
Processing Content-Oriented XPath Queries

Börkur Sigurbjörnsson
borkur@science.uva.nl

Jaap Kamps
∗

kamps@science.uva.nl
Maarten de Rijke

mdr@science.uva.nl
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
http://ilps.science.uva.nl/

ABSTRACT
Document-centric XML collections contain text-rich docu-
ments, marked up with XML tags that add lightweight se-
mantics to the text. Querying such collections calls for a
hybrid query language: the text-rich nature of the docu-
ments suggests a content-oriented (IR) approach, while the
mark-up allows users to add structural constraints to their
IR queries. Hybrid queries tend to be more expressive, which
should lead—in principle—to better retrieval performance.
In practice, the processing of these hybrid queries within an
IR systems turns out to be far from trivial, because a del-
icate balance between structural and content information
needs to be sought. We propose an approach to processing
such hybrid content-and-structure queries that decomposes
a query into multiple content-only queries whose results are
then combined in ways determined by the structural con-
straints of the original query. We evaluate our methods us-
ing the INEX 2003 test-suite, and show (1) that effective
ways of processing of content-oriented XPath queries are
non-trivial, (2) that there are differences in the effective-
ness for different topics types, but (3) that with appropriate
processing methods retrieval effectiveness can improve.

Categories and Subject Descriptors
H.2 [Database Management]: H.2.4 Query processing;
H.2.8 Database Applications; H.3 [Information Storage
and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3
Information Search and Retrieval; H.3.4 Systems and Soft-
ware; H.3.7 Digital Libraries

General Terms
Experimentation

∗Currently at Archives and Information Studies, Faculty of
Humanities, University of Amsterdam.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’04, November 8–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-874-1/04/0011 ...$5.00.

Keywords
XML Retrieval, XPath, Content and structure

1. INTRODUCTION
Document-centric XML documents contain text, marked

up with XML tags, enriching the text with lightweight se-
mantics. The markup can be exploited in several ways. Re-
trieval engines can use specific tags to try to boost retrieval
effectiveness, much like anchor text can be used to boost
effectiveness in web retrieval [4]. Alternatively, if users are
aware of the structure of documents in a collection, they
can query the collection by means of so-called content-and-
structure (CAS) queries. Such queries allow users to provide
constraints both on the granularity of results (i.e., the re-
quested unit of retrieval) and on the content of the results.
Furthermore, they may constrain the environment in which
the results appear. Thus, CAS queries allow users to express
their information need very precisely, through constraints on
both the content and the structure of desired XML elements.

Currently emerging standards for querying XML, such as
XPath and XQuery, do not seem to be optimally suited for
expressing CAS queries. At the Initiative for the Evaluation
of XML Retrieval (INEX, [9]), a content-oriented extension
(of a subset) of XPath has been proposed, which allows one
to mix free text search with structural constraints of the
type described above. In this paper we are interested in
processing CAS queries formulated in this query language.
In particular, we focus on investigating ways of ranking el-
ements that fulfill the granularity constraint w.r.t. how well
they answer the information need expressed in the query.
How can we use existing information retrieval technology
to answer content-and-structure queries? Existing retrieval
systems are not directly applicable since they are usually
not equipped with tools for handling structural constraints.

The main contribution of this paper is a methodology
for extending information retrieval systems to handle CAS
queries. Our proposal is to process the queries in three steps:

Decomposition Decompose a CAS query into a number
of IR queries, each of which constrains different parts
of the document. We look at these document parts as
different (potential) sources of evidence.

Retrieval Use existing information retrieval system tech-
nology to process the IR queries independently, col-
lecting evidence from different parts of documents.

Mixture Rank the relevant elements by mixing the evi-
dence from the multiple sources.

371

In addition to a description of our methodology for handling
CAS queries with existing IR systems, we provide a user-
oriented evaluation of the methodology, using the 2003 test
set made available through INEX. Our main aim here is to
evaluate the relative effectiveness of different decompositions
of CAS queries, looking at all CAS topics, as well as at
particular topic types.

The paper is organized as follows. Section 2 introduces
document-centric XML collections and the information re-
trieval challenges for such collections. Furthermore, we dis-
cuss content-oriented XPath, the query format used at INEX
to formulate content-and-structure queries. We also sketch
how a retrieval engine could answer such queries. In Sec-
tion 3 we explain in more detail how we have extended
our own retrieval engine to handle content-oriented XPath
queries. We describe a set of user-oriented experiments in
Section 4 aimed at assessing the retrieval effectiveness of our
methodology. The results of those experiments are discussed
in Section 5. In Section 6 we offer conclusions.

2. CONTENT AND STRUCTURE
XML can be used to mark up content in various ways.

Based on the content, XML documents are often broken
down into two categories: data-centric and document-centric.
Document-centric documents are loosely structured docu-
ments (often text) marked-up with XML. An example of
document-centric XML is an electronic journal in XML.
Document-centric XML is sometimes referred to as narra-
tive XML, reflecting the importance of the order in which
XML elements occur.

2.1 INEX Collection
For our experimental evaluation we will use the document-

centric XML collection that comes with the INEX test-
suite [9]. It contains over 12,000 computer science articles
from 21 IEEE Computer Society journals. The documents
are marked up with XML tags. On average a document
contains 1532 elements and the average element depth is
6.9. The markup has around 170 tag names, such as articles
<article>, sections <sec>, author names <au>, affiliations
<aff>, etc. Figure 1 shows an example of the structure of
an XML document, similar to those present in the INEX
collection. The tag-names mostly explain the layout of the
articles but give little information about their content.

2.2 INEX Query Language
To query document-centric XML documents we should

use a hybrid query language, where content and structural
requirements can be expressed and mixed. Such a content-
and-structure query language should allow users to describe
their desired results more precisely. At INEX, an XPath-like
query language has been introduced which is appropriate
for XML information retrieval. The syntax of the language
looks like XPath, but does not have the same strict seman-
tics. It can be viewed as an extension of a subset of XPath.

At INEX, XPath is extended with the about function,
aimed at facilitating free-text search. Although about has
the same syntax as the XPath function contains, their se-
mantics are quite different. Because of its strict, boolean
character, the contains function is not suitable for text rich
documents. The semantics of the about function is meant
to be very liberal. It is meant to be used to rank elements
according to their relevance for a given content requirement.

Consider the XML element

<affiliation>Stanford University</affiliation>.

A human assessor is likely to decide that the function

about(.//affiliation,’California’)

returns true on this string; in contrast, an XPath processor
equipped only with contains would have difficulties trying
to do the same.

The subset of XPath used at INEX 2003 was simple, only
the child- and descendant-axis were used. In the INEX 2003
test set, none of the queries used more than two predicates.
That is, only queries with one predicate:

location-path[abouts],

and two predicates:

location-path[abouts]location-path[abouts].

were used. Each location-path is an XPath location path
using only child-axis, descendant-axis, and node-tests. Each
predicate, [abouts], is a boolean combination of about-
functions. The location path used within the about-functions
was also limited to child- and descendant-axes. Even this
limited fragment of XPath turned out to be too complex
for the INEX query creators [16]. Based on user studies, a
smaller subset has been chosen for INEX 2004 [20].

2.3 INEX CAS Queries
To make matters more concrete, let us look at an example

of a CAS query in the INEX 2003 format; this example will
be our running example in the remainder of the paper.

Suppose a user is interested in information about the
safety of collision detection algorithms of flight traffic control
systems. She formulates her information need in a mixture
of structural and content constraints:

//article[about(.//abstract, flight traffic control

system)]//section[about(., collision detection

algorithm) and about(.//theorem, safety)]

She believes that articles that are really focused on “flight
traffic control systems”, do say so in the abstract. Since she
is interested in a certain aspect of the systems, namely the
“collision detection algorithm”, she specifies that she wants
to zoom in on a section about that particular aspect. Fi-
nally, she assumes that a good collision detection algorithm
should be proved to be safe. Hence, she adds the last about
function, which says that it is desirable that the sections
returned contain a theorem about safety.

From a user perspective the query above should not be
taken literally, but interpreted using vague semantics. A
user is likely to judge a section relevant, even if it is in an
article which has no abstract, as long as it addresses the
information need of the user. Since the retrieval engine is
made to serve the user, it should try to approach the problem
from a user perspective. The search engine should thus look
at the query as a hint about the content and environment
of the desired results.

2.4 Research Questions
Using the content-oriented XPath example query just given

we provide an informal description of our method for ex-
tending IR systems in order to process CAS queries; a more

372

article

front_matter body

... abstract section ...

... theorem ... theorem ...

Figure 1: Example XML document

detailed description of the extension is given in Section 3.
For our example, the task of the retrieval engine is to rank
elements, in this case sections, according to their relevance
for the query. We divide this process up into three steps:

• decomposition, where we break the query into a num-
ber of IR queries;

• retrieval, where we collect evidence about relevant el-
ements from each source;

• mixture, where we mix the evidence from the multiple
sources to provide a ranked list of elements to return
to the user.

Our formalism opens up many interesting research ques-
tions. In each step of our approach there are numerous
questions we could try to answer.

The “decomposition” phase is all about breaking the query
up to different content-only queries used to collect evidence
from different sources. We start by decomposing the query
into a set of about functions. Each about function is fur-
ther divided up into a location path (the structural part
used to locate the source) and a content description (the
content part used to collect evidence from the source). For
our running example query, we could get evidence from the
following three sources: an abstract about “flight traffic
control system;” a section about “collision detection algo-
rithm;” and a theorem about “safety.”

Additional sources of evidence can be derived more in-
directly from the query by merging two or more about-
functions into one that puts restrictions on their common
ancestor. It may also be natural to introduce new about-
functions by propagating query terms up and down the query.
For example, in terms of our running example, we would like
to score articles w.r.t. whether they discuss “flight traffic
control system” even if they do not have an abstract.

In the “retrieval” phase we have the same questions as
for any other retrieval task. We need to try to understand
the nature of the task and try to adjust the retrieval param-
eters accordingly. In our framework we would like to find
out whether different sources of evidence require different re-
trieval settings. Bias towards long XML elements has shown
to be useful for unstructured queries (CO queries) [10]. In
the case of structured queries (CAS queries), length bias is

likely to depend on the length distribution of the elements
in the node-set being evaluated (evidence source). As an
example, a length bias might be more useful for unspecified
target elements than for <abstract> elements. Similarly,
from some evidence sources high recall might be important
while high precision might be more appropriate for others.

Similarly, in the “mixture” phase, should we normalize
scores from the different sources? If so, how? We seem
to have three different types of evidence sources: from the
target itself, from “above”, and from “below”. Should those
sources have equal weight in the combination? What if there
are multiple relevant theorems inside a section? Should they
all contribute?

The ability to express structural requirements adds a new
dimension to information retrieval topics. The structural
properties used in queries can be very diverse. Due to this
diversity it might be more difficult to come up with a silver
bullet that works for all query types. We will look at two
classifications of the INEX CAS topics. The classifications
will allow us to gain a better understanding of the effects
of different retrieval strategies: What is the relative effec-
tiveness of different processing methods for different classes
of topics? Do we need different methods for different topic
types? Or are there methods that improve for all topics?

While we do not have final answers for all of the issues
raised, issues related to the “decomposition” phase will be
addressed in quite some detail below.

3. PROCESSING CONTENT AND
STRUCTURE QUERIES

In this section we explain our methodology for process-
ing CAS queries using a standard IR system. As mentioned
previously, we divide this process into three steps: decompo-
sition, where we transform the original query into a number
of IR queries; retrieval, where we use the IR queries to col-
lect evidence from various locations of the documents; and
mixture, where we mix the evidence from the various loca-
tions to provide a ranked list of elements to return to the
user.

Special attention will be given to different ways of decom-
posing CAS queries into sequences of traditional IR queries.
In the experiments on which we report in Section 4 we eval-
uate the retrieval effectiveness of different decomposition

373

methods, while we keep the retrieval and mixture processes
fixed.

3.1 Decomposition
The aim of the decomposition step in our methodology is

to take an input CAS query and rewrite it into a sequence
of traditional IR queries. More precisely, we rewrite it into a
sequence of pairs consisting of a location path and content-
only query. We will now describe several ways of performing
this decomposition.

Our first decomposition manner is called environment-
based decomposition and amounts to a very faithful inter-
pretation of the original CAS query. Specifically, for each
XPath query qXP we define a set of about functions A(qXP).
Each about function, a, is a pair consisting of a location path
pa and a content description qa. The content description
can be either a natural language description of the infor-
mation need or a list of query terms representing the infor-
mation need. For our running example, we decompose the
query into three pairs of the form (location path, content
description), one for each about function:

• (//article//abstract, flight traffic control system)

• (//article//section, collision detection algorithm)

• (//article//section//theorem, safety)

Each pair represents a source of evidence, which is located
using the location path; and a content description, which is
used to collect the evidence from the source. More precisely,
we denote by E(pa) the set of all nodes that can be located
via the location path. We think of this node-set as our source
of relevance for the about function a. We use the natural
language query qa to collect actual evidence of relevance
from that source. More precisely, in the “retrieval” phase
we will use a traditional IR system to rank the elements of
the node-set w.r.t. how well they fulfill the information need
expressed in the content description.

What about alternative decomposition methods? Recall
that in ad-hoc IR, content-oriented queries are not taken lit-
erally, but as an expression of an implicit underlying infor-
mation need. Users do not have intimate knowledge of the
content and structure of the documents that satisfy their
information need. As a result, they may find it difficult
to formulate exact queries for their information need [2].
The INEX CAS assessments are done mainly with respect
to whether the retrieved content fulfills an underlying infor-
mation need [12]. Hence, it may be argued that structural
queries and content-only queries should be interpreted in
the same non-strict manner, because users need only have a
rather vague idea about the structure of the elements that
answer their information need. For our running example,
our user finds it plausible that relevant sections appear in
articles with an abstract about flight traffic control system.
However, she would probably judge a section relevant if it
answers her underlying information need, even if it appears
in an article which has no abstract. Hence, as with ad-hoc
IR queries, CAS queries should thus not be taken literally,
and non-strict interpretations should be considered for both
structure and content constraints.

The extent to which one adopts a non-strict interpretation
of the structural constraints in CAS queries may vary. One
extreme point of view is to ignore the structural require-
ments altogether. We will create a decomposition which we

refer to as the content-only decomposition of our queries.
That is, we form a content-only query by collecting all the
query terms appearing in any of the about-functions. We
refer to this content-only query as the full content query.
For our running example we would create the query:

flight traffic control system collision

detection algorithm safety.

The only structural requirement we use is the granularity
constraint. That is, for our running example we would only
rank elements appearing in the node-set of the XPath ex-
pression //article//section. We rank those elements us-
ing the score they would get from en element based retrieval
system for content only queries. One can view this as an-
swering the query:

//article//section[about(., full content query)]

For our example query and decomposition formalism, we
would use only one pair

• (//article//section, flight traffic control system
collision detection algorithm safety)

Ignoring the structural requirements altogether might be
considered too extreme a reaction to the content oriented
behavior of the users. This decomposition, however, can be
implemented using a simple element-based XML retrieval
system and serves as a baseline for our more involved de-
compositions.

Now, the environment-based and the content-only decom-
positions may be viewed as two extremes in a broad spec-
trum of options, where the former may be too strict and the
latter too liberal. Which sensible decomposition methods
sit somewhere in between those two extremes? We intro-
duce two more query decompositions, in which we extend
the environment-based decomposition by adding new about-
functions. The added about-functions are made by propa-
gating query terms upward and downward in the query.

We refer to the first query extension as partial propaga-
tion of query terms. The new about-functions are created
by propagating query terms upward to the level of the pred-
icates. That is, for each predicate we add a new about-
function which contains all query terms used in any nested
about-function. For our running example we add the fol-
lowing two (decomposed) about-functions:

• (//article, flight traffic control system collision
detection algorithm safety)

• (//article//section, collision detection algorithm
safety)

In terms of the running example, the intuition is that we
want to rank articles even if they do not have an abstract.
Similarly we want to rank sections even they do not discuss
their theorem explicitly inside a <theorem>-element.

Another way to make the queries less strict is to propagate
query terms both upward and downward. We will refer to
this query type of decomposition as full propagation of query
terms. We extend the environment-based decomposition by
adding a new about-function to each predicate. The about-
functions use the predicates’ location path as their own but
use the full content query as content description. That is,
we add to each predicate, an about-function of the form:

about(., full content query).

374

For our running example we would add the following two
(decomposed) about-functions:

• (//article, flight traffic control system collision
detection algorithm safety)

• (//article//section, flight traffic control system
collision detection algorithm safety)

Note that this decomposition differs from the partial prop-
agation only for topics that have more than one predicate.

Each of the decompositions described above results in a
list of (location-path, content description) pairs and will be
processed the same way in the two following steps of our re-
trieval process. Each pair is used to collect relevance infor-
mation in the retrieval step. Then the results from different
pairs are mixed in the mixture step. For the content-only
decomposition, the mixing step can obviously be considered
as trivial since there is only one pair.

3.2 Retrieval
Each of the (location-path, content description) pairs de-

fined above can be used to locate sources of relevancy and
to collect evidence from those sources using a standard in-
formation retrieval engine. That is, for each about function,
we use an information retrieval engine to assign scores to el-
ements that are in the node-set of the location path, reflect-
ing how relevant they are to the content description. Taking
the first about function of the environment-based decompo-
sition of our running example, we first look at the node-set
returned by the XPath location path //article//abstract,
which returns all abstracts of all articles in the collection.
We use a retrieval engine to assign a retrieval status value
to each of the abstracts, reflecting how relevant they are to
the query “flight traffic control system”. We do the same
for the other about functions. In this way we obtain, for
the environment-based decomposition, a ranked lists of ab-
stracts, sections, and theorems, respectively. In this sub-
section we briefly describe the retrieval system used in the
latter step and discuss which parameters might influence our
results.

Indexing. Since we are interested in information needs that
combine structural and content aspects, we index both the
text and the XML structure of the collection. Inverted in-
dexes are efficient for testing whether a term occurs in a
document or element [24]. We build an inverted element in-
dex, a mapping from words to the elements containing the
word. Each XML element is indexed separately. That is,
for each element, all text nested inside it is indexed. Hence,
the indexing units overlap. Text appearing in a nested XML
element is not only indexed as part of that element, but also
as part of all its ancestor elements. To index the XML trees
we use pre-order and post-order information of the nodes in
the XML trees [6].

Retrieval model.Since we use our retrieval engine to rank
each about function separately, the queries fed to the IR
engine are lists of query terms. For the ranking of elements
with respect to relevancy for a given query, our retrieval
engine uses a multinomial language model with Jelinek-Mer-
cer smoothing [7]. We estimate a language model for each
element. The elements are then ranked according to the
likelihood of the query, given the estimated language model

for the element. That is, we estimate the probability

(1) P (E, Q) = P (E) · P (Q|E).

The two main tasks are thus to estimate the probability of
the query, given the element, P (Q|E), and the prior proba-
bility of the element, P (E).

Probability of the query.Elements contain a relatively
small amount of text, too small to be the sole basis of our
element language model estimation. To account for this data
sparseness we estimate the element language model by a lin-
ear interpolation of two language models, one based on the
element data and another based on collection data. Further-
more, we assume that query terms are independent. That is,
we estimate the probability of the query, given the element
language model, using the equation

(2) P (Q|E) =

kY
i=1

(λ · Pmle(ti|E) + (1 − λ) · Pmle(ti|C)) ,

where Q is a query made out of the terms t1, . . . , tk; E is
an element; and C represents the collection. The parameter
λ is the interpolation factor (often called the smoothing pa-
rameter). We estimate the language models, Pmle(·|·) using
maximum likelihood estimation. For the collection model
we use element frequencies. The estimation of this proba-
bility can be reduced to the scoring function, s(Q, E), for an
element E and a query Q = (t1, . . . , tk), which we compute
as

(3)

kX
i=1

log

1 +

λ · tf(ti, E) ·
`P

t df(t)
´

(1 − λ) · df(ti) ·
`P

t tf(t, E)
´! ,

where tf(t, E) is the frequency of term t in element E, df(t)
is the element frequency of term t, and λ is the smoothing
parameter.

The value for the smoothing parameter is known to affect
initial precision, and also the size of returned elements [26,
10]. Both effects are usually measured w.r.t. the quality
of the retrieved elements. We are, however, using language
models to rank answers to each about function separately. It
is not clear whether all about functions should use the same
value for the smoothing parameter. It is plausible that about
functions used to rank target elements need different values
than about functions used to rank other related elements.

Prior probabilities. The second major task in the retrieval
model is to estimate the prior probability of an element.
Basing the prior probability of a retrieval component on its
length, has proved useful for several retrieval tasks [8, 21]. It
is most common to have the prior probability of a component
proportional to its length. That is, we calculate a so-called
length prior:

(4) lp(E) = log

 X
t

tf(t, E)

!
.

With this length prior, the actual scoring formula becomes
the sum of the length prior (Equation 4) and the score for
the query probability (Equation 3),

(5) slp(E, Q) = lp(E) + s(E, Q).

As an aside, length priors, and extreme values for them,
have been shown to be particularly important for XML re-

375

trieval [10]. The main contribution of the length prior has
been for the content-only XML retrieval task, where the
granularity of the result elements is unknown. For that task
the main challenge is to bridge the length gap between an
average element and an average relevant element. In our
setup of the content and structure task we are usually not
using language models to rank the target elements directly.
Furthermore, for the task we are evaluating, the granularity
of the result elements is generally specified in the query. It
is thus not certain that the results for the content only task
carry over to the content and structure task.

3.3 Mixture
At this stage, we have decomposed the query and iden-

tified sources of relevancy. We have used an information
retrieval engine to collect evidence from those sources. Now
it is time to put things together, and to do so, we focus on
the target elements, i.e., the elements returned by the target
location path. For each target element e, we need to esti-
mate how relevant it is to the content-oriented XPath query
qXP .

We have a set of about functions, A(qXP), from Sec-
tion 3.1. In Section 3.2, we calculated scores for each about

function separately. First we take an about function a ∈
A(qXP) and a target element e and we need to calculate the
score of e for a. Let E(pa) be the node-set of the location
path of a. We now define a function χa which connects the
elements e′ of node set E(a) to our target elements e:

(6) χ(e, e′) =

1 if e and e′ are connected by qXP

0 otherwise

The notion of connection between two elements will not be
explained further here but we refer to the W3C XPath se-
mantics [25]. In our running query example we would say
that for the about function for theorems, a target section el-
ement is only connected to its descendant theorem elements.
Similarly, for the about function for abstracts, a target sec-
tion is connected to all abstracts that are contained within
the same article. Finally, for the remaining about function,
a target section is only connected to itself.

Now we can use the function χa to define the score of a
target element e w.r.t. a about function a:

(7) s(e, a) = max
e′∈E(a)

χa(e, e′) · s(e′, qa),

where qa is the content description of a. We can calcu-
late s(e′, qa) using Equation 5 since qa is a natural language
query.

When there are multiple elements e′ that are related to the
target element e we choose to let only the highest ranking
element e′ contribute to the score of e (the max function).
In terms of the example before, if a section has multiple
relevant theorems, only the most relevant one contributes
to the scoring of the section.

Now that we have, for each target element, a score for each
about function, we need to combine it into one final score
which measures the relevance of the target element to the
XPath query qXP . We simply assign a score to an element
by summing up its scores for each about function:

(8) s(e, qXP) =
X

a∈A(qXP)

αa · s(e, a),

where αa is a parameter for fixing the weight that the about
function a has in the total score of target element e. In its

simplest form the scoring formula would use the value 1
for all about functions. That is indeed what we do for the
experiments introduced in this paper.

In the actual queries, about functions could in principle be
connected in a predicate using the logical operators ‘AND’
and ‘OR’. We treat such cases as follows. We are liberal
in the sense that we score elements even if only one of the
functions returns a score, independent of whether ‘AND’ or
‘OR’ was used. Thus, we treat all the queries as if they only
used ‘OR’. However, we do sum scores over all functions.
Thus, the more functions that return a positive score, the
higher the total score. Thus, we have a bias toward treating
the queries as if they only used ‘AND,’ without, however,
implementing full-blown coordination level matching on the
level of about functions.

Let’s now look at what the mixture does in terms of our
running example and the environment-based decomposition.
In the mixture, the engine must decide which elements to
return to the user, and in which order. For the former task,
the engine uses the location path

//article//section,

whose node-set contains all sections of all articles in the
collection. We will refer to those elements as target elements.
Next, the engine assigns a score to each of the sections.
This is done based on the three about functions. Let’s start
with the middle about. The sections get a score, reflecting
to which extent they themselves are relevant to the query
“collision detection algorithm.” Now let’s look at the first
about function. The score of the sections is increased if
they are contained in articles that have an abstract which
is relevant to the query “flight traffic control system.” The
increase in score depends on how relevant the abstract was
to the query. Finally, we look at the third about function.
The score of a section is increased if it contains a theorem
which is relevant to the query “safety”.

4. EXPERIMENTS
The extensions of our information retrieval system to deal

with CAS queries are quite involved. Are they worth the
effort? In particular, how effective are our decomposition
strategies? To address these questions we experiment with
the INEX 2003 content-and-structure queries, which consists
of the collection whose details were described in Section 2,
25 topics, as well as human relevance assessment for those
topics. We use version 2.5 of the strict assessments, and an
element is considered relevant if, and only if, it has been
judged highly relevant and highly exhaustive [5].

4.1 Runs
We compare the decomposition strategies outlined in Sec-

tion 3 (combined with the same retrieval approach and mix-
ing strategy in all three cases) with the simple baseline which
ignores the structural constraints expressed in the queries.
This leads to the runs described below. All runs return a
ranked list of 1000 most relevant elements for each query.

Element-based run.For comparison we consider a simple
baseline, based on the content-only decomposition described
in Section 3, that does not use the structural requirements at
all. This is probably the simplest element-based extension
of an information retrieval system that is able to process

376

CAS queries. We will refer to this run as the element-based
run.

Environment-based run.The first run of our extended
system is created using the environment-based decomposi-
tion without any query term propagation. We will refer to
this run as the environment-based run.

Partial-propagation run.The second run of our extended
system is created using the decomposition and partial term
propagation extension described in Section 3. We will refer
to this run as the partial propagation run.

Full-propagation run.The third run of our extended sys-
tem is created using the decomposition and full term prop-
agation extension described in Section 3. We will refer to
this run as the full propagation run.

4.2 Metrics
We will compare the four runs using three standard infor-

mation retrieval measures: mean average precision, which is
a measure of how well a system returns only relevant ele-
ments; recall at 1,000, which is a measure of how well the
system performs in retrieving all the relevant elements; and
precision at 10 which measures how well a system returns
only relevant elements from the viewpoint of a user who only
looks at the first 10 elements retrieved [1].

5. RESULTS
We present our results in three subsections. First, we av-

erage the results over all topics. After that we present results
separately for distinct classes of topics. The first classifica-
tion we consider is based on the granularity constraint of
the topics. We will refer to this as a semantic classification
of the topics. The second classification we consider is based
on how many predicates the topic has. We refer to this as a
syntactic classification of the topics.

5.1 Results over all Topics
Table 1 shows the performance of the four approaches.

The results are averaged over all 25 topics. The first striking
and somewhat disappointing observation is that, when using
the non-extended queries, the rather non-trivial extension
of our system (the environment-based run) does not outper-
form the rather trivial extension (the element-based run).
The environment-based run is even slightly worse in terms
of recall and early precision. At first glance it seems that
all the effort of implementing the extension was for nothing.
However, if we look at the results of runs using the extended
queries (full- and partial- propagation), we see that the ex-
tended system does outperform the element-based run, both
w.r.t. mean average precision and recall. For the precision
at 10, our extended system is slightly inferior to the element-
based system.

Note that none of our improvements is statistically signifi-
cant. Significant improvement is difficult to achieve, having
only 25 CAS queries. Furthermore, due to the structural
constraints, the CAS queries are much more varied than
traditional content-only topics. This suggests that it may
be worth to try and group the CAS queries together and see
how our methods perform on specific types of CAS queries—
this is what we do in the following two subsections.

5.2 Results for Semantic Classification
The content and structure queries can be divided into

classes based on the structural requirements they contain.
It is interesting to see whether one approach works better
for one class than another. We divide the queries into three
distinct classes, depending on their granularity constraint:

• The first class consists of the 10 topics whose target
element is whole articles.

• The second class contains the 8 topics whose target
element is sections.

• The remaining 7 topics are grouped together in the
third class. The topics in the class differ among them-
selves, and could thus be broken up further into several
classes. The lack of available topics does however not
allow for further breaking up of topics.

The above classification by granularity constraint is moti-
vated by the intuition that retrieval effectiveness is depen-
dent on the unit of retrieval. For example, the retrieval of an
article can be done based on the content of the article, but
the retrieval of a section could be based on the content of
the section itself as well as the surrounding elements (such
as the surrounding article).

Table 2 shows the results of evaluating our runs over the
different target classes. Table 2(a) shows the results for
CAS queries whose target is whole articles. For this class of
queries the element-based run outperforms the environment-
based run. A probable explanation for this result is that
for some query terms, the environment-based run judges
the articles based on their best sub-elements, but not on
the overall quality of the article. This is in line with find-
ings from earlier experiments carried out by Wilkinson [23],
where documents were assigned the score of their single best
section. The propagation of query terms adds the following
about-function to each query,

• (//article, full content query).

Hence, for each query, the score of the articles is based both
on the content of the article itself and on the content of the
most relevant sub-elements. The use of propagated queries
does indeed lead to an improvement in mean average preci-
sion when compared to the element based run. This outcome
is again in line with the results of Wilkinson [23] where doc-
uments were assigned a score based on their own score and
the scores of their sections. The precision at 10 articles re-
trieved is a bit disappointing but at this point we have not
come up with an explanation of this performance. All runs
achieved perfect recall.

Table 2(b) shows results of evaluating our runs over the
class of topics whose target element is sections. Here we can
see that the non-trivial extension of our system is effective
for achieving improvement for both mean average precision
and precision at 10 sections retrieved. Previous experiments
by Wilkinson [23] showed that the retrieval of sections could
benefit from taking into account both the score of the sec-
tion itself and the score of the surrounding document. When
users create structured elements to retrieve sections, they
often put search constraints on the section itself and the
surrounding article. Our environment-based run makes use
of these constraints and thus bases its score on both the
section and the surrounding article. Therefore, we see an

377

Run MAP Recall P@10
Element-based 0.3209 0.7153 0.3200
Environment-based 0.3219 +0.3% 0.7067 -1.2% 0.3080 -3.8%
Partial propagation 0.3462 +7.9% 0.7396 +3.4% 0.3200 +0.0%
Full propagation 0.3519 +9.7% 0.7424 +3.8% 0.3120 -2.5%

Table 1: Results over all 25 topics

Run MAP Recall P@10
Element-based 0.3744 1.0000 0.3100
Environment-based 0.3557 -5.0% 1.0000 +0.0% 0.2500 -19.4%
Partial propagation 0.4092 +9.3% 1.0000 +0.0% 0.2900 -9.4%
Full propagation 0.4092 +9.3% 1.0000 +0.0% 0.2900 -9.4%

(a) Results over the 10 topics with articles as target

Run MAP Recall P@10
Element-based 0.2436 0.6713 0.3250
Environment-based 0.2673 +9.7% 0.6323 -5.8% 0.3673 +13.0%
Partial propagation 0.2718 +11.6% 0.6379 -5.0% 0.3750 +15.4%
Full propagation 0.2808 +15.3% 0.6407 -4.6% 0.3375 +3.8%

(b) Results over the 8 topics with sections as target

Run MAP Recall P@10
Element-based 0.3330 0.6284 0.3286
Environment-based 0.3359 +0.9% 0.6651 +5.8% 0.3286 +0.0%
Partial propagation 0.3412 +2.5% 0.7615 +21.2% 0.3000 -8.7%
Full propagation 0.3514 +5.5%* 0.7661 +21.9% 0.3143 -4.4%

(c) Results over the 7 remaining topics

Table 2: Results over different classes of topics based on target constraint

improvement over the element-based run, which assigns a
score to a section based solely on its content. The propaga-
tion of query terms can lead to further improvements when
retrieving sections. Often, the propagated queries add to
the queries a new source of evidence for relevancy. In this
case, the additional sources seem to be useful for the system
to achieve higher precision. The price for the increase in
precision is a decreased performance in terms of recall.

Table 2(c) shows results of evaluating our runs over the
class of remaining topics (whose target is neither articles nor
sections). Explaining these results is a bit problematic since
the topics do not have any positive property in common.
They ended up in this class simply because they did not
belong to either one of the two previous classes. Further
analysis of the queries in this class has to wait until we have
extended our test-set with the INEX 2004 test set, which
should be available by late 2004; we are hopeful that this
extension will allow us to extend our classification with more
classes based on the granularity constraint.

5.3 Results for Syntactic Classification
The INEX 2003 queries can be divided into two classes

based on how many predicates they contain. One-predicate
queries have the form

location-path[abouts].

Two-predicate queries have the form

location-path[abouts]location-path[abouts].

Looking at these two classes separately is interesting because
the queries in the latter class tend to be more complex than
the ones in the former class. Intuitively, the latter class
stands to gain more from complex query processing than
the former one.

Table 3 shows the results of evaluating our runs over the
two classes. It turns out that the more complex queries do
indeed gain more from the complex query processing. The
complex query processing hurts the simple queries for almost
all measures, though. Our complex query processing does,
however, help the complex queries, independent of the mea-
sure used. When we use query propagation we even manage
to get statistically significant improvement in mean average
precision when compared to the element-based run. For the
complex queries there is a noticeable difference between us-
ing full or partial term propagation. Full propagation helps
mean average precision while partial propagation helps pre-
cision at 10.

We can sum this up by saying that query term propaga-
tion leads to improvements for all queries. The complexity
of the query roughly corresponds to the amount of improve-
ment: the improvement for queries having two predicates is
statistically significant.

6. DISCUSSION AND CONCLUSIONS
Hybrid queries tend to be more expressive, which should

lead—in principle—to better retrieval performance [18, 22].
In practice, the processing of these hybrid queries within an
IR system turns out to be far from trivial, because a delicate

378

Run MAP Recall P@10
Element-based 0.3486 0.7314 0.3529
Environment-based 0.3364 -3.5% 0.7048 -3.6% 0.3176 -10.0%
Partial propagation 0.3683 +5.7% 0.7105 -2.9% 0.3412 -3.3%
Full propagation 0.3683 +5.7% 0.7105 -2.9% 0.3412 -3.3%

(a) Results over the 17 topics having one predicate

Run MAP Recall P@10
Element-based 0.2621 0.6667 0.2500
Environment-based 0.2911 +11.1% 0.7126 +6.9% 0.2875 +15.0%
Partial propagation 0.2992 +14.2%* 0.8276 +24.1% 0.2750 +10.0%
Full propagation 0.3172 +21.0%* 0.8391 +25.9% 0.2500 +0.0%

(b) Results over the 8 topics having two predicates

Table 3: Results over classes of topics containing one or two predicates

balance between structural and content information needs
to be sought. Several theoretically motivated frameworks
have been proposed to process content and structure queries,
dating back at least to [15]. Lalmas and Rölleke propose
a probabilistic object-relational framework to model repre-
sentation and retrieval strategies that account for vague-
ness w.r.t. both content and structural parts of queries [13].
Similarly, Piwowarski and Gallinari suggest an algebra for
probabilistic XML retrieval [17]. These approaches are the-
oretically motivated and probabilistically sound, but have
not yet been evaluated empirically.

Within the INEX initiative, many teams have evaluated
their systems empirically. Carmel et al. extend the vector
space model for searching XML documents via XML frag-
ments [3]. XML fragments are a proper subset of the query
language presented in this paper. They experiment using
the INEX 2002 test collection and their best performing run
was a baseline run which ignored the structural parts of the
queries. Their initial results indicate that the success of the
baseline is due to the simplicity of the queries. Liu et al.
show that manually configured index and tag weights can
lead to good retrieval performance [14]. They experiment
their system using the INEX 2003 test collection.

In this paper, we presented an IR-approach to hybrid content-
and-structure queries for structured documents. Our strat-
egy is to decompose the query into pairs of location paths
and content descriptions, then issue these as separate queries
to a standard retrieval engine, and, finally, produce a final
ranking that takes into account the scores of the different
sources of evidence.

We experimented with an environment-based approach,
which processes the hybrid queries step-by-step, and con-
trasted it with an element-based approach, a single simple
query that ranks all elements satisfying the structural con-
straint of the target element, with respect to all the query
content words. Both approaches turn out to be quite effec-
tive, outperforming our official runs at INEX 2003 (which
ranked 1 and 2 over all submissions [5, 19]). The element-
based approach is surprisingly effective, and sets a high base-
line for the other approaches. The complex processing of the
environment-based approach does not seem to pay off: there
is only a marginal gain in MAP. This is a disappointing re-
sult, considering the additional expressiveness and control
exercised by users formulating hybrid content-and-structure
queries.

To further analyze this result, we decided to break down
the topics both semantically (topics asking for articles, ask-
ing for sections, and the rest) and syntactically (topics hav-
ing a single predicate, and those having two or more). The
analysis revealed interesting differences: the environment-
based approach decreases performance of topics asking for
articles, but increases performance for topics asking for sec-
tions. In a similar vein, the environment-based approach
decreases performance for topics with one predicate, but in-
creases for topics with two or more predicates. The complex
query processing fails to deliver for article topics and topics
having only one predicate. Our best explanation for the rel-
ative effectiveness of the element-based approach for these
topics is that this is due to the use of the longer “full con-
tent queries”—queries containing content words from every
about-function in the CAS-query.

We decided to take this idea further and experiment with
the propagation of query terms. We consider a partial prop-
agation approach in which query terms are propagated to
their ancestors in the location-paths, and a full propagation
approach which propagates query terms both up and down
the location-paths. The outcome is positive overall: now the
article topics do improve, as do the topics having one predi-
cate. The section topics, and the topics with more than two
predicates improve even further. When looking at the score
over all topics, we see that the decomposition, retrieval, and
mixing strategy does pay off when we propagate query terms
over the location-paths.

The INEX initiative holds great promise for furthering our
understanding of effective ways of querying document-centric
XML. Content-oriented XPath queries can be viewed as a
natural extension of traditional fielded search, catering for
users having varying degrees of knowledge of the markup-
structure of the documents [11]. However, the richer lan-
guage for content-and-structure queries results in a greater
variety between the topics. In combination with the small
number of topics available from INEX 2003 this implies that
it is difficult to obtain significant improvements for almost
any method.

Despite these limitations, we view our current results as
a first, important step toward understanding the process-
ing of hybrid queries. Our future research is on further
decompositions of the queries (including the integration of
evidence from blind relevance feedback), on retrieval param-
eters (length priors and smoothing, and specific settings de-

379

pending on the unit of retrieval), and on ways of fusing the
evidence obtained (including the weighting and normaliza-
tion of scores). These experiments are all greatly facilitated
by our three step strategy: decomposition, retrieval, and
mixture.

7. ACKNOWLEDGMENTS
Jaap Kamps was supported by the Netherlands Organi-

zation for Scientific Research (NWO) under project number
612.066.302. Maarten de Rijke was supported by grants
from NWO, under project numbers 612-13-001, 365-20-005,
612.069.006, 612.000.106, 220-80-001, 612.000.207, 612.066.-
302, 264-70-050, and 017.001.190.

8. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley, 1999.

[2] N. J. Belkin, R. N. Oddy, and H. M. Brooks. ASK for
Information Retrieval: Part I. Background and
Theory. Journal of Documentation, 38(2):61–71, 1982.

[3] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass,
and A. Soffer. Searching XML documents via XML
fragments. In Proceedings of the 26th Annual
International ACM SIGIR Conference, pages 151–158.
ACM Press, 2003.

[4] N. Craswell, D. Hawking, and S. Robertson. Effective
site finding using link anchor information. In
Proceedings of the 24th Annual International ACM
SIGIR Conference, pages 250–257. ACM Press, 2001.

[5] N. Fuhr, M. Lalmas, and S. Malik, editors. INEX 2003
Workshop Proceedings, 2004.

[6] T. Grust. Accelerating XPath Location Steps. In Proc.
SIGMOD, pages 109–120. ACM Press, 2002.

[7] D. Hiemstra. Using Language Models for Information
Retrieval. PhD thesis, University of Twente, 2001.

[8] D. Hiemstra and W. Kraaij. Twenty-One at TREC-7:
Ad-hoc and cross-language track. In E. Voorhees and
D. Harman, editors, The Seventh Text REtrieval
Conference (TREC-7), pages 227–238. National
Institute for Standards and Technology. NIST Special
Publication 500-242, 1999.

[9] INitiative for the Evaluation of XML Retrieval, 2003.
http://inex.is.informatik.uni-duisburg.de:2003/.

[10] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length
normalization in XML retrieval. In Proceedings of the
27th Annual International ACM SIGIR Conference,
pages 80–87, 2004.

[11] J. Kamps, M. Marx, M. de Rijke, and
B. Sigurbjörnsson. Best-match querying from
document-centric XML. In S. Amer-Yahia and
L. Gravano, editors, Proceedings Seventh International
Workshop on the Web and Databases (WebDB 2004),
pages 55–60, 2004.

[12] G. Kazai, M. Lalmas, and B. Piwowarski. INEX’03
Relevance Assessment Guide. In INEX 2003
Workshop Proceedings, pages 204–209, 2004.

[13] M. Lalmas and T. Rölleke. Modelling Vague Content
and Structure Querying in XML Retrieval with a
Probabilistic Object-Relational Framework. In
Proceedings of the 6th International Conference on
Flexible Query Answering Systems, FQAS 2004,

volume 3055 of Lecture Notes in Computer Science,
pages 432–445. Springer, 2004.

[14] S. Liu, Q. Zou, and W. W. Chu. Configurable
indexing and ranking for XML information retrieval.
In Proceedings of the 27th annual international
conference on Research and development in
information retrieval, pages 88–95. ACM Press, 2004.

[15] G. Navarro and R. Baeza-Yates. A language for
queries on structure and contents of textual databases.
In Proceedings of the 18th Annual International ACM
SIGIR Conference, pages 93–101, 1995.

[16] R. A. O’Keefe and A. Trotman. The Simplest Query
Language That Could Possibly Work. In INEX 2003
Workshop Proceedings, pages 167–174, 2004.

[17] B. Piwowarski and P. Gallinari. An algebra for
probabilistic xml retrieval. In Proceedings of the first
Twente Data Management Workshop on XML
Databasesand Information Retrieval, pages 59–66,
2004.

[18] T. Schlieder and H. Meuss. Querying and ranking
XML documents. Journal of the American Society for
Information Science and Technology, 53:489–503,
2002.

[19] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An
element-based approch to XML retrieval. In INEX
2003 Workshop Proceedings, pages 19–26, 2004.

[20] B. Sigurbjörnsson and A. Trotman. Queries, INEX
2003 working group report. In INEX 2003 Workshop
Proceedings, pages 167–170, 2004.

[21] A. Singhal, C. Buckley, and M. Mitra. Pivoted
document length normalization. In Proceedings of the
19th Annual International ACM SIGIR Conference,
pages 21–29. ACM Press, 1996.

[22] A. Trotman. Searching structured documents.
Information Processing and Management, 40:619–632,
2004.

[23] R. Wilkinson. Effective retrieval of structured
documents. In Proceedings of the 17th ACM SIGIR
Conference, pages 311–317, 1994.

[24] I. Witten, A. Moffat, and T. Bell. Managing
Gigabytes. Morgan Kaufmann, 1999.

[25] XML Path Language (XPath), 1999.
http://www.w3.org/TR/xpath.

[26] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In Proceedings of the 24th
Annual ACM SIGIR Conference, pages 334–342, 2001.

380

http://inex.is.informatik.uni-duisburg.de:2003/
http://www.w3.org/TR/xpath

	1 Introduction
	2 Content and Structure
	2.1 INEX Collection
	2.2 INEX Query Language
	2.3 INEX CAS Queries
	2.4 Research Questions

	3 Processing Content and Structure Queries
	3.1 Decomposition
	3.2 Retrieval
	3.3 Mixture

	4 Experiments
	4.1 Runs
	4.2 Metrics

	5 Results
	5.1 Results over all Topics
	5.2 Results for Semantic Classification
	5.3 Results for Syntactic Classification

	6 Discussion and Conclusions
	7 Acknowledgments
	8 REFERENCES -9pt

