second-order derivatives of L and C
change. This qualitative behavior can be modeled as follows: L ∝Q N , δL ∝Q N ,
C ∝Q N , and δC ∝Q 1/N .

If density is increasing, it has a positive effect on the second order derivative of
competition and a negative effect on the second order derivative of legitimation.
If density is decreasing these effects are reversed. In the equilibrium points (le-

3To denote the difference between qualitative dependencies and their mathematical counter-
parts, we use “=Q” instead of “=” for equalities, “∝Q” instead of “∝” for proportionalities, and
“I” for influences. To be able to deal with higher order derivatives, we introduce new quantities
(named δ . . .) that correspond to the derivatives of the original quantities (using influences).
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gitimation equals competition, i.e., N0 and Ncc), density is not changing, making
this difference disappear.

N I+ ρ (7.1)

L I+ δL (7.2)

C I+ δC (7.3)

L ∝Q+ N (7.4)

δL ∝Q− N (7.5)

(δL ∝Q+ N) (7.6)

C ∝Q+ N (7.7)

δC ∝Q+ N (7.8)

(δC ∝Q− N) (7.9)

ρ =Q L− C (7.10)

Figure 7.4: Dependencies of qualitative density dependence.

Figure 7.4 summarizes the model. Dependencies 7.1 to 7.3 are included for
technical reasons, they allow the use of higher-order derivatives by modeling them
as normal values. Dependencies 7.4 and 7.5 ensure that legitimation is increasing
with density at a decreasing rate (if legitimation is smaller than competition, de-
pendency 7.6 replaces 7.5). Dependencies 7.7 and 7.8 ensure that competition is
increasing with density at an increasing rate (if legitimation is smaller than com-
petition, dependency 7.9 replaces 7.8). Dependency 7.10 calculates the growth
rate from the legitimation and competition values.

We have now modeled the causal chain of the density dependence theory: i)
the trade-off between competition and legitimation causes a certain growth rate,
ii) the growth rate will affect the density of the population, iii) the change in
density, in its turn, will affect competition and legitimation, iv) etcetera.

Using this qualitative density dependence model, the qualitative reasoning
shell garp can make behavior predictions of the following case models:

Case A: An empty environment Scenario A describes an environment that
contains no members, but has some positive amount of resources. In this scenario,
the initial values are N = 0 (the initial density is zero), L = C, and δL > δC
(indicating the presence of resources). The behavior prediction is as follows (see
Figure 7.5): State 1 is (just before) the point T0, state 2 corresponds to T0, state 3
to the interval between T0 and T1, state 4 to the point T1, state 5 to the interval
between T1 and T2, and finally, state 6 to point T2.
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Figure 7.5: Case A: An empty environment.
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Case B: A population in equilibrium Scenario B describes an organizational
population that is at its carrying capacity: there is a positive density, and the
legitimation and competition are in balance. In this scenario, the initial values
are N > 0 (the initial density is positive), L = C, δL = 0, and δC = 0 (the
competition and legitimation are in equilibrium). The behavior prediction of
Case B results in a single steady state (see Figure 7.6).
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Figure 7.7: Case C: An overcrowded environment.

Case C: An overcrowded environment Scenario C describes an organiza-
tional population that is above its carrying capacity: there is a positive density,
but the competition exceeds the legitimation of the population. In this scenario,
the initial values are N > 0 (the initial density is positive), L < C, and δL > δC
(the competition exceeds the legitimation). The behavior prediction is as follows
(see Figure 7.7): State 1 corresponds to the interval before T3, and state 2 to the
point T3.

7.6 Results

Hannan and Carroll (1992) give a formal mathematical model of density depen-
dence, as well as an explicit qualitative description using the proportionalities
and the signs of the derivatives as summarized in section 7.3. The qualitative de-
scription provides the intuitions underlying the mathematical description of the
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theory. For building the qualitative model, we only used the qualitative descrip-
tion of the theory. This resulted in a model that closely follows the theoretical
intuitions. It describes the core elements of the theory and abstracts from unnec-
essary detail. The model can be used to become familiar with the theory and the
theory’s predictions. The resulting qualitative density dependence model is able
to derive the behavior predicted by the theory. The qualitative model is more
general than the parametrical model (and the resulting quantitative simulations).
A quantitative, parametrical model makes, out of necessity, various non-trivial
assumptions about parameters, functions, etcetera.

During the modeling process we had to make several decisions of theoretical
importance. These decisions reveal implicit assumptions underlying the theory.
Making these assumptions explicit is an important contribution to the original
theory. Apart from identifying hidden assumptions underlying the theory, the
qualitative simulator was also able to predict unidentified consequences of the
theory. We will discuss some of these implicit assumptions and consequences in
detail:

First, the theory gives no information about the derivatives of legitimation
and competition at zero density. Therefore, it is possible that the derivative of
competition is initially higher than the derivative of legitimation, i.e., δC0 > δL0

(as depicted in Figure 7.8). That is, the derivative of growth rate is initially

0N 0N density

growth rate

legitimation

competition

density

Figure 7.8: Monotonically growing population.

negative, resulting in a monotonic population growth. This is in conflict with the
theory’s claim that the demographic rates are non-monotonic. A constraint is
needed on the initial derivatives of competition and legitimation: at zero density,
the derivative of legitimation is greater than the derivative of competition (δL0 >
δC0). This constraint is an additional premise that needs to be added to the
theory.

Second, in state 3 of case A the simulator predicts a state transition from un-
equal derivatives of legitimation and competition to equal derivatives. Although
this transition is likely to occur, it is not guaranteed to take place. In state 3,
L > C, δL > δC, δ2L < 0, and δ2C > 0. There is no guarantee that δL will
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become equal to δC. If legitimation and competition behave as in Figure 7.9, the

0N densitydensity0N

growth rate
competition

legitimation

Figure 7.9: Forever expanding population.

population will stay in state 3, that is, it grows exponentially into infinity. This is
clearly unintended: real-world’s resources are always finite in number. This case
can be avoided by assuming that competition exceeds legitimation after a certain
density value, that is, there exists a certain density N? beyond which C > L
(recall that legitimation exceeds competition at low densities).4 This is another
additional premise that needs to be added to the theory.

Third, the decline of overcrowded populations is also captured by the density
dependence theory.5 If there are more organizations around than the carrying
capacity of the environment, for instance due to migration, the density falls until
the population reaches the carrying capacity (see Figure 7.10). The theory claims

time
N0

T

density

N

cc

cc

Figure 7.10: Expected behavior for an overcrowded environment.

4A different remedy, namely to impose an upper-bound on legitimation, is suggested in (Péli
1993).

5This additional case model was found by hand, although it could have been discovered using
a total-envisionment of states and transitions.
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that the density dependence of organizational populations is non-monotonic. This
is, indeed, the case for increasing populations. The decrease of populations man-
ifests, in contrast, a monotonic pattern. This is an unknown consequence of the
theory that sheds light on the relative speeds of growth and decline processes: it
predicts that the decline of a population will be significantly more rapid that its
growth.

7.7 Discussion

As discussed in the previous sections, the density dependence theory of organiza-
tional ecology was successfully modeled as a QR-application. In accordance with
existing research, our case study did not reveal any ontological arguments that
would prevent the application of QR outside physics.

A full-fetched discussion of the metaphysics of QR is outside the scope of
this chapter. This discussion should focus on the level of abstraction. Physics
has reached a high level of abstraction using terms such as energy or gravity as
abstractions of underlying forces. These terms have an advanced nature (anyone
who tried to explain to a child what gravity is will have noticed this). The non-
physics domain of this chapter and those of (Kuipers 1994) have also reached a
level of abstraction that is sufficient for building QR-applications.

Although feasible, the application of QR in a soft science domain is somewhat
different from applying QR in physics. This difference seems to emerge from the
different natures of both domains. There is one important difference between the
domain of physics and a domain in the soft sciences. Not surprisingly, soft science
domains are less well-understood, less formalized. In short, soft sciences lack the
deep understanding of domain knowledge that characterizes physics. This is a
subtle difference, but it has important methodological consequences.6

7.7.1 Finding the Right Model for the Job

A first consequence is that building models on less well-understood, less formal
domains will require more effort, and therefore will be more time consuming.
Although the value of the “model simulation” process (Forbus 1988) remains, the
“model building” process must obtain a more prominent status.

There is another, deeper, consequence. In physics, terms such as liquid flow
have a clearly established meaning (Hayes 1985a). In the soft sciences, the nomen-
clature is less developed; there is hardly any consensus. Terms like legitimation

6In the following, we will exaggerate this difference in understanding of the domains in order
to make our arguments more clear. In reality, insufficient knowledge about the domain can
play a role in all domains, including physics (as one reviewer put it: “Modeling in the physical
sciences and in engineering is still very much an art”). Thus, insights in the way to handle
insufficient domain knowledge are useful for QR in general.
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vary in their precise meaning among different theories. For example, the term
legitimation denotes, in the density dependence theory, the taken-for-grantedness
of an organizational population. On many occasions, the precise nature of a vari-
able is only defined by the behavior it manifests in the context of a theory, and
not by its label. As a consequence, the constructed domain models will not be
very generic, they will only be reusable to a very limited extent.

In the traditional case (Falkenhainer and Forbus 1991), the use of a particular
term, say liquid flow, induces the use of a particular model fragment specifying
the behavior related to this term. But when terminology has no exact meaning
this process is reversed: a needed model fragment determines the use of a certain
term. The prediction of certain desired behavior, e.g., a sigmoid density function
in the density dependence theory, requires the opposing force of two underlying
causes. After constructing the model fragments with unlabeled variables, we start
to look for sociological meaningful names, for example the terms legitimation and
competition, for the two underlying causes.

Summarizing, the application of QR in soft science domains will require more
effort in the model building process. Moreover, the constructed model fragments
will only be reusable to a limited extent. Thus, it is less likely that the modeling
process can be facilitated by existing libraries of generic model fragments.

7.7.2 Finding the Right Job for the Model

The same fact that causes the model building process to be more troublesome,
also makes it more worthwhile. Let us analyze what is disturbing the modeling
process. Is it the “incompetence” of the model builder? Although the bounded
rationality of a human model builder is certainly an important factor that tampers
with the modeling process, there is no reason why the same model builder should
be less competent when modeling a soft science theory. Is it the “incompetence”
of the theory? We think so: during the modeling process many decisions have to
be made, that have an impact on the original theory.

The theory can be ambiguous and allow for various interpretations. If these
ambiguities are solved in the qualitative model, this solution corresponds also
to an improvement of the original theory (see section 7.6 for examples).7 The
explication of the underlying structure of a theory will provide new theoretical
insights. The model can reveal underlying assumptions, and thereby shed light
on the theory’s domain of application. Furthermore, the simulator can identify
unforeseen (and even counterintuitive) consequences of a theory, and thereby
clarify the theory’s predictive and explanatory power. In short, the original theory
will evolve in parallel with its qualitative model during the modeling process.8

7Note that handling incomplete knowledge is one of the strong points of QR.
8Contemporary philosophy of science argues that theory development follows a cyclic pattern

(Kuhn 1962; Lakatos 1976; Balzer et al. 1987). After the initial formation of a theory, it is
repeatedly revised to account for anomalous observations (and may, in the end, be abandoned
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Suppose we attempt to build the qualitative model of a premature, possibly
imperfect theory. Instead of a straightforward translation, the model building
will require decisions of theoretical importance. These decisions can be facilitated
by simulation runs: various alternatives can be implemented and evaluated for
their impact on the behavior prediction. The predicted behavior may not be in
accordance with intuitions, logic, or empirical knowledge. These discrepancies
will guide the model builder in the revision of the qualitative model (or of the
expectations).9 Moreover, these revisions will also apply to the original theory. In
this way, the tedious “debugging” steps in traditional QR acquire a new character.
They become experiments at the frontier of a science: every successful and every
unsuccessful revision of the model may extend our knowledge about the theory.

if the revision would require too radical changes, resulting in a paradigm shift). QR can play
an important role in this diachronic structure of a theory, it allows us to recreate the theory-
evolution process at a miniature scale.

9Several machine learning tools to support the evolutionary model building process (Falken-
hainer and Rajamoney 1988), and the diagnose/repair step (Bredeweg and Schut 1993) have
been reported.



Chapter 8

Discussion & Related Work

But to come very near to a true theory, and to grasp its
precise application, are two very different things, as the his-
tory of science teaches us. Everything of importance has
been said before by somebody who did not discover it.

—Alfred North Whitehead, The Organisation of Thought

An exhaustive discussion of relevant related work is beyond the scope of this
thesis, since it would need to consider a seemingly endless list of various issues
from diverse fields as organization theory, sociology, methodology, philosophy,
logic, automated reasoning, and artificial intelligence. Instead, we will address
some relatively isolated issues, mainly focusing on those not already discussed in
earlier chapters.

8.1 Computational Theory Building

The main line of this thesis has been the practical application of logic to scientific
theories, with a special focus on the role that computational support can play
in formal theory building. Of course, any of the computational derivations we
made in our case studies could have been made ‘by hand’ by anyone with suffi-
cient proficiency in logic. In fact, each of these derivations, when considered in
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isolation, would be regarded as rather simple by logicians.1 However, perform-
ing large numbers of these derivations in practice is a different matter and here
computational support can play a crucial role. The crucial importance of support
tools was recognized long before the availability of computers. One of the ear-
liest formalizations, outside mathematics, of a scientific theory using first-order
logic addressed biology (Woodger 1937, 1939). Woodger (1939) deliberates in an
epilogue about what a modern visitor to the Solomon’s House from Bacon’s New
Atlantis would encounter. The main change he envisions is

a Calculator—a category of worker not provided for by Bacon. The
Calculator operates a gigantic machine, like our machines but of very
much wider scope, being capable of working out the consequences
of any hypothesis which can be formulated in the universal notion.
(Woodger 1939, p.79)

In a sense, we have been trying to provide the type of machine that Woodger
envisioned, by investigating the ways in which modern computers can support
the axiomatization of, and computational reasoning with, scientific theories. Al-
though the role of computational support should not be underestimated—it played
a crucial role and, either directly or indirectly, motivated many decisions we
made—the number of pages that explicitly discuss the computer-based imple-
mentation has remained fairly limited. This can be immediately explained by our
decision to reuse generic computational tools from the field of automated reason-
ing for the search for proofs and models. As a result of this, the quest for com-
putational support amounts to finding appropriate operationalizations from the
various logically equivalent ways to characterize various criteria, such as the con-
sistency of the theory and the soundness of theoretical derivations. It is important
to note that, due to the undecidability of first order logic, there are fundamental
restrictions on what we can ultimately achieve (Beth 1958b). Well within these
limitations, the developments of modern software and, especially, hardware have
caused, and continue to cause, a spectacular increase in the amount of problems
that can be solved by computational tools (Wos 1998). For example, automated
reasoning tools did solve various open problems in mathematics (Slaney 1994a).
The relative simplicity of the derivations gives us, perhaps, some confidence that
the queries we pose can be solved in practice by computational tools.

The computational component is also one of the main distinctions with earlier
efforts to formalize theories in logic, such as the formal approach of (Kyburg 1968)
and the structuralist approach to theories (Balzer et al. 1987). Our approach
closely resembles that of Kyburg (1968), who presents first-order logic renditions

1We are here ignoring the fact that human proofs are usually only partially formal, and
that human theorem proving can be error prone (even logicians can have a ‘bad’ day, see also
[Hodges 1998]). Moreover, some of the derivations are, albeit technically not very complex, still
difficult to perform by human theorem provers; think of the construction of counterexamples
that are nonintented models of the theory.
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of theory fragments from the fields of mathematics, geometry, physics, psychology,
sociology, and biology. There are striking similarities between our case studies and
the sociological example used in Kyburg’s chapter 2, and the formalization of a
psychological theory in his chapter 11. Kyburg’s chapter on sociology, chapter 12,
is perhaps somewhat different for it mainly relies on the differential equations used
in Simon’s mathematical model (1952; 1957) of Homans’ theory of the human
group (1950). Perhaps the main difference with our computational approach is
that Kyburg makes all his derivations manually—indeed an admirable effort.

The structuralist approach is representing theories as set-theoretic models and
allows for the substantial use of standard mathematics (Balzer et al. 1987).2 The
structuralist approach has been widely applied to a variety of theories from the
empirical sciences. Although mainly motivated by the formalization of physics
(Sneed 1971), there are various applications of the structuralist approach to other
empirical sciences (Stegmüller 1986; Balzer, Moulines, and Sneed 2000, see).
These applications include structuralist formalizations of sociological theories (for
example, Balzer 1990; Manhart 1994), notwithstanding their (initial) disclaimer
that contemporary sociological theory may simply not yield the demanded formal
structures (Balzer et al. 1987, p.xix). The wide range of applications shows that
the structuralist approach provides convenient notions for formally expressing
scientific theories.3 However, it is yet unclear whether these notions are equally
attractive for computational reasoning with them.

8.2 Formal Theory

The formalization of scientific theories in formal logic has a long history. The
intimate relation between logic and scientific methodology was at the core of
the logical positivism of the Vienna Circle (Carnap 1928; Ayer 1959; Neurath
et al. 1970).4 Many of the classic textbooks on logic have even the dual goal
of introducing both logic and scientific methodology (for example, Cohen and
Nagel 1934; Tarski 1946; Carnap 1958). There are various ways in which formal
logic can be applied to scientific theories (see, for example, the discussion of the
potential interaction between modern logic and philosophy of science in [Van

2The structuralist approach is also known as the ‘non-statement view’ on theories (Stegmüller
1973), also sometimes called the new structuralism (to distinguish it from the ‘old’ structuralism
which was in fact closely connected with the traditional axiomatic method [Piaget 1971]).

3Whether there are fundamental reasons for using set theory is debatable. As Hintikka
(1998, p.304) writes: “[W]hen the sharpest philosophers of science realized that a study of ‘the
logical syntax of the language of science’ was not enough, they resorted to set theory for their
conceptualizations. Ironically some misguided philosophers of science have continued to seek
salvation in set theory long after the development of logical semantics and systematic model
theory.”

4Although logical positivism was for some time out of favor in philosophy, there is a current
re-evaluation of logical positivism (Friedman 1988, 1991).
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Benthem 1982]). Despite this potential and despite the illustrious history, there
are few current interfaces between logic and philosophy of science (Kuipers 1997).
Moreover, there is no equivocal advise on which formalism is most suitable to
represent particular theories. Therefore, we decided to apply only classical, well-
understood formalism and notions. We used classical first-order logic, and viewed
theories as deductive systems (Tarski 1956), in which theoretical explanations and
prediction correspond to deductions of theorems (Popper 1959).5 Of course, this
should not be interpreted as a claim that first-order logic is the most suitable logic
for representing scientific theories, nor even as a claim that such a logic exists.

Throughout the thesis, we have provided formalizations of actual theories from
the field of sociology and, especially, its subfield of organization science. This is,
perhaps, a controversial choice, because the paradigm examples of theories in the
empirical sciences belong to physics. The field of sociology is even renowned for
its lack of systematic theory, and consequently, sociology appears as an unlikely
subject for an axiomatization attempt using formal logic. Nevertheless, all sci-
ences, including the social sciences, share the same methodological principles. In
particular, whether a theoretical argument in sociology is valid should be judged
by the same criteria as an argument in physics. In short, the “logic” of the social
sciences is not different from that of the other sciences (Nagel 1956; Rudner 1966;
Popper 1969; Neurath 1970).

This does not imply that browsing through a sociological journal gives the
same impression as browsing those of fields like, say, physics. There are, of
course, major differences between the actual theories of sociology and those of
physics. One of the most noticeable differences is the rigorous, mathematical
discourse of physics and the informal, qualitative, verbal discourse of sociology.
Since descriptions of sociological theories are stated in ordinary language, they
are usually partial and incomplete. This is not to say that these verbal theories
do not contain creative and interesting ideas. Quite the contrary, sociological
theories contain as a rule many original ideas, some of which are genuine insights.
Unfortunately, these insights are easily lost within the bewildering richness. The
logical formalization of theories is an attempt to ferret out these insights.

In physics, the axioms of theories are regarded as fundamental laws of nature.
The premises of the formal theories we reconstruct are not necessarily such self-
evident, universally true statements. Our goals are much more modest; we want to
represent the theories as they appear in the literature. Our formal reconstructions
use assumptions that are, in general, more basic statements than the theorems.

5The view of a theory as a deductively closed set of sentences is attributed to Alfred Tarski.
Although we will use the expressions ‘deductive theory’ and ‘deductive system’ synonymously,
it is perhaps worth to point out that Tarski (1956, p.343) uses them “in quite distinct senses.” A
‘deductive theory’ is a realization (or model) of an axiom system, whereas every set of sentences
which contains all its consequences is a ‘deductive (closed) system.’ See (Putnam 1962; Hempel
1970; Suppe 1974) for discussion and criticism of standard notions of theory, and see (Balzer
et al. 1987) for a set-theoretic representation of scientific theories.



8.2. Formal Theory 149

However, it seems unrealistic to expect that any of them will turn out to be
a fundamental law of nature. At least, we would not regard these more basic
assumptions as ‘final’ statements. The axioms we postulate are provisional, in
the sense that they may turn out to be oversimplifications.6 In as far as such
provisional axioms are insightful and aid us in understanding the theory, this is
in itself a valuable contribution to the theory.7 We want to stimulate further
development of the theories by making their underlying assumptions part of the
discussion. If some of the assumptions do not withstand the test of criticism,
we can immediately show which of the theorems have to be retracted as well,
or which alternative assumptions would rescue them. In short, finding the more
basic underlying assumptions can be an important step towards finding some of
the (more) fundamental laws of the social sciences.

Although we have focused on the axiomatization of (fragments of) social sci-
ence theories, there seem to be no fundamental reasons why the application should
be restricted to theories from this particular field. Although we did not investi-
gate the axiomatization of other substantive disciplines, we would want to argue,
with a touch of irony, that the logic of the natural sciences is not very different
from the logic of the social sciences. Therefore, the tools we used in the for-
malization of theories from sociology, may also be of use for the formalization
of theories from other fields, including physics and even mathematics. It should
however be noted that there are important factors that may impede the logical
formalization of theories from natural science domains like physics. Formal logic
seems particularly well suited to represent the informal, qualitative discourse of
sociology. Perhaps the most important reason for this—and one that is easily
overlooked—is simply the use of primitive (or undefined) terms.

6This is, of course, a matter of degree rather than a fundamental difference between the
sciences: even the celebrated theories of physics give only approximate explanations of empirical
phenomena (for example, by the use of various simplifying assumptions). As Popper (1959,
p.111) put it “The empirical basis of science has thus nothing ‘absolute’ about it. Science does
not rest upon solid bedrock. The bold structure of its theories rises, as it were, above a swamp.
It is like a building erected on piles. The piles are driven down from above into the swamp,
but not down to any natural or ‘given’ base; and if we stop driving the piles deeper, it is not
because we have reached firm ground. We simply stop when we are satisfied that the piles are
firm enough to support the structure, at least for the time being.”

7Using the distinction between heuristic and nonheuristic axioms (Suppes 1993), it is clear
that the axioms we have in mind should have a heuristic value in understanding the theory
under consideration. The notion of heuristic axioms may seem like a contradiction in terms:
‘heuristics’ are often interpreted as informal rules of thumb, much like the exact opposite of
formal axioms. It is in this sense that Pólya (1957, p.113) writes, “What is bad is to mix up
heuristic reasoning with rigorous proof.” We also do not want to mix up layers of informal
and formal reasoning, but, just as the informal reasoning, we want the formal reasoning to
be insightful and aid in understanding of the theory. Heuristic axioms are “axioms that seem
intuitively to organize and facilitate our thinking about the subject, and in particular our ability
to formulate, in an ordinarily self-contained way, problems concerned with the phenomena
governed by the theory and their solution” (Suppes 1993, p.58).
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Our knowledge of the things denoted by the primitive terms . . . is
very comprehensive and is by no means exhausted by the adopted
axioms. But this knowledge is, so to speak, our private concern which
does not exert the least influence on the construction of our theory.
In particular, in deriving theorems from the axioms, we make no use
whatsoever of this knowledge, and behave as though we did not under-
stand the content of the concepts involved in our considerations, and
if we knew nothing about them that had not been expressly asserted
by the axioms. We disregard, as is commonly put, the meaning of the
primitive terms adopted by us, and direct our attention exclusively
to the form of the axioms in which these terms occur. (Tarski 1946,
pp.121–122)

This is of course a particularly useful feature if there is no clear intuition (and
only partial consensus) on the meaning of primitive terms. Even if the underlying
intuitions on the meaning of primitive terms are incommensurable (Kuhn 1996),
researchers may still agree on a number of axioms in which these primitive terms
appear. The rigorous, mathematical, quantitative discourse of physics would re-
quire the formalization of substantial parts of quite advanced mathematics before
substantive results of theoretical interest can be reached. Think of the mathe-
matics presupposed by Einstein’s theory of relativity (Friedman 1983), although
even in case of relativity theory there are efforts to formalize this theory in formal
logic (Rakić 1997a,b; Andréka, Madarász, Németi, Sági, and Sain 1998).

8.3 Logical Criteria

We used only fairly standard, or naive, criteria for evaluating theories. This can
be easily explained by the fact that we restricted our methodological discussion
to issues that actually arose in the formalization of these theories. The moti-
vation for this restriction is that it ensures that we deal with issues that are
practically relevant, and avoid overemphasizing extremely exceptional cases, or
even a digression into purely hypothetical cases. The immediate consequence of
this restriction is that we extensively dealt with issues that would be regarded
as well-known and elementary in other fields.8 This should, of course, not be

8As Lazarsfeld (1962, p.463) observed: “[M]odern philosophers of science are only concerned
with the natural sciences [and] do not pay attention to the empirical work in social research
that is actually going on today. In a way, this is easily understood. In the correct sense of the
term, as yet there is no systematic theory in the social sciences, only research procedures and a
number of low-level generalizations. This would force the philosopher to become acquainted with
technical details and results which are often rather boring, and would put him on a disadvantage
vis-à-vis a colleague who can speculate on the meaning of such basic ideas as the uncertainty
principle or the notion of relativity. The reading of empirical social research, which often lacks
the big sweep of the more developed natural sciences is not only personally unrewarding but
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interpreted to imply that we regard any of our notions as final. We would not
hesitate, and do even anticipate, to incorporate various further refinements.

The result of an axiomatization attempt should be a better understanding of
the structure of a theory by clarifying the underlying assumptions and require-
ments that the theory makes. One of the crucial motivations for an attempt to
formulate more perspicuous theories is to facilitate their empirical testing. Un-
earthing the structure of the theory allows us to assess the consequences of the
outcome of empirical research. In particular, we can single-out problematic parts
of the theory in case of an unfavorable outcome.9 In practice, empirical testing
of theories depends largely on the used operational definitions of measurements
(Bridgman 1927). In the social sciences, these operational definitions are seldom
straightforward measurement conventions. There is little consensus on the opera-
tional definition of crucial concepts in the social science, and empirical researchers
take, for understandable reasons, considerable freedom in their choice. As a re-
sult of this, empirical testing in the social sciences is frequently inconclusive:
empirical confirmation is, at best, restricted to the particular operationalization
at hand, and empirical refutation can be even totally due, or at least blamed on,
the choice of a particular operationalization. Moreover, it is far from straightfor-
ward to compare different empirical tests of the same theory. The gravity of this
problem is greatly enhanced by the fact that theories in the social sciences use a
large vocabulary of terms that have various subtle differences in meaning.

Although many of the primitive concepts that sociological theories use are
clearly related, there are seldom attempts to systematize the vocabulary. In
chapter 3, we made such an attempt by formulating definitions of previously un-
defined concepts.10 Before the introduction of definitions we would have regarded
all terms as observational (conform the original texts). Introducing defined no-
tions (although we would regard these as descriptive rather than stipulative defi-
nitions [Hempel 1966]) prompts questions on which terms should be regarded as
theoretical and which as observable. Although there is no natural demarcation
between observational and theoretical terms (Lakatos 1970), there are, at least
intuitive, differences in the degree of observability of primitive terms (or perhaps

also does not confer much prestige. Understandably the general reader is more curious about
the philosophical implications of the natural sciences which have so greatly influenced our daily
lives.”

9Despite popular folklore, a theory can of course only be refuted by a falsifying hypothesis
and not by a single falsifying observation (Popper 1959, pp.86–87). Such a falsifying hypothesis
should be a reproducible effect, of some generality, that is in itself falsifiable, and has received
sufficient empirical confirmation or corroboration.

10In retrospect, this was done roughly along the lines of Carnap’s explication of familiar but
vague concepts (Carnap 1950, esp. chap.1). This is probably no great surprise, since Carnap
(1970, p.59) wrote much earlier, “The last field to be dealt with is social science. . . . Here we
need no detailed analysis because it is easy to see that every term in this field is reducible to
terms of the other fields. . . . Many terms can even be defined on that basis, and the rest is
certainly reducible to it.”
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rather in the degree of nonobservability). It may be not unreasonable to identify
some notions as theoretical terms (for concrete examples, think of notions like
‘legitimation’ and ‘competition’ in the theory of chapter 7). Theoretical terms
defined by simple definitions are easy to eliminate from a theory. It seems of
great importance to investigate ways to define theoretical terms, or if they turn
out not to be definable, find other ways to eliminate them (for example, along the
lines of [Ramsey 1931]). Introducing a clear distinction between observable and
theoretical terms, for example by simply assuming that the vocabulary consists of
two disjoint sets (similar to Simon 1977, chap.6.7), will also allow for the further
refinement of some of the used criteria (especially of the falsifiability criterion).

We have used various criteria for the (computational) evaluation of theories,
such as consistency, soundness, falsifiability, satisfiability, contingency, and inde-
pendence, that basically amount to the standard criteria from logic and philoso-
phy of science. The criteria of the consistency of a theory and soundness of the
derivation of theorems are stable notions from the field of logic. Nevertheless,
there can still be various refinements in the way these formal criteria are used in
practice. For example, we do not look for arbitrary models when proving con-
sistency, but try to establish whether intended models (corresponding to typical
cases of the theory) are models of the theory. Another example is to distinguish
between various types of counterexamples, i.e., by distinguishing nonintended
models from ‘real’ counterexamples.

The criterion of falsifiability is not as straightforward and there exist various
proposals for it.11 We used falsifiability as a criterion for theorems, while falsi-
fiability is usually used as a criterion of theories (including Popper 1959). The
reason for this is simple: the consistency of a theory directly implies the consis-
tency of every statement of the theory. In case of falsifiability this is reversed, the
falsifiability of any single statement of the theory implies the falsifiability of the
entire theory. Simply put, a falsifiable theory can still have unfalsifiable theorems
(for example, see the theory in chapter 4), and to identify them can be of obvious
relevance for empirical research on the theory.

The notion of falsifiability as used in this thesis is formulated in terms of
models: in its naive form, a theorem (or theory) is falsifiable, if there exist models
in which the theorem (or theory) is false. This seems very different from Popper’s
original proposal, which is defined in terms of basic statements.

A theory is to be called ‘empirical’ or ‘falsifiable’ if it divides the
class of basic statements into the following two non-empty subclasses.
First, the class of all those basic statements with which it is incon-
sistent (or which it rules out, or prohibits): we call this the class of
potential falsifiers of the theory; and secondly, the class of those basic

11For a particular strict form of falsifiability, see also the FITness (Finite and Irrevocably
Testable) criterion (Simon and Groen 1973; Simon 1983). Theories that satisfy this criterion
have the property that all their theoretical terms are eliminable.
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statements which it does not contradict (or which it ‘permits’). We
can put this more briefly by saying: a theory is falsifiable if the class
of its potential falsifiers is not empty. (Popper 1959, p.86)

Popper’s famous notion of basic statements is referring to formulas of “the form
of singular existential statements” (Popper 1959, p.102) with the additional re-
quirement that these statement must be “asserting that an observable event is
occurring in a certain individual region of space and time” (Popper 1959, p.103).
This syntactic notion of basic statements is, of course, very different from our
semantic notion of models.12

Taking into account the elementary logical relations between statements and
their models, the resulting notions of falsifiability are not so different. First, fal-
sifiability in terms of statements implies falsifiability in terms of models. Assume
that a theory is falsifiable in the Popperian sense, i.e., there exists a basic state-
ment that the theory prohibits. Then, in all models in which this basic statement
is true (there are such models since basic statements are presumably satisfiable),
the theory must be false. Consequently, there do exist models in which the theory
is false, i.e., the theory is falsifiable in terms of models. This immediately ensures
that those theories that we would regard as unfalsifiable, are also unfalsifiable in
the Popperian sense, i.e., if there are no models in which the theory is false, there
cannot exist (consistent) basic statements that the theory prohibits. Second, it
is less clear whether falsifiability in terms of models implies falsifiability in terms
of basic statements, for we would need to construct a basic statement. Assume
that there exists a model in which the theory is false. With some handwaving,
one could think of a model as a very long conjunction of literals (atomic formulas
or their negations) by writing out the interpretation function (at least for small,
finite models). These literals (at least the positive ones) closely resemble (rela-
tively atomic) basic statements. Given the fact that all consistent conjunctions of
basic statements are basic statements (Popper 1963, p.386), this long conjunction
is, arguably, a basic statement. Recall that the theory was false in this model,
therefore, the theory cannot be consistent with this long conjunction.

We did not deal with the material testability requirement so far, but there is

12Having said this, one could nevertheless ponder about a direct relation between (the in-
tuitions behind) these two notions, considering the fact that formal semantics was developed
much later. It is interesting to note that it makes perfect sense to substitute ‘models’ for every
occurrence of ‘basic statements’ in the definition of falsifiability (Popper 1959, p.86, quoted
above). In fact, we would get an exact description of how models work. Any theory partitions
its class of models of the language (or structures) into two disjoint subclasses: a subclass of
models in which it is true (i.e., the models of the theory), and a subclass of models in which
the theory is false. There are remarkable similarities between the notions of models and the
development of basic statements (or ‘test statements’ as they are later called [Popper 1974,
p.1106]). In particular, see the discussion in (Popper 1959, pp.100–103), (Popper 1963, p.386),
and especially (Ayer 1974; Popper 1974), where ‘test statements’ and ‘counterexamples’ are
used on par. Kuipers (1987, pp.82–85) makes similar remarks when providing structuralist
explications of various Popperian notions.



154 Chapter 8. Discussion & Related Work

an elegant way to incorporate it into the notion of models. We are of course free
to choose a universe for the models of a first-order logic language. Specifically, we
can choose a (non-empty) set of objects that fulfill these testability requirements,
i.e., ‘observable’ events that are spacio-temporally sufficiently restricted. The
resulting models with this universe will be as ‘observable’ as the primitive terms
permit them to be (if observable and nonobservable terms are distinguished, one
could further refine this material requirement).

8.4 The Process of Axiomatization

The application of formalization approaches is, of course, not restricted to sci-
entific theories.13 Although risking to end up in an infinite regress, we can even
try to apply our formalization method to the formalization process of chapter 5
itself. That is, we can extend our informal discussion of chapter 5 by trying to
formalize the process of formalizing theories. Although this is not the proper
place to pursue this subject extensively, we will here make an initial first step by
rationally reconstructing the axiomatization process (mainly in order to highlight
similarities and differences with related work).

When undertaking an effort to axiomatize a substantive theory, the ultimate
goal is to provide a formal theory that is consistent, in which the conjectures are
derivable, theorems are falsifiable, and the axioms are independent. There are
logical dependencies between these criteria, that suggest the order in which tests
for them should be performed. These dependencies include: (i) It seems a natural
choice to establish the consistency of the axioms before testing the soundness
of derivations of conjectures.14 The soundness criterion has no discriminating
effect on an inconsistent theory; every formula is a theorem of an inconsistent
theory. Moreover, we do not need to know the precise theorems, before we can
investigate the theory’s consistency. Deductive theories are defined as the set of
logical consequences of a set of premises. As a result, we only need to consider
the theory’s premises when testing for consistency—soundly derived theorems
cannot make a theory inconsistent. (ii) It seems natural to test for soundness
of the derivations before testing for the falsifiability and satisfiability. We use
falsifiability and satisfiability as criteria of theorems. Therefore, it is reasonable to
first establish the theorem-hood of conjectures. (iii) The satisfiability of theorems
can be tested for indirectly: if the theory is consistent, then a soundly derivable

13Although it is clear that the formalization of other domains requires some changes, i.e.,
the restriction to universal premises; the use of classical, monotonic logics; or even bringing in
“psychologism” (Beth and Piaget 1966).

14Note that these are merely heuristics, one could just as well argue that the underivability
of some conjectures is far more likely than that the theory turns out to be inconsistent. This
may result in modification of the axioms, which would require establishing consistency anew.
Fortunately, the final result seems invariant of the order in which tests are performed, provided
that the theorizer makes consistent decisions.
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theorem is satisfiable. If a conjecture is not derivable, it is relevant to test whether
the conjecture is at least satisfiable. (iv) Independence of axioms should be tested
for after establishing consistency. Consistency implies one side of the tests for
independence, namely that the negation of each axiom is not implied by the other
axioms. Moreover, if a subset of the axioms is inconsistent then all other axioms
(and their negations) will be derivable.

Keeping these dependencies in mind, we will give an initial rational recon-
struction of the formalization process.15 Before any of the criteria can be applied,
we have to formulate an initial formal version.

1. Reconstruct the theory, and give an initial formalization of the premises (Σ)
and conjectures (Γ).

The sociological theories treated in this thesis are based on publications in the
sociological literature. Since descriptions of sociological theories are, in general,
stated in ordinary language, they are usually partial and incomplete. The first
step towards their formalization is to reconstruct the theoretical argumentation
in these texts. This crucial rational reconstruction is largely outside the scope of
this thesis.16 In some of the chapters we have, for this reason, selected scientific
texts that do not require extensive rational reconstruction. We have mainly dealt
with the formal part of the formalization process, i.e., what happens after an
initial reconstruction of a theory is completed. The rational reconstruction gives
a non-formal description of the theory, which at least contains an explicit set of
premises and an explicit set of (intended) theorems. The next step is to formalize
the reconstructed premises and theorems in logic. The argumentation of this
initial formal theory will closely resemble the argumentation of the original text,
in particular, it may still be partial and incomplete. In the next steps, we will
try to refine the initial formalization into a formal theory, i.e., a set of formulas
that represent the premises, and a set of theorems that can be derived from the
premises.

The first criterion to test for is consistency.

15Readers should bear in mind that this initial reconstruction is highly provisional and makes
several serious simplifications. For example, we will ignore definitions because that would
require a far more complicated (and more interesting) reconstruction. Moreover, we will here
assume that we can conclusively determine the criteria. Of course, models may be too large,
or proofs too complicated for us to find in practice (or in principle, since first-order logic is not
decidable). Therefore, it is very well possible that we can neither find a derivation, nor a model.

16The rational reconstruction seems to be an art rather than a science (although there are
some definite do’s and don’ts). We want to distill from this description, at least, 1) the most
important concepts and claims, 2) the assumptions that are presupposed by these arguments,
and 3) the justification or argumentation for these claims. The excellent (Fisher 1988) gives
a general method for analyzing scientific argumentation (a close reading method that is non-
formal but strongly motivated by insights from logic).
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2. Test for (in)consistency of Σ by generating at least one model of Σ (proving
that Σ is consistent), or by deriving a contradiction from Σ (proving that
Σ is inconsistent).

If there exist models then (check model(s) and) proceed with step 3

If the theory gives rise to a contradiction, then the proof singles out a spe-
cific derivation of a contradiction from a subset of the premises. If this
contradiction can be resolved, then redo step 2 (there may be other contra-
dictions). Otherwise, abandon the (formal) theory.

In practice, we will generate a number of models corresponding to typical
scenarios treated by the theory, by adding appropriate initial conditions (typically
existential statements). For example, if the conjectures are conditional statements
(like in the theories treated in this thesis), we can try to find models in which the
antecedent part of a conditional conjecture is satisfied. Testing for consistency in
this sense roughly amounts to testing whether (some of) the intended models of
the theory are allowed for by the formal axioms.

The theories we treated consist entirely out of universal conditional formulas
and, as a result, they make no existential claims. It is therefore impossible that
they are formally inconsistent, because there will be models of the theory in
which none (or only few) of the antecedents are satisfied.17 Of course, something
weaker than a formal inconsistency may be the case: we may be unable to find
some of the intended models of the theory. In these cases, the combination of the
theory with some common initial conditions (existential statements) is formally
inconsistent. A typical case of such a hidden inconsistency is when a premise
is overstated and does not take particular exceptions into account. To resolve
such an ‘inconsistency’ we simply have to extend the conditional part of the
overstated assumption, such that all known exceptions are taken into account.
There do exist logics, in particular nonmonotonic logics (Ginsberg 1987; Brewka,
Dix, and Konolige 1997), that can deal with some of these ‘inconsistencies.’ Since
the detection of these inconsistencies and the resulting revisions are likely to be
of theoretical interest, we prefer to use a logic that does not implicitly resolve
such deficiencies.

Our discussion in chapter 5 mainly focused on the soundness of derivations of
conjectures.

3. For each conjecture γi ∈ Γ, test whether there exists a proof such that
Σ ` γi (proving that γi is soundly derivable, shortly γi is sound) or models
A such that A |= Σ ∪ {¬γi} (proving that Σ 6|= γi, i.e., γi is not soundly
derivable, shortly γi is unsound).

17Except for very contrived cases: for example, {∀x[A(x) → B(x)], ∀x[A(x) → ¬B(x)],
∀x[¬A(x) → B(x)], ∀x[¬A(x) → ¬B(x)]} is formally inconsistent.
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If there exist a derivation then (check proof and) proceed with next conjec-
ture γi+1.

If there exist counterexample(s) A then distinguish between:

(a) Is A a nonintended model (conflicting with common-sense or with
implicit background assumptions), then revise Σ by adding background
knowledge σ such that A 6|= Σ ∪ {σ}.
Then redo step 2 (prove consistency) and retry deriving this γi (there
may be other counterexamples; earlier proven conjectures will still be
theorems).

(b) If step 3a fails, then A is an exception to γi. Try to revise γi by
weakening it to γ′

i in such a way that γ′
i is true in A, in symbols,

A |= γ′
i.

Then retry proving this γ′
i (there may be other counterexamples; the

theory is still consistent and earlier proven conjectures will still be
theorems).

(c) If step 3b fails, then try to restrict the domain of the theory by
strengthening Σ to Σ′ in such a way that A is no longer a model
of the restricted theory, in symbols, A 6|= Σ′.

If there is an acceptable restriction Σ′ then redo step 2 (proving consis-
tency) and retry proving this γi (there may be other counterexamples;
earlier proven conjecture will still be theorems).

If there is no acceptable restriction, then proceed to step 3d.18

(d) Discard γi as a false conjecture, and proceed with the next conjecture
γi+1.

It is important to note that the revision of axioms to make a conjecture
derivable is not a deductive step—it is a form of abduction.19 The traditional
form of abduction in artificial intelligence is: given a background theory K and
an observation F , abduction computes an explanation E such that

K ∪ E |= F

where K ∪ E is consistent (Poole 1988). Typically, the explanation, E, is a
conjunction of initial conditions that allows the knowledge base, K, to entail a

18This is a good place to test whether γi is at least satisfiable, i.e., whether there exists
models A such that A |= γi. Recall, that we ignore here the presence of definitions (discussed
in chapter 4).

19Abductive inferences are widely studied from the point of view of modern logic (Tan 1992;
Flach 1995; Aliseda 1997), see also (Janssen and Tan 1992) on abductive explanations in eco-
nomics.
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particular observation, F . That is, K is a set of general statements, and E and
F are (conjunctions of) ground facts.

In case that K |= F an empty explanation suffices (in other words, traditional
deductive explanations apply). Most literature on abduction ignores this case,
and focuses on what one might call abduction proper, that is, the case that
K 6|= F . Most of the abduction literature assumes K 6|= F as a given, whereas
we first have to establish it in step 3. Notice that proving Σ 6|= γ is non-trivial
in first-order logic, even undecidable in general, although in many cases small
counterexamples exists. Finding such a counterexample not only proves that γ
is underivable, but can also be used to decide between further revisions of the
theory. Most abduction systems use a one-step approach. That is to say, they will
immediately generate a set of explanations, i.e., a set of E’s such that K∪E |= F
and K ∪E consistent (sometimes these explanations can be pruned using various
criteria). The revisions we have in mind deal only with a (particular set of)
counterexample(s). It is not unlikely that we may have to deal with a number of
different (sets of) counterexamples. This results in a piecemeal revision, which
may require both revision of the axioms as well as revision of the conjecture.

Our approach was to clearly distinguish between revising the theory (either
by adding implicit background knowledge, or a proper revision by making Σ
stronger such that the models that were counterexamples are no longer models of
the theory), or revising the intended theorem (by making γ weaker such that it
will be true in the models that were counterexamples). The abduction literature
generally does not make this distinction, and seems to cover only the case in which
the theory is revised. However, recall that the explanation typically represents
the appropriate initial conditions that allow for a singular fact to be deduced
from a general knowledge base. This seems intuitively a revision of the intended
theorem and, consequently, we would prefer the alternative notation:20

K |= (E → F )

where K 6|= ¬E. The resulting explanations (i.e., the E’s) are the same, but
there is of course a fundamental difference between the revision of a theory (or
knowledge base), or the reformulation of a conjecture (or ‘observation’). Whether
this distinction is also relevant for other domains may depend on the specific
knowledge base.

A common refinement of the abduction pattern is to study cases in which the
observation is an anomaly. The observation F is an anomaly if it is contrary to
our expectations, that is, in case the theory predicted the opposite K |= ¬F .
Notice that the ‘standard’ abduction pattern fails in this case.21 If we want to

20Using the deduction theorem: Σ∪{φ} ` ψ if and only if Σ ` (φ→ ψ) with φ having no free
variables (Chang and Keisler 1990).

21If K |= ¬F then (in monotonic logics) for all explanations E, it is the case that K∪E |= ¬F .
If now E also explains F , that is, ifK∪E |= F , then we know thatK∪E is inconsistent (contrary
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have a consistent theory that predicts F , we have to retract some axioms first.
In other words, we have to find a contraction E1 and an extension E2 such that

(K \ E1) ∪ E2 |= F

and (K\E1)∪E2 is consistent. These patterns are widely studied in the literature
on belief revision or theory change (Alchourrón, Gärdenfors, and Makinson 1985).

Assume we want to derive an intended theorem and it is the case that the
negation of this theorem is already implied by the theory. In this case, we will
be unable to find models of the axioms in which the theorem is true. This
amount to a test whether an intended theorem γi is at least consistent with the
premises, i.e., whether there exists a model A such that A |= Σ∪{γi}, or whether
Σ ∪ {¬γi} ` ⊥.22 A good place to test for this is immediately after establishing
that a conjecture is not derivable in step 3. Alternatively, we could try to prove
this immediate after proving the consistency of the premise in step 2, by trying
to find a model A such that A |= Σ ∪ Γ.

It is unclear whether these patterns do occur in our setup. In our case studies
all the conjectures have the form of a universal statement. Now suppose we would
be able to derive the negation of such a statement. Because the negation of a
universal statement is an existential statement, this implies that we can already
derive an existential theorem. We have dealt with strictly universal theories,
which do not imply existential statements. Nevertheless, it seems that our earlier
method can also be applied in this, hypothetical, case. That is to say, inspection
of models and counterexamples can lead to appropriate revision of the theory,
including the retraction of some axioms if some of the intended models cannot be
constructed.

Finally, we should test for the falsifiability of the theorems, and the indepen-
dence of the axioms. The falsifiability is tested by showing the logical possibility
of a theorem to be false:23

4. For each γi ∈ Γ, test whether there exist models A such that A |= ¬γi

(proving that γi is falsifiable), or a proof such that ` γi (proving that γi is
unfalsifiable).

to the above requirement). At least, this is the case for monotonic logics—the abduction pattern
depends on the used logic. If the underlying logic is nonmonotonic (denoted by the ‘|∼’) then the
traditional abduction pattern should be extended (Inoue and Sakama 1995). In nonmonotonic
logics we have also negative explanations, since we can also make F derivable by deleting some
E from K. That is, a revision from K 6|∼ F to K \E |∼ F (called extended abduction in [Inoue
and Sakama 1995]). Specifically, in nonmonotonic logics there may exist consistent revisions
from K |∼ ¬F to K \ E |∼ F and from K |∼ ¬F to K ∪ E |∼ F .

22Notice that this is a stronger requirement than satisfiability as operationalized in chapter 4.
Our notion of satisfiability is the counterpart of falsifiability and therefore ignores the axioms
of the theory (although definitions are taken into account).

23Recall that we assume here that there are no definitions. An operationalization of falsifia-
bility that takes definitions into account was discussed in chaper 4.
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If a theorem γi is unfalsifiable, then we may decide to exclude it from the
set of singled-out theorems (i.e., from Γ).

If there is at least one falsifiable theorem, then the theory is falsifiable. Notice
that even in the extreme case that all the singled-out theorems are unfalsifiable,
we cannot immediately conclude that the theory as a whole is unfalsifiable. The
theory may still have other falsifiable consequences, and in this extreme case the
theory may therefore still be perfectly falsifiable. In such cases, one could decide
to test the falsifiability of the axioms themselves, and if at least one of the axioms
is falsifiable, the theory is falsifiable. Only if all the axioms are unfalsifiable, we
can conclude that the theory is unfalsifiable. We restrict here our attention to
the falsifiability of theorems because the falsifiability of axioms is closely related
to their independence. If some of the axioms are unfalsifiable, then these axioms
will be necessarily not independent of the other axioms. The independence of the
axioms is investigated in the following manner.

5. For each σi ∈ Σ, test whether there exist models A such that A |= Σ \
{σi} ∪ {¬σi} (together with consistency proving that σi is independent of
the other axioms) or a proof such that Σ \ {σi} ` σi (proving that σi is not
independent of the other axioms).

If an axiom σi is not independent of Σ\{σi} then we can make the axiom set
more parsimonious by moving σi from the set axioms to the set of theorems,
and redo step 5 with the smaller axiom set Σ′ (with Σ′ = Σ \ {σi}).

This concludes our initial rational reconstruction of the process of axiomati-
zation. We will not pursue a formal reconstruction of this process here, but it
is clear that this process not deductive. This corresponds to the well-known fact
that theory revision is nonmonotonic even if the underlying theory is monotonic
(Makinson and Gärdenfors 1991).24 Rott (1991) is an excellent source for further
discussion on nonmonotonic theory revision. Despite the overwhelming number
of different nonmonotonic logics (Brewka et al. 1997), it is unclear whether any
of these logics can be used for a formalization of the axiomatization process.

8.5 Discovery?

The process of axiomatization as discussed in the previous section shows a clear
relation with Lakatos’ famous heuristic pattern of mathematical discovery as dis-
cussed in his “proofs and refutations”:

24Of course, a theory about the revision process may again turn out to be monotonic.
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There is a simple pattern of mathematical discovery – or of the growth
of informal mathematical theories. It consists of the following stages:a

(1) Primitive conjecture.
(2) Proof (a rough thought-experiment or argument, decomposing the
primitive conjecture into subconjectures or lemmas).
(3) ‘Global’ counterexamples (counterexamples to the primitive con-
jecture) emerge.
(4) Proof re-examined: the ‘guilty lemma’ to which the global coun-
terexample is a ‘local’ counterexample is spotted. This guilty lemma
may have previously been ‘hidden’ or may have been misidentified.
Now it is made explicit, and built into the primitive conjecture as
a condition. The theorem – the improved conjecture – supersedes
the primitive conjecture with the new proof-generated concept as its
paramount new feature.
These four stages constitute the essential kernel of proof analysis. But
there are some further stages which frequently occur:
(5) Proofs of other theorems are examined to see if the newly found
lemma or the new proof generated concept occurs in them: this concept
may found lying at cross-roads of different proofs, and thus emerge as
of basic importance.
(6) The hitherto accepted consequences of the original and now refuted
conjecture are checked.
(7) Counterexamples are turned into new examples – new fields of
inquiry open up.

aAs I have stressed the actual historical pattern may deviate slightly from this
heuristic pattern. Also the fourth stage may sometimes precede the third (even in
the heuristic order) – an ingenious proof analysis may suggest the counterexample.

(Lakatos 1976, pp.127–128)

Lakatos’ brilliant essay “proofs and refutations,” an extensive discussion of the
polyhedra conjecture, goes far beyond the simple example we discussed in detail
in chapter 5. This conjecture, baptized the “Euler’s formula” by Pólya (1954a,
p.52), states that for polyhedra the number faces plus the number of vertices
equals the number edges plus two, in symbols, F + V = E + 2 or, equivalently,
V − E + F = 2.25 Lakatos (1976) discusses in great detail, based on historical

25The Euler’s formula is extensively discussed in (Pólya 1954a, chap.III, pp.35–58). Lakatos’
essay dramatically extends Pólya’s initial discussion:

The phase of conjecturing and testing in the case of V −E+F = 2 is discussed in
Pólya ([1954], vol. I, the first five sections of the third chapter, pp.35–41). Pólya
stopped here, and does not deal with the phase of proving . . . Our discussion
starts where Pólya stops. (Lakatos 1976, p.7)

Rather surprisingly, and notwithstanding Lakatos’ contribution, this seems not to give Pólya
adequate credits: First, the discussion does in fact continue for two more sections (Pólya 1954a,
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material, the intricate process of incessant improvement of guesses by speculation
and criticism. His discussion includes dealing with global and local counterex-
amples (falsifying whole conjecture or an intermediate lemma); rejection of the
conjecture; improving the conjecture by exception-barring methods (comparable
to what we called weakening of the conjecture); rejection of counterexamples by
monster-barring or monster-adjustment (comparable to what we called the re-
moval of nonintended models by adding implicit background knowledge). Most
of the revisions in case of the polyhedra conjecture concern the used definitions.
The similarities will become even more apparent if we extend our discussion by
considering the revision of definitions. Notice, however, that this will make the
process more complicated for the revision of a definition will affect all occurrences
of the defined term. A defined term may, of course, occur in several of the con-
jectures, but the same term may also occur in some of the axioms (in which case
a revision of the definitions yields a different theory). Moreover, the effect of
such a revision also depend on where the defined term occurs in a conjecture or
axiom. For example, if we strengthen the definition of a defined term occurring
in a conjecture that is a conditional statement, the conjecture will become weaker
if the defined term occurs in the antecedent part, and stronger if it occurs in the
consequent part of the conjecture.

Lakatos’ heuristic pattern of mathematical discovery, influenced by the revival
of mathematical heuristics (Pólya 1945, 1954a,b, 1962, 1965), is discussing infor-
mal mathematics. Our investigations are based on the logical axiomatization of
scientific theories, a pre-eminent part of formal mathematics. As a result, there
are, despite the various similarities, also some notable differences. Perhaps the
most prominent difference is the trivial but extremely useful observation that, in
a strictly formal theory, counterexamples need not mysteriously “emerge” nor be
suggested by “an ingenious proof analysis”—they are merely formal models of
the theory.

It is important to note that Lakatos is explicitly dealing with mathematical
discovery. This immediately suggests links between our computational approach
and research in machine discovery or scientific discovery (Langley et al. 1987;
Shrager and Langley 1990; Simon 1995).26 Most of the machine discovery sys-
tems deal with the induction of theories from facts or data, and our theory-driven

§III.6/7, pp.41–43), among others discussing critical counterexamples like the picture-frame
or doughnut shaped polyhedra (that feature prominently in Lakatos’ method [Lakatos 1976,
p.19]). Second, the discussion even further continues in the remarks and comments on chapter
III (Pólya 1954a, pp.52–58) by refining the statement and eventually leading to exercises 9, 29
and 39 in which versions of the Euler’s formula are to be proved. Third, there is an appendix
that gives the solutions of the exercises in chapter III (Pólya 1954a, pp.222–227), including the
proofs of three version of the Euler’s theorem.

26Lakatos’ discussion plays an important role in reasearch on theory change (Darden 1990,
1991, 1992), and has inspired various systems in machine learning (Hayes-Roth 1984; Falken-
hainer and Rajamoney 1988). The underlying Popperian methodology features prominently in
(Shapiro 1991), which provides an elegant algorithm that, given an unknown model that serves
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approach is complementary to these data-driven approaches. Our focus has been
entirely on inferences at the theoretical level: addressing how to go from hypothe-
ses and conjectures to axioms and theorems, and for the time being ignoring how
a hypothesis or conjecture can be inductively inferred from empirical data. Many
of the working systems in machine discovery are based on heuristic search and
cognitive models of science (Giere 1992) and usually does not worry too much
about the underlying principles involved (for which it has been criticized by some
[Glymour 1992a]). A striking example is the most famous machine discovery sys-
tem, AM (Lenat 1976), whose impressive results seem to be difficult to reproduce
(Ritchie and Hanna 1984). A further difference is that early machine discovery
systems tried to de-emphasize human intervention and were supposed to operate
autonomously, whereas our approach is essentially interactive. Recent machine
discovery systems have re-evaluated the role of user interaction. Human-computer
collaboration has now been identified as the source of generality among successful
discovery programs (Valdés-Pérez 1999).27 De Jong and Rip (1997) give a vivid
discussion of how this role might evolve in the future.

8.6 Sociology

Throughout the thesis, our approach has been application-oriented. In all chap-
ters, we provided or discussed formalizations of actual social science theories. The
social sciences have rarely been the subject of an axiomatization attempt using
formal logic.28 However, over the years, there has been a lot of effort in the math-
ematical formalization of the social sciences. The most successful efforts belong to
the field of economics, which is dominated by mathematical theories (an excellent

as an oracle deciding the truth of sentences in this model, can inductively infer a theory that
implies all (testable) sentences that are true in this model.

27Lenat always stated that all results were obtained in “totally unguided runs” (Davis and
Lenat 1982, p.129). However, the user could improve AM’s performance with “about a factor
of 2 or 3 speedup” by guiding AM to focus on specific concepts, and “obtain much nicer results”
by adding new concepts and results to AM’s knowledge base. Moreover, Lenat already envi-
sioned that machine discovery systems would ultimately be interactive: “There is one important
observation to be made: the very best examples of AM in action were brought to full fruition
only by a human developer. That is, AM thought of a couple of great concepts, but couldn’t
develop them well on its own. A human (the author) then took them and worked on them by
hand, and interesting results were achieved. These result could be told to AM, who could then
go off and look for new concepts to investigate. This interaction is of course at much lower
frequency than the kind of rapidfire question/answering talked about above. Yet it seems that
such synergy may be the ultimate mode of AM-like systems: creative assistants to experts”
(Davis and Lenat 1982, p.130).

28A notable exception in sociology is (Kyburg 1968, chap.12), which presents a first-order
logic version of Simon’s mathematical model (1952; 1957) of Homans’ theory of the human
group (1950).
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example is Debreu 1959).29 Outside economics, however, the situation is differ-
ent. Consider the field of sociology. The mathematical formalization of theories
in sociology was attracting much attention during the sixties and early seventies
(for example, Lazarsfeld 1954; Kemeny and Snell 1962; Coleman 1964; Blalock
1969; Fararo 1973).30 Many sociologists had high hopes that mathematical soci-
ology could provide a fruitful theoretical perspective that could further progress
sociology as a scientific discipline, similar to Lewin’s remarks on the neighboring
discipline of social psychology:

The greatest handicap of applied psychology has been the fact that,
without proper theoretical help, it had to follow the costly, inefficient,
and limited method of trial and error. Many psychologists working
today in an applied field are keenly aware of the need for close co-
operation between theoretical and applied psychology. This can be
accomplished in psychology, as it has been in physics, if the theorist
does not look toward applied problems with highbrow aversion or with
a fear of social problems, and if the applied psychologist realizes that
there is nothing so practical as a good theory. (Lewin 1951, p.169)

However, the high hopes were never fulfilled and, despite all efforts, the in-
terest in formal theorizing phased out during the seventies, and formal theory is
now situated at the periphery of sociology (Sørensen 1978; Hage 1994a; Hannan
1997). It is unclear what caused the untimely demise of formal theorizing in
sociology. Various knowledgeable insiders have tried to explain demise of math-
ematical theory (see the collection devoted to this [Hage 1994a]). There seems
to be no simple explanation and we will here just reiterate three of the causes
that seem pertinent. The reasons proposed include the fact that most sociologists
seem to be content with the relatively simplistic theories that are available.

Nearly all sociologists give lip service to the notion that social reality is
complex. Yet we seem to prefer relatively simple theoretical explana-
tions of this reality, together with data analyses and measurement-
error assumptions that are also highly simplistic. (Blalock 1994,
p.121)

A second explanation is the fact that most applications of formal theorizing in
sociology try to adopt formal theories from other disciplines, instead of formalizing

29In economics, formal logic plays a similar role as in mathematics, i.e., logic is used for
addressing foundational issues and regular mathematics is thought to be informal (see the
discussion in Dow, Krugman, Weintraub, Backhouse, and Chick 1998).

30The relation between sociology and positivism dates back even longer: the introduction
of both the terms ‘positivism’ (or at least, ‘positive philosophy’) and ‘sociology’ is commonly
attributed to one and the same person, Auguste Comte. Although it is the case that logic and
sociology are put at considerable distance in his hierarchy of sciences, which is roughly a linear
series starting with logic and mathematics and winding up with biology and sociology (Comte
1830).
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theories that originate from sociology.

The construction of models implementing a theory about a sociological
phenomenon would be regarded a central activity of mathematical so-
ciology. It is, however, not the activity that dominates mathematical
sociology. Rather, most contributions to the literature apply math-
ematical models already existing and usually borrowed from other
disciplines to sociological phenomena. The sociological interpretation
of these models renders them mathematical sociology. (Sørensen 1978,
pp.345–346)

A third cause of the demise of formal theorizing in sociology may be a miss
match between the vague, qualitative discourse of the verbal theories and the
demands of disciplined, mathematical discourse.

The availability of natural-language theories were—and are—partial
and imprecise: use of formal languages, especially mathematics, de-
manded closure and extreme (usually metric) precision. Effort at for-
malizing sociological theories with classical tools required the analyst
to assume too much—e.g., to supply the missing assumptions about
metrics, continuity, and differentiability of functions. As a result the
formalizations offered during this period yielded models that failed
to resonate closely with the original theories. The formalizers tended
to blame the theorists for not building sufficiently precise theories,
and theorists increasingly stopped paying attention. (Hannan 1997,
pp.145–146)

The unfortunate result of all of this is that the current state of theory in
sociology is a confused state of fragmentation and politicization (Hage 1994b).
Some of the theories in sociology contain insightful and important ideas, but these
can be easily lost in the overall confusion.

In the light of these remarks above, it may be difficult to convince social
scientists that the current interest in logical formalization will not share the same
fate. Of course, only time can tell, but we believe that there are some important
reasons why the current interest in logical formalization need not share the fate
of its predecessors.

The first reason is that logical formalization uses a formal language that allows
a precise and formal expression of statements that can still be as general as its
natural language expression. Mathematical formalization, such as the construc-
tion of causal models, typically requires quantification and closure (the assump-
tion that all unmentioned variables and interactions are irrelevant), and various
highly technical assumptions like the uncorrelatedness of rest terms with inde-
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pendent variables in the same equation (Blalock 1969, 1971; Hannan 1971a).31 It
important to note that none of these assumptions is required by the logical for-
malization of a theory. As Hannan (1997, p.146) commented on the formalization
of parts of his theory:

FOL [first-order logic] allows natural language statements to be given
an expression that is formal (in the sense that it can be used in calcu-
lations by a theorem prover) yet remains close to the natural language.
The semantic richness of FOL narrows the gap between the theorist’s
statement and the formalizer’s rendition.

The logical reconstruction of an ordinary language theory allows the analyst to
follow the original theory’s argumentation closely—making results obtained in
the formal version of the theory also apply to the original theory. The aim of an
axiomatization attempt is to formalize the theoretical knowledge as captured in
an authoritative theory, and we do not expect to write down the basic axioms of
sociology or organization science. Formalizing this theoretical knowledge can be,
of course, in itself an important, initial step towards the formulation of some of
the (more) basic axioms of sociology.

The second reason is the current focus on the formalization of theories that
originate from the domain of sociology. We do not attempt to fit a sociolog-
ical theory into a pre-existing mathematical framework, but attempt to fit a
mathematical framework onto a pre-existing sociological theory—as readers who
attempt to see through our logical notation may have noticed. Of course, giving
a sociological interpretation to formal theories originating from other disciplines
can lead to important insights, or even start new research areas in sociology.
In fact, some of the most important research is inspired by theories originating
from other disciplines. Think for example of how economic game theory (Von
Neumann and Morgenstern 1944) inspired much research in decision-making, co-
operation, and rational choice (see, for example, Axelrod 1984; Coleman 1990).
Nevertheless, we feel that there is a complementary need to formalize theories
originating from sociology itself.

The third reason is the availability of the computational support that can deal
with calculations that are required for the formalization of theories. If these tools
play only a small part of the role computational support played in advancing

31As Hannan (1971b, p.473) stated, “such approaches to making causal inferences from non-
experimental data place a number of constraints on the analyst. In particular, he must make
explicit most of the assumptions underlying both his model and analysis operations.” In as far
as these are underlying assumptions of the model, making them explicit is an important con-
tribution to the theory. However, in as far as these are underlying assumptions of the analysis
operations, they can be regarded as merely constraints on the applicability of these techniques.
These constraints seems to be non-trivial, considering that “[g]iven the state of theory and
data in the nonexperimental social sciences, it is highly unlikely that all of the assumptions
underlying any one of the techniques will be met in any substantively interesting application”
(Hannan 1971b, p.473).
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the use of statistics in the social sciences, the prospects of logical formalization
are more than promising. Although too early for a full assessment, there are
some positive telltale signs: the field of automated reasoning recognized the use
of these tools for building and testing theories as one of its most important long-
term applications (Loveland 1999).

The fourth reason is that there are few alternatives that address sociological
theory head on. Many theoretical texts in sociology are not very explicit on
the underlying assumptions that they make. If we want to advance the state
of sociological theory, it seems inevitable to make these underlying assumptions
part of the discussion. As Blalock (1964, p.171) put it:

Quite clearly, a failure to state one’s assumptions explicitly does not
make them disappear in some magical way. It does, however, make it
much more difficult to evaluate and reject a given theoretical system.
Theoretical inadequacies are harder to spot, and untestable theories
remain to clutter up the literature. Such a state of affairs is hardly
desirable.

Sociologists will not dispute the validity of this statement and will broadly agree
with it, however, it may remain a different matter whether they will also act
accordingly.32

Modern statistics provides powerful tools for analyzing our data, logical for-
malization is an attempt to provide similar tools for analyzing our theories. First-
order logic is simple and clear (Kiser 1997), and does in itself not require expensive
empirical research (Péli et al. 1994). Moreover, it may actually prevent us from

32As an anonymous reviewer confided to us in a revealing remark ending with some disquiet-
ing questions: “This is an admirable sentiment, and one that I fully endorse, but I feel it may
not adequately take account of the realpolitik of our discipline (and perhaps most social science
fields). Cynical as it may sound, some major theorists may not welcome techniques that expose
logical flaws in their theories and increase the theories’ exposure to critical assessment. While
most of the major management theories have been subjected to empirical testing, it is very diffi-
cult to think of a case in which that testing has been conclusive—either a conclusive verification
or a conclusive falsification. The openendedness of these streams of ‘testing’ research can be
attributed, at least in part, to the logical and empirical ambiguity of the theories being tested.
This openendedness is frustrating for those who want some empirical resolution of theoretical
questions, but it plays to the political interests of the theorists, who accumulate more citations
to their work and more reputational advantages the longer an inconclusive stream of research is
perpetuated. There is little or no stigma attached to the theorist if her theory is never conclu-
sively verified or falsified; instead, we tend to lay the blame for lack of empirical answers on the
empirical researchers and their methods. Thus, I believe there is a disincentive on the part of
theorists to make their theories logical and falsifiable, and a resistance to the endeavors of those
who would like to force theory in that direction. I do not argue that theorists intentionally
set out to make their theories murky or non-falsifiable; but there is an unconscious response to
the existing reward structure that reduces effort to rectify those conditions. Assuming there is
some validity to my argument, how would you ‘sell’ your logical formalization approach? How
realistic are the prospects that such a technique would ever be adopted by the ‘towers of power’
in management?”
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performing empirical research on inconsistent or unfalsifiable theories. Neverthe-
less, there are no silver bullets and logical formalization cannot be considered a
panacea (Péli et al. 1994). The logical criteria are additional and complemen-
tary to the standard, empirical criteria for evaluating theories and ignore many
dimensions that researchers use in order to discern useful theories, for example
their empirical plausibility, their relevance, the insight they provide, their social
or political philosophy, or their elegance and intuitive appeal. This is not as
disadvantageous as it may appear at first glance. The logical criteria are objec-
tive, structural criteria on scientific theories. They are fundamentally different
from empirical, subjective, or political criteria. Confounding them can create
unnecessary confusion (Masuch et al. 1996).

There has been much debate on what constitutes a sociological theory (Freese
1980; Van de Ven 1989b; Sutton and Staw 1995). The case studies in this thesis
present theories in the strict sense of a deductive system (Tarski 1956).33 One
way to view this strict notion is as a theory in its purest form, or as an ‘ideal
type’ of theory. Few sociologists will argue against deductive systems satisfying
the criteria of theories (or even of good theories [Van de Ven 1989a], or of strong
theories [Sutton and Staw 1995])—even without agreeing on the exact criteria
that theories should meet. Using the strict notion of theories allows us to be
on the safe side, as it were. We do not want to de-emphasize the importance
of other, less formal notions of theory. Formulating theoretical ideas in a less
formal manner can be extremely useful, especially during earlier stages of theory
development. The discovery of theories requires creativity and insight—activities
with which formal logic is rarely associated. As Weick (1995) remarked: ‘what
theory is not, theorizing is.’ The process of theory development may very well
resemble some form of ‘disciplined imagination’ (Weick 1989)—maybe logic can
help us understand the ‘discipline’ involved.

33Similar views have been proposed earlier. This notion, although used informally, can be
traced in the writings of (for example, Durkheim 1938; Weber 1968; Neurath 1970; Beth 1958a;
Kaplan 1964; Homans 1967; Merton 1968; Stinchcombe 1968; Elster 1978).
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ery: Computational Explorations of the Creative Processes. The MIT Press,
Cambridge MA, 1987.

P. R. Lawrence and J. W. Lorsch. Organization and Environment. Harvard
University Press, Cambridge MA, 1967.

P. F. Lazarsfeld, editor. Mathematical Thinking in the Social Sciences, 1954. The
Free Press, Glencoe IL.

P. F. Lazarsfeld. Philosophy of science and empirical social research. In E. Nagel,
P. Suppes, and A. Tarski, editors, Logic, Methodology, and Philosophy of Sci-
ence, pages 463–473. Stanford University Press, Stanford CA, 1962.

D. B. Lenat. AM: An Artificial Intelligence Approach to Discovery in Mathemat-
ics. PhD thesis, Stanford University, 1976.

D. A. Levinthal. Organizational adaptation and environmental selection—
interrelated processes of change. Organization Science, 2:140–145, 1991.

K. Lewin. Field Theory in Social Science: Selected Theoretical Papers. Harper
and Row, New York, 1951.

D. W. Loveland. Automated deduction: Looking ahead. AI Magazine, 20(1):
77–98, 1999.

D. Makinson and P. Gärdenfors. Relations between the logic of theory change
and nonmonotonic reasoning. In A. Fuhrmann and M. Morreau, editors, The
Logic of Theory Change, volume 465 of Lecture Notes in Artificial Intelligence,
pages 185–205. Springer-Verlag, Berlin, 1991.

K. Manhart. Strukturalistische Theorienkonzeption in den Sozialwissenschaften.
Zeitschrift für Soziologie, 23:111–128, 1994.

J. G. March and H. A. Simon. Organizations. Wiley, New York, 1958.

M. Masuch. Introduction: Artificial intelligence in organization and management
theory. In M. Masuch and M. Warglien, editors, Artificial Intelligence in Orga-
nization and Management Theory: models of distributed activity, pages 1–19.
North-Holland, Amsterdam, 1992.

M. Masuch, J. Bruggeman, J. Kamps, G. Péli, and L. Pólos. What theory is. . . : A
reaction to Sutton and Staw’s “what theory is not”. ASQ Research Listserver,
2(1), 1996.



180 Bibliography

M. Masuch and Z. Huang. A case study in logical deconstruction: Formalizing
J.D. Thompson’s organizations in action in a multi-agent action logic. Com-
putational and Mathematical Organization Theory, 2(2):71–114, 1996.

J. McCarthy. Programs with common sense. In D. V. Blake and A. M. Uttley, ed-
itors, Mechanisation of Thought Processes: Proceedings of a symposium held at
the National Physics Laboratory, pages 75–84. Her Majesty’s Stationary Office,
London, 1959.

W. McCune. A Davis-Putnam program and its application to finite first-order
model search: Quasigroup existence problems. Technical report, Argonne Na-
tional Laboratory, Argonne IL, 1994a. DRAFT.

W. McCune. Otter: Reference manual and guide. Technical Report ANL-94/6,
Argonne National Laboratory, Argonne IL, 1994b.

R. K. Merton. Social Theory and Social Structure. The Free Press, New York,
1968 enlarged edition, 1968.

H. Mintzberg. The Structuring of Organizations. Prentice-Hall, Englewood Cliffs
NJ, 1979.

E. Nagel. The logic of social science. In Logic Without Metaphysics, chapter 12,
pages 361–368. The Free Press, Glencoe IL, 1956.

E. Nagel. The Structure of Science: Problems in the Logic of Scientific Explana-
tion. Routledge & Kegan Paul, London, 1961.

O. Neurath. Foundations of the social sciences. In Neurath et al. (1970), chapter
II.1, pages 1–51.

O. Neurath, R. Carnap, and C. Morris, editors. Foundations of the Unity of
Science: Towards an International Encyclopedia of Unified Science, volume
I(1–10) and II(1–9), 1970. The University of Chicago Press, Chicago IL.

A. Newell, J. C. Shaw, and H. A. Simon. Emperical explorations with the logic
theory machine: a case study in heuristics. In Proceedings Western Joint Com-
puter Conference, pages 218–239, 1957.

A. Newell and H. A. Simon. The logic theory machine. In IRE Transactions on
Information Theory, volume IT-2(3), pages 61–79, 1956.

A. Newell and H. A. Simon. Human Problem Solving. Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey, 1972.

N. Nicholson, editor. Encyclopedic Dictionary of Organizational Behavior, 1995.
Blackwell Publishers, Oxford UK.
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G. Péli and M. Masuch. The logic of propagation strategies: Axiomatizing a frag-
ment of organizational ecology in first-order logic. In D. P. Moore, editor, Best
Papers Proceedings of the 54th Annual Academy of Management Convention,
Dallas, Texas, pages 218–222, 1994.
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Samenvatting

De algemene beschikbaarheid van krachtige computers kan de manier waarop
wetenschap bedreven wordt radicaal veranderen. Om dit potentieel te verwezen-
lijken moeten we onze wetenschappelijke kennis voor onze computers toeganke-
lijk maken. Tijdens de laatste decennia heeft de vooruitgang van de informatica
het mogelijk gemaakt om op grote schaal wetenschappelijke gegevens geauto-
matiseerd vast te leggen. Dezelfde vooruitgang is vooralsnog niet bereikt voor
de meest gerenommeerde vorm van wetenschappelijke kennis – onze theorieën.
Dit proefschrift presenteert een logische benadering van computer-ondersteunde
theorie-ontwikkeling, hetgeen wil zeggen dat wij de representatie van wetenschap-
pelijke theorieën met behulp van symbolische logica zullen onderzoeken.

Wetenschappelijk theorieën worden doorgaans gezien als systemen van bewe-
ringen: de theorie doet bepaalde voorspellingen die volgen uit een aantal on-
derliggende aannamen. De argumentatie voor een dergelijke voorspelling omvat
doorgaans zowel aannames over het empirische domein, alsmede algemene aflei-
dingsregels (waarvan de geldigheid niet afhankelijk is van de gegeven toepassing).
De logica is het wetenschapsgebied dat van oudsher onderzoek doet naar deze
algemene afleidingsregels. De formele logica heeft logisch geldige formalismen
opgeleverd die, op zijn minst, een normatieve rol kunnen spelen voor de juistheid
van argumenten. De voordelen van het logisch representeren van theorieën zijn
algemeen bekend en vaak uitgebreid besproken, en tevens is gebleken dat interes-
sante methodologische onderwerpen kunnen worden besproken onder de aanname
dat theorieën in een logische taal zijn geaxiomatiseerd. Het is echter belangrijk
om op te merken dat, tot nu toe, logische axiomatiseringen van significante the-
orieën uit de empirische wetenschappen zelden zijn verwezenlijkt. Met andere
woorden, over het in de praktijk toepassen van formele logica voor de represen-
tatie van theorieën uit de empirische wetenschappen is veel minder bekend. Deze
praktische aspecten vormen een belangrijk onderdeel van dit proefschrift. In het
bijzonder zullen we in ieder hoofdstuk formele versies van theorieën of fragmenten
van theorieën construeren of bespreken.
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Als toepassingsgebied voor de representatie van theorieën in formele logica
hebben we gekozen voor de sociale wetenschappen, in het bijzonder theorieën uit
het vakgebied van de sociologie en de organisatiesociologie. Dit is misschien een
verrassende keuze aangezien de paradigmatische voorbeelden van theorieën in de
empirische wetenschappen uit andere vakgebieden komen, met name uit de na-
tuurkunde. De sociologie staat zelfs bekend om haar gebrek aan systematische
theorieën. Niettemin, voor zover de sociologie een wetenschap is, moet zij vol-
doen aan dezelfde methodologische principes als de andere wetenschappen. Dat
betekent, bijvoorbeeld, dat de vraag of een theoretisch argument in de sociologie
valide is, moet worden beoordeeld volgens dezelfde criteria als een argument in de
natuurkunde. In het kort, de “logica” van de sociale wetenschappen is dezelfde
als die van de andere wetenschappen.

Hoofdstuk 2 treft de voorbereidingen voor een computationele methodologie
voor het axiomatiseren van wetenschappelijke theorieën. Het eerste doel is te
verkennen hoe logische criteria voor het evalueren van theorieën in de praktijk
kunnen worden getoetst, daarbij gebruik makend van generieke computerpro-
gramma’s uit de kunstmatige intelligentie. Het tweede doel is om na te gaan
welke logische criteria overeen komen met vragen die van nature over sociaal-
wetenschappelijke theorieën te stellen zijn. Het grootste gedeelte van dit hoofd-
stuk bestaat uit een case studie van de formalisering van een sociologische theorie,
Hopkins’ “The Exercise of Influence in Small Groups”, in eerste-orde logica.

Er zijn overtuigende filosofische argumenten dat sociaal-wetenschappelijke the-
orieën moeten voldoen aan dezelfde logische criteria als theorieën uit andere dis-
ciplines. Dit impliceert echter niet dat deze criteria direct toepasbaar zijn op
theoretische beschrijvingen in de sociologie. Het is zelfs mogelijk dat deze criteria
(nog) niet relevant lijken voor theoretische onderzoekers in de sociologie. Uit de
case studie blijkt dat diverse van de standaard criteria voor het evalueren van
theorieën relevant zijn voor deze specifieke theorie. Tevens slagen we erin om
ieder van deze criteria computationeel te toetsen met behulp van automatisch-
redeneerprogramma’s. De functionaliteit van deze programma’s is beperkt door
een aantal restricties, zoals de onbeslisbaarheid van eerste-orde logica en prakti-
sche beperkingen in CPU-kracht, geheugen en tijd. Desalniettemin kan, gebruik-
makend van slechts de standaardinstellingen van de programma’s, ieder van de
criteria binnen vijf seconden worden getoetst door het vinden van een bepaald
bewijs of (tegen)voorbeeld. De evaluatie van sociologische theorieën lijkt dus
binnen het bereik van de huidige automatisch-redeneerprogramma’s te liggen.

Hoofdstuk 3 presenteert een logische axiomatisering van een klassieke organi-
satietheorie, Thompsons “Organizations in Action”. Thompsons boek is een van
de klassieke bijdragen aan de organisatietheorie: het geeft een raamwerk dat het
gezichtspunt dat organisaties als gesloten systemen behandelt, en het gezichts-
punt dat uitgaat van de afhankelijkheden tussen organisaties en hun omgeving,
met elkaar verenigt. Dit raamwerk heeft veel van het daaropvolgende onderzoek
bëınvloed. “Organizations in Action” is een theorie in natuurlijke taal, waarin
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alleen de belangrijkste beweringen duidelijk zijn aangegeven. Dit hoofdstuk geeft
een formele vertaling van de eerste hoofdstukken van Thompsons boek, door de
tekstuele argumentatie te reconstrueren. Alhoewel de tekst geen expliciete defini-
ties geeft, suggereert het gebruik van terminologie strikte afhankelijkheden tussen
een aantal belangrijke concepten. Dit gaf aanleiding tot het definiëren van deze
concepten in termen van een klein aantal primitieve begrippen uit de organi-
satietheorie. In de formele theorie kunnen de belangrijkste beweringen worden
afgeleid als theorema’s. De bewijzen van deze theorema’s zijn gebaseerd op een
reconstructie van de argumentatie in de tekst. Verder verklaart de formele theorie
waarom de beweringen slechts geldig zijn voor een bepaald type van organisaties.
Tevens is er een tot nu toe onbekende implicatie van de theorie afleidbaar, die
Thompsons theorie relateert aan recent empirisch onderzoek en huidige ontwikke-
lingen in de organisatietheorie.

De sociale wetenschappen staan bekend om het gebruik van een ruim vo-
cabulaire – een van de meest in het oog springende verschillen met theorieën in
andere wetenschappen. Sociaal-wetenschappelijke theorieën gebruiken vaak veel
gerelateerde concepten met slechts subtiele verschillen in betekenis. Het resultaat
hiervan is dat een logische representatie van sociaal-wetenschappelijke theorie ook
een groot vocabulaire gebruikt. In de formalisering van “Organizations in Action”
wordt geëxperimenteerd met het gebruik van definities als middel om de voordelen
van een groot vocabulaire te combineren met de voordelen van een klein aantal
primitieve termen. Indien een theorie definities bevat, kunnen de gedefinieerde
termen worden geëlimineerd door de definities uit te schrijven. Hoofdstuk 4 ver-
volgt onze discussie van logische criteria voor het evalueren van theorieën. Onze
eerdere discussie maakte geen onderscheid tussen verschillende soorten van pre-
missen. Hier onderzoeken we hoe deze criteria moeten worden aangepast voor
theorieën die definities bevatten. We zullen praktische operationaliseringen geven
van criteria voor het evalueren van theorieën, zoals de consistentie (bestaan van
een model) of inconsistentie (afleidbaarheid van een tegenstelling) van de theorie;
de betrouwbaarheid (bestaan van een bewijs) of onbetrouwbaarheid (bestaan van
een tegenvoorbeeld) van theorema’s; de vervulbaarheid en falsificeerbaarheid van
theorema’s; en de onafhankelijkheid van de axioma’s. De tests voor deze criteria,
in de praktijk neerkomend op het vinden van een bepaald bewijs of model, kun-
nen direct worden uitgevoerd door bestaande automatisch-redeneerprogramma’s.
We gebruiken deze criteria voor het evalueren van de formele theorie van “Or-
ganizations in Action” uit hoofdstuk 3. Het bepalen van deze criteria leidt tot
een precieze evaluatie van de theorie, hetgeen in sommige gevallen belangrijke
gegevens over de theorie kan onthullen. We laten bijvoorbeeld zien dat een van
de afgeleide beweringen onfalsificeerbaar is – empirische toetsing kan, op zijn best,
de triviale geldigheid van deze bewering bevestigen.

Wetenschappelijke activiteiten worden traditioneel onderverdeeld in de con-
text van rechtvaardiging en de context van ontdekking. Binnen deze verdeling
wordt de axiomatisering van theorieën doorgaans gezien als de ultieme stap in de
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rechtvaardiging van een theorie. Hoofdstuk 5 stelt vraagtekens bij deze zienswijze
door het proces van axiomatiseren te onderzoeken. Een theorie in eerste-orde lo-
gica geeft een expliciete, ondubbelzinnige uiteenzetting van de theorie. Door
toetsing van de criteria uit hoofdstuk 4 kunnen we een nauwgezette evaluatie
maken van een dergelijke theorie. Echter, wij zien deze criteria niet als een laat-
ste, statische evaluatie van een theorie. Integendeel, in onze ervaring zijn deze
criteria juist het meest bruikbaar tijdens het axiomatiseringsproces. De gebruikte
operationaliseringen van de criteria bewijzen niet alleen het criterium, maar geven
ook een specifiek bewijs of model dat beschikbaar is voor verdere inspectie.

Iedere uiteenzetting van een theorie maakt diverse onderliggende theoretische
vooronderstellingen. De formalisering van een wetenschappelijke theorie vereist
dat ook deze vooronderstellingen expliciet worden gemaakt. Het identificeren
van deze impliciete onderliggende aannames is een van de moeilijkste problemen
tijdens de formalisering van een theorie, waarvoor een diep begrip van het des-
betreffende vakgebied nodig is. Indien de van toepassing zijnde onderliggende
aannames niet aan de formele theorie worden toegevoegd, zijn bepaalde bewe-
ringen niet afleidbaar. Echter, indien een automatisch-redeneerprogramma een
klein tegenvoorbeeld tegen een dergelijke niet-afleidbare bewering kan vinden, is
het meteen duidelijk waarom een poging het bewijs te vinden zal falen. In het
bijzonder kunnen deze tegenvoorbeelden onthullen welke impliciete aannames aan
de theorie moeten worden toegevoegd.

Het product van een axiomatisering, een theorie gerepresenteerd in eerste-
orde logica, is een deductieve theorie. Het proces van axiomatisering is echter
noodzakelijkerwijs niet-deductief. We zullen dit in detail illustreren door het for-
maliseren van een theorie-fragment uit Zetterbergs “On Theory and Verification
in Sociology”. Zoals blijkt moeten we herhaaldelijk de formele representatie van
de theorie aanpassen door het toevoegen van impliciete achtergrond aannames,
door het herformuleren van niet-afleidbare beweringen, en door het aanpassen
van de axioma’s van de theorie. Deze revisies van de formele theorie kunnen
ook gevolgen hebben voor de originele theorie. Dit kan van groot belang zijn,
aangezien zelfs een kleine verduidelijking van een theorie kan voorkomen dat er
onnodige kosten worden gemaakt bij de empirische toetsing van onjuiste of irre-
levante hypothesen. De gebruikte criteria faciliteren een stapsgewijze revisie van
de theorie, resulterend in een cyclisch proces van theorie-ontwikkeling.

Hoofdstuk 6 presenteert eerder onderzoek naar een gëımplementeerd pro-
gramma om een bepaalde klasse van theorema’s te enumereren. In de formele
logica wordt de deductieve geslotenheid van een theorie als vanzelfsprekend be-
schouwd – de formele definitie van een theorie is een verzameling zinnen gesloten
onder de deductieve afleidingsregels. In de praktijk is het onmogelijk om een
complete, deductief gesloten verzameling zinnen te construeren, aangezien deze
noodzakelijkerwijs oneindig groot is (bijvoorbeeld omdat die alle tautologieën be-
vat, i.e., zinnen die altijd waar zijn en dus volgen uit iedere verzameling zinnen).
Een gevolg hiervan is dat een complete deductieve sluiting van een verzameling
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premissen noch realiseerbaar, noch gewenst is – alleen gedeeltelijk gesloten ver-
zamelingen kunnen bruikbare resultaten opleveren. In dit hoofdstuk presenteren
we een algoritme dat een efficiënte, gedeeltelijke deductieve sluiting voor een be-
langrijke klasse van theorema’s realiseert, i.e., voor conditionele formules die twee
relevante domein concepten relateren. Beweringen van deze klasse vormen de
ruggengraat van veel empirische sociale wetenschappen; het is, wellicht, de belang-
rijkste klasse van beweringen in de sociale wetenschappen. Het gëımplementeerde
programma wordt toegepast on een eerste-orde logica formalisering van Hannan
en Freemans theorie van “Structural Inertia and Organizational Change”. Het
algoritme blijkt meer theorema’s te genereren dan de oorspronkelijke theorie ex-
pliciet maakt, waarvan sommige van theoretisch belang zijn.

Het vermogen om kwalitatief te redeneren over fysieke systemen is belangrijk
voor het begrip en interactie met de fysieke wereld, zowel voor mensen als voor
machines. Dientengevolge is de studie hiervan een belangrijk onderwerp binnen
de kunstmatige intelligentie. De meeste sociaal-wetenschappelijke theorieën zijn
van nature kwalitatieve theorieën. Hoofdstuk 7 gaat niet over de representatie
van theorieën in logica, maar over het modelleren van theorieën met kwalitatieve
redeneertechnieken. Kwalitatieve redeneertechnieken worden bijna uitsluitend
toegepast binnen het domein van de natuurkunde. Dit hoofdstuk onderzoekt
de toepasbaarheid van deze technieken buiten de natuurkunde. Als case studie
wordt in dit hoofdstuk een kwalitatief simulatiemodel van de Hannan en Carrolls
“Density Dependence Theory” geconstrueerd. De case studie laat zien dat uit het
model en de simulaties inzichten van theoretisch belang kunnen volgen. Tevens
bespreekt dit hoofdstuk de verschillen tussen de toepassing van kwalitatieve re-
deneertechnieken in de natuurkunde en in de sociale wetenschappen.

Hoofdstuk 8 bevat, ten slotte, enige discussie en verdere verwijzingen naar
gerelateerd onderzoek.
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