The University of Amsterdam at INEX-2002

Maarten Marx, Jaap Kamps, Maarten de Rijke
Language and Inference Technology
ILLC, Universiteit van Amsterdam
Nieuwe Achtergracht 166, 1018 WV Amsterdam
The Netherlands

{marx,kamps,mdri}@science.uva.nl
http://www.science.uva.nl/LIT/

ABSTRACT

This document describes the runs for the INEX-2002 task
submitted by the Language and Inference Technology Group
at the University of Amsterdam. Besides a description of our
experiments some logical problems with the INEX format
of the content and structure topics are discussed and an
alternative is proposed.

1. INTRODUCTION

The aim of our official runs was to experiment with the ef-
fectiveness of different types of morphological normalization
for structured corpora. Morphological normalization proved
successful for plain text collections [5, 6]. The XML retrieval
task departs from the strict Boolean query matching used in
traditional database theory, allowing for various gradations
of relevance. In particular, related words like morphological
variants should share some of their relevance. In order to
study the precise effect of morphological normalization, we
created plain-word, stemmed, and ngrammed indexes that
preserve the XML-structure of the original documents. This
allows for both the content-only and content-and-structure
topics to be evaluated against all three indexes.

All experiments were carried out with the FlexIR system
developed at the University of Amsterdam [5], using the
Lnu.ltc weighting scheme. Our indices follow the classical
IR model: the documents (in this case the articles in the
collection) are the atomic units.

For the content only topics, the XML structure of the doc-
uments was not used. For the content and structure topics,
we used a two step strategy. We first treated the topic as
a content only topic and selected the 1000 highest ranking
documents. Then we directly processed (a morphological
normalization of) these documents.

Our experiments are described in more detail in Sections 2

and 3. In the remaining sections we discuss encountered
problems which are specific to IR with XML documents. In
particular we discuss an alternative to the format in which
the content and structure topics had to be specified.

2. SYSTEM DESCRIPTION

2.1 The INEX collection

The INEX collection, 21 IEEE Computer Society journals
from 1995-2002, consists of 12,135 (when ignoring the vol-
ume.xml files) documents with extensive XML-markup. The
ten most frequent words in the collection are the following:
data (169886), time (161415), system (149249), pp (137334),
computer (119732), systems (116221), software (106552), fig
(103141), set (99865), and ensp (99723).

2.2 TherlexirR information retrieval system

All submitted runs used FlexIR, an information retrieval sys-
tem developed at the University of Amsterdam [5]. The
main goal underlying FlexIR’s design is to facilitate flexible
experimentation with a wide variety of retrieval components
and techniques. FlexIR is implemented in Perl; as it is built
around the standard UNIX pipeline architecture, and sup-
ports many types of preprocessing, scoring, indexing, and
retrieval tools, which proved to be a major asset for INEX
task. The retrieval model underlying FlexIR is the standard
vector space model. All our runs used the Lnu.ltc weighting
scheme [1] to compute the similarity between a query and a
document. For the experiments on which we report in this
note, we fixed slope at 0.2; the pivot was set to the average
number of unique words per document.

2.3 Morphological Normalization

Our aim was to study the effect of morphological normaliza-
tion on the retrieval. To obtain a zero-knowledge language
independent approach to morphological normalization, we
implemented an ngram-based method in addition to a lin-
guistically informed method. The ngram length was set to
five. For each word we stored both the word itself and all
possible ngrams that can be obtained from it without cross-
ing word boundaries. For instance, topic 01 contained the
phrase description logics. Using ngrams of length five, this
becomes:

description descr escri scrip cript ripti iptio ption
logics logic ogics

For the linguistically informed method with which we wanted
to contrast the effect of the ngram-method we used Porter
stemming [7]. In both approaches we removed words occur-
ring on a stop list with 391 words. Figure 1 contains the
original topic 31 and the stemmed version used as FlexIR
input.

<INEX-Topic topic-id="31" query-type="CO0" ct-no="003">

<Title>
<cw>computational biology</cw>

</Title>

<Description>
Challenges that arise, and approaches being
explored, in the interdisciplinary field of
computational biology.

</Description>

</INEX-Topic>

(a)

.i 31

comput biologi challeng aris approach
explor interdisciplinari field comput
biologi

(b)
Figure 1: Topic 31, original (a) and stemmed (b)

2.4 Combined Runs

We also wanted to experiment with combinations of (what
we believed to be) different kinds of runs in an attempt
to determine their impact on retrieval effectiveness. More
specifically, we created a base run using the Porter stem-
mer and one in which we used ngrams in the manner de-
scribed above. We then combined these two runs in the
following manner. First, we normalized the retrieval status
values (RSVs), since different runs may have radically dif-
ferent RSVs. For each run we reranked these values in [0, 1]
using:

RSV; — min;

mazxr; — min;

RSV/ =

and assigned the value0 to all documents not occurring in
the top 1000. This is the Min_Max_Norm considered in [4].
Next, we assigned new weights to the documents using a
linear interpolation factor A representing the relative weight
of a run:

RSVipew = A+ RSVi + (1 — \) - RSV5.

For A = 0.5 this is similar to the simple (but effective) comb-
SUM function used by Fox and Shaw [3]. The interpolation
factor A\ was set to 0.6 for the ngram run. This higher weight
for the ngram run was motivated by experiments on the
CLEF [2] data sets.

2.5 Basic Architecture

In this subsection we describe how the runs were performed.
The documents were processed as follows. The original xml-
docs are standardized, tokenized and, if needed, stemmed or

ngrammed. Words in the documents are transformed into
records and inverted. This results in an index for running
the FlexIR retrieval program.

For the content-only topics, we follow the classical IR ap-
proach: Only the words in the title and description fields are
selected. These words are, stopped and if needed, stemmed
or ngrammed. For an example of this transformation after
stemming, see Figure 1.

For the content-and-structure topics, we made two transla-
tions: First they are processed similar to the content-only
topics: only the words in the title and description fields are
selected; from the title field we only select the content of the
(cw) field. Then the (title) field is processed to preserve the
structural part of the query: the first line contains the topic
number, the second line gives the xml-field that needs to be
returned, the next line(s) give conditions for the document,
consisting of a field name, and the words that are sought.
For example, topic 01 with the following (title) field

<Title>

<te>au</te>

<cw>description logics</cw><ce>abs, kwd</ce>
</Title>

becomes after stemming

.1 01
article/fm/au
abs|kwd, descript logic

This should be read as: retrieve the content of article/fm/au
if article/fm/abs or article/fm/kwd contains the words
descript or logic.

For the content-only topics, we simply run the (naive, stemmed,
or ngrammed) topics on the (naive, stemmed, or ngrammed)
document index. The 100 documents with the highest FlexIR
relevance assessment (RSV) are selected.

The runs for the content-and-structure topics are more com-
plex: First we run the first translation of the (naive, stemmed,
or ngrammed) topics on the (naive, stemmed, or ngrammed)
document index, preselecting the most promising 1000 doc-
uments per topic. Our working hypothesis is that all rele-
vant document are in this top 1000. For each topic, we cre-
ate a special xml-file containing these top 1000 documents.
On these so-called docpiles, we run an xml-parser based on
Perl’s XML: : Twig that handles xpath expressions, and select
the required field(s) from the documents that satisfy the con-
ditions as specified in the second translation of the topic. In
addition, we count the number of matching search words.
The result is a twig file having the raw scored xml-elements
in non-sorted order. Finally we select the (maximally) 100
xml-elements that have the highest number of matches, and
sort them according to the original FlexIR relevance assess-
ment.

3. RUNS
For the INEX 2002, we submitted three official runs:

UAmslI02Stem Stemmed index and topics, using Lnu.ltc
weighting, and feedback.

For the ‘content and structure’ topics, the stemmed
documents were used to create docpiles of the top
1000 documents of the stemmed run. The stemmed
structured topics were used to filter out the asked xml-
elements from documents satisfying the asked condi-
tions.

UAmsI02NGram Ngrammed index and topics, using Lnu.ltc

weighting, and feedback. We used ngram-length 5,
adding ngrams for words with length > 4, while also
keeping the the originals words.

For the ‘content and structure’ topics, the stemmed
documents were used to create docpiles of the top
1000 documents of the ngrammed run. The stemmed
structured topics were used to filter out the asked xml-
elements from documents satisfying the asked condi-
tions.

UAmsI02NGiSt Combined run using 0.6 Ngram, and 0.4
Stemmed.

For the ‘content and structure’ topics, the stemmed
documents were used to create docpiles of the top
1000 documents of the combined ngram-stemmed run.
The stemmed structured topics were used to filter out
the asked xml-elements from documents satisfying the
asked conditions.

3.1 Post submission runs for INEX

UAmsI02Word We create a naive, word-based run (still
stopping, and lowercasing strings) by using a ngram-
length of 100. Again, we use Lnu.ltc weighting, and
feedback.

For the ‘content and structure’ topics, the stemmed
documents were used to create docpiles of the top
1000 documents of the word-based run. The stemmed
structured topics were used to filter out the asked xml-
elements from documents satisfying the asked condi-
tions.

UAmsI02NGramOnNGram Ngrammed index and top-
ics, using Lnu.ltc weighting, and feedback. We used
ngram-length 5, adding ngrams for words with length
> 4, while also keeping the the originals words.

For the ‘content and structure’ topics, the ngrammed
documents were used to create docpiles of the top
1000 documents of the ngrammed run. The ngrammed
structured topics were used to filter out the asked xml-
elements from documents satisfying the asked condi-
tions.

UAmsI02WordOnWord We create a naive, word-based
run (still stopping, and lowercasing strings) by using a
ngram-length of 100. Again, we use Lnu.ltc weighting,
and feedback.

For the ‘content and structure’ topics, the word-based
documents were used to create docpiles of the top 1000
documents of the word-based run. The word-based

structured topics were used to filter out the asked xml-
elements from documents satisfying the asked condi-
tions.

4. PROBLEMS WITH XML SYNTAX

The first few releases of the collection had a number of prob-
lems related to the XML syntax. In our approach we needed
to do a morphological transform of the free text part of the
documents but leave the XML structure intact. Because we
used non forgiving XML parsers like TWIG it was very im-
portant to have and to keep valid XML documents. Here
are some of the encountered problems:

e Deciding which broken tags to repair. Sometimes au-
thors use tricks like ; tag> to indicate that a tag should
not be evaluated, but taken literally. This trick works
with forgiving web browsers, but it is incorrect XML.
The correct ‘trick’ would be <tag>, but what
quite frequently the author actually meant to write
was <tag>. If this is the case then translating &1t ; tag>
to &1t ;taglkgt; breaks XML validity because one is left
with a </tag> somewhere that has no opening <tag>
anymore.

e Dealing with embedded TEX and IXTEX proved to be
quite difficult, because there were math formulas of the
shape $$i<k>2$$, which leads an XML parser to be-
lieve that <k> is a tag. We decided to remove embed-
ded mathematics using the XML-tags, i.e., (tf)... (/tf)
and (tmath)...(/tmath). This helps avoiding XML
parser errors due to use of sequences, (...), in math
portions of the documents.

e Some documents have tags that contain newlines. For
example, so/2001/s5071 has tags like

(
fig)

that span two lines. These tags are lost in our index,
and gave parser errors. We rectify this by removing
newlines that occur inside a tag.

We used the following forgiving, yet not too liberal
regular expression for XML tags:

VP wH\sx(\uk\sx=\sx[\? \"]7[7\ 7 \"\>]+[\?\"]7\s) %\ /7>

It works fine but matches things like <p[\n]+>, which
could cause trouble when operating on the file line by
line. The collection contains tag attribute values like
<li t="(3.9) 7> which the regular expression should
catch.

5. TRANSFORMING INEX TOPICS INTO
XPATH EXPRESSIONS

Our initial strategy was to use an XML query engine like
Kweelt or Twig for the content and structure topics. For
this reason we sought a way of automatically translating the
INEX topic format into XPATH expressions. This turned
out impossible for a number of reasons, one was that the

topic authors used operators for Boolean expressions and
joins, but not in a uniform way, nor using uniform notation.
Also, as evidenced in the discussion list, the meaning of “”
was not always clear.

It seems that these reasons can be overcome once a fixed
topic language is given to the authors. We found though
two deeper reasons why INEX topics cannot be transformed
automatically into XPATH expressions. The first is that the
use of (implicit) descendant axis in paths leads to problems
of ambiguity and under-specification. The second is due to
the fact that one cannot specify a connection between the
(te) field (which is to be returned) and the (cw) and (ce)
fields (which contain the conditions to be checked). From
this we conclude that the INEX topic format is not a suitable
question format and propose an alternative.

Incomplete Paths
A very simple INEX topic is

<te> article </te>
<cw> logic </cw> <ce> kwd</ce>

This means retrieve articles with “logic” as a keyword. The
equivalent XPATH expression (assuming all articles are in
one file and all articles are contained in the XPATH expres-
sion /article) would be

/article[contains(.//kwd,’’logic’’)]
Another simple INEX topic is

<te> au </te>
<cw> logic </cw> <ce> kwd</ce>

This could be rephrased as retrieve all authors of articles
with “logic” among the keywords. The corresponding XPATH
expression is not possible to give without knowing the exact
DTD and the paths to au and kwd. The naive solution

/article//aul
contains(./ancestor::article//kwd,’’logic’’)]

might be too general. It contains for instance

/article/bm/bib/bibl/bb/
aulcontains(../../../../../fm/kwd,’ ’logic’’)]

but these are authors whose work is cited from articles con-
taining “logic” as a keyword.

With the DTD for the INEX collection, the following seems
the correct translation. It retrieves authors of articles in the
INEX databases with logic among the keywords.

/article/fm/aulcontains(../kwd,’’logic’’)]

But of course this is an interpretation of the original topic.

Comma’s

Inside the te, cw and ce tags a comma separated list may
occur. According to the instructions comma should be read
as disjunction. This may lead to ambiguity, as the follow-
ing example shows. Consider the topic retrieve all author
or editor names containing “John”. The following XPATH
expression just gives that

//author/name[contains(.,’’John’’)] |
//editor/name[contains(.,’’John’’)]

Note that “|” denotes the join (union) of the two sets of
author names.

It seems impossible to formulate this as an INEX topic. The
obvious

<te> //author/name,//editor/name</te>
<cw> John </cw> <ce>//author/name,//editor/name</ce>

can not be correct. How could we translate this to an
XPATH expression while keeping the connection between
what is being returned and what is being checked? The join
has to be done after the two (independent) retrievals. We
can not specify this topic in the INEX format.

Our translation
We translated the INEX topics to XPATH expressions as
follows:

e we replaced <te>A,B, .. .</te> (disjunctive search tags)
by <te>/article</te>.

e we expanded element names in te and ce tags to unique
paths (as in the example above). In case of a choice
we used the whole topic to determine which path was
meant.

o As the files contained at most one article (at least that
was our assumption) we could work with the follow-
ing translation. This has to be adjusted in case there
are more articles in one file. Consider the following
example INEX topic

<te> T </te>
<cw> K1,K2</cw><ce> CT1</ce>
<cw> Li1</cw><ce> CT2,CT3</ce>

This topic would be translated into the XPATH ex-
pression

T[(contains(CT1,K1) or contains(CT1,K2))
and (contains(CT2,L1) or contains(CT3,L1))].

Proposal for INEX content-and-structure topic format
A union of xpath expressions in the last format is a good al-
ternative to INEX topics. It provides more expressive power
(because of the use of the context node in the contains ex-
pressions), and it is not ambiguous (because the implicit use

of descendant axis is forbidden; only complete paths which
are valid under the DTD can be used).

We think that such a strict format yields better results, both
in retrieval and in assessment. With the INEX format, topic
translation was a creative process. Even the topic descrip-
tion was often not complete enough to yield a unique inter-
pretation.

6. ACKNOWLEDGMENTS

We want to thank Willem van Hage for his technical sup-
port. Jaap Kamps was supported by the Netherlands Orga-
nization for Scientific Research (NWO), grant # 400-20-036.
Maarten Marx received support from NWO grant 612.000.106.
Maarten de Rijke was supported by grants from NWO, un-
der project numbers 612-13-001, 365-20-005, 612.069.006,
612.000.106, 220-80-001, and 612.000.207.

7. REFERENCES

[1] C. Buckley, A. Singhal, and M. Mitra. New retrieval
approaches using SMART: TREC 4. In D. Harman,
editor, Proceedings of the Fourth Text REtrieval
Conference (TREC-4), pages 25—48. NIST Special
Publication 500-236, 1995.

[2] CLEF. Cross language evaluation forum, 2002.
http://www.clef-campaign.org/.

3

E. Fox and J. Shaw. Combination of multiple searches.
In Proceedings TREC-2, pages 243252, 1994.

[4] J. Lee. Combining multiple evidence from different
relevant feedback networks. In Database Systems for
Advanced Applications, pages 421-430, 1997.

[5] C. Monz and M. de Rijke. Shallow morphological
analysis in monolingual information retrieval for Dutch,
German and Italian. In C. Peters, M. Braschler,

J. Gonzalo, and M. Kluck, editors, Fvaluation of
Cross-Language Information Retrieval Systems, CLEF
2001, volume 2406 of Lecture Notes in Computer
Science, pages 262-277. Springer, 2002.

[6] C. Monz, J. Kamps, and M. de Rijke. The University of
Amsterdam at CLEF-2002. In C. Peters, editor, Results
of the CLEF 2002 Cross-Language System Evaluation
Campaign, pages 73—-84, 2002.

[7] M. Porter. An algorithm for suffix stripping. Program,
14(3):130-137, 1980.

