
The University of Amsterdam at TREC 2005

David Ahn1 Leif Azzopardi1 Krisztian Balog1 Sisay Fissaha1 Valentin Jijkoun 1

Jaap Kamps1,2 Karin M üller1 Maarten de Rijke1 Erik Tjong Kim Sang 1

1 Informatics Institute, University of Amsterdam
2 Archives and Information Studies, Faculty of Humanities, University of Amsterdam

http://ilps.science.uva.nl/

Abstract: We describe our participation in the
TREC 2005 Enterprise, Terabyte, and Question
Answering tracks. We provide a detailed account
of the ideas underlying our approaches to these
tasks, report on our results, and give a summary
of our findings so far.

1 Introduction

At TREC 2005, we took part in the Enterprise, Terabyte,
and Question Answering tracks. Our aim for the Enterprise
track was to adapt the existing Language Modeling frame-
work to the specific needs of each task. A key goal was
to incorporate and make use of the structure and structured
content housed within the organization’s data. Our aim for
the Terabyte track was to investigate the effects of larger col-
lections. First, we wanted to test whether our retrieval sys-
tem scales up to 25 million documents. Second, we hoped
to find out whether results from earlier Web Tracks carry
over to this task. Third, we wanted to investigate the role of
smoothing for collections of this size. For the Question An-
swering track, we made two major adaptations to the system
with which we participated in previous years: first by en-
abling the table stream to process additional question types
and generate more candidate answers, and second by encod-
ing the document collection and its linguistic annotation in
XML thus enabling a QA-as-XML-retrieval strategy.

The rest of this paper is organized as follows. In three
largely self-contained sections, we describe our work for the
Enterprise (§2), Terabyte (§3), and Question Answering (§4)
tracks. We summarize our findings in a concluding section.

2 Enterprise Track

Using generative language models, we tailored the frame-
work to address the particular needs of the three sub
tasks: Email Discussion Search (Section2.1), Known Email
Search (Section2.2), and Expert Finding (Section2.3).
These tasks were executed on the enterprise collection which
contained six different types of web pages created from a

crawl of the W3C website. These were lists (email forum),
dev, www, esw, other, and people (personal homepages).
The former two tasks used only the email forum where struc-
ture was a main theme of our research. We examined the
link structure generated by replies for the discussion search,
whilst we considered the internal structure of an email for
known item searching. For the expert finding task our focus
was on associating a document with a candidate expert to
build candidate models.

2.1 Email discussion search

The goal of this task was to retrieve emails which contained
a discussion about the query topic, where highly relevant
documents would introduce a new point to the discussion
(such as pro or con given the topic). Consequently, for
this task only the email forum (lists) documents were con-
sidered. This subset contains pages which are emails, and
pages which are for the navigation of the emails through out
the forum. Each email page links to the other emails that
are related to it, either because they were in response to the
email, they responded to an email, or it was the next/previous
email in the listing. The collection comprised of 198,275
documents of which approximately 174,413 were emails to
the lists1 and of these emails about 75,000 emails had at-
tracted a response.2 This left over 100,000 emails without
responses. We assumed a ‘discussion thread’ consisted of
a set of emails, linked by replies, which formed a graph of
emails. The number of discussion threads within the col-
lection was approximately 19,917 containing 75,422 emails
where the average number of emails in a discussion thread
was 3.8.

Within a discussion, there were two main quantitative
characteristics of interest, breadth and depth. Breadth, in-
dicating the number of replies an email has directly received
and depth, indicating the number of consecutive replies. We
conducted an informal interview of two email group users,
who regularly use technical forums and ask them about how
they used the email forums. The main points ascertained

1This is an estimate of the number of emails in the collection and maybe
slightly inaccurate due to parsing errors.

2Here, we consider “maybe” replies as replies.

http://ilps.science.uva.nl/

were as follows. They rarely ever searched for discussions,
when they did, they would favor the use of navigational
methods as opposed to search facilities. When replying to
an email, it was important to respond to a point in that email,
and that the email should only respond to that point. Further,
that a separate email should be sent in response to the differ-
ent points in that email. Hence, an email attracting multi-
ple replies would probably discuss multiple points, whilst
consecutive replies would probably discuss one point in de-
tail. To follow up this intuition, we examined ten discussion
graphs (about 60 emails in total), five of which contained
a breadth of at least three and five with a depth of at least
three. From this set of graphs, consecutive replies tended to
discuss a point in detail, whilst multiple replies would usu-
ally present different points, but would sometimes include
emails referring to other replies. We endeavored to encode
some of these findings within our retrieval strategy, the lan-
guage modeling framework.

2.1.1 Language model

The standard language modeling approach computes the
probability of a queryq being generated from a document
modelθd on behalf of the documentd as follows:

p(q|θd) = ∏
t∈q

{
(1−λ)p(t|d)+λp(t)

}n(t,q)
,(1)

wherep(t|d) is the maximum likelihood estimate of termt in
documentd, p(t) is the unconditional probability oft (also
using the maximum likelihood estimate),n(t,q) is the num-
ber of times termt occurs in queryq, andλ is the smoothing

parameter. Ifλ is set to β
n(d)+β , wheren(d) is the size of

the document, Bayes Smoothing with a Dirichlet prior of
the document model is obtained (instead of Jelinek-Mercer
Smoothing) [23]. Ranking according to the joint probability
of a query and documentp(q,d), involves the multiplica-
tion of the document priorp(d) to both sides of the equation
such thatp(q,d) = p(q|θd)p(d). This represents a natural
extension to the framework for encoding external evidence.

2.1.2 Discussion runs

The lists collection was indexed using LEMUR. No stem-
ming was applied but standard stop words were removed.
We developed a set of five training discussion topics with
54 highly relevant emails and 29 relevant documents, after
assessing a total of 169 documents. These topics were used
to select our baseline run, to which we applied two different
document priors that adjusted the scores according to our in-
tuitions. So, for our baseline, we examined a host of differ-
ent parameter settings with both Jelinek Mercer Smoothing
and Bayes Smoothing, but Bayes smoothing was found to
perform the best whenβ = 350. The two priors were then
applied:

Document Type Filter. We removed all messages which
were not identified as an email in the collection. This
can be considered as a document prior wherep(d) = k
if the document is an email, elsep(d) = 0. If the docu-
ment contained the structured fields subject, author and
date then it was considered an email.

Thread Size Prior. The probability of a document,p(d),
was proportional to the size of the graph from which
that email came. Such that:

p(d) =
g(d)+α

∑d′(g(d′)+α)
,(2)

whereg(d) is the size of the graph givend andα is a
smoothing parameter to adjust the influence of the prior
(known as Laplace smoothing). This encoded our intu-
ition that discussions are a group of messages, and that
an email in a discussion is more likely to be relevant
than a email that is not. This prior was applied to the
top 1000 documents retrieved documents to re-rank the
result set.

We also considered a further augmentation of the ranked list,
instead of re-ranking, re-structuring the results such that if
an email appeared in the ranked list, then all related emails
in its graph were given the same rank. This was to provide
the user with a coherent view of the result list (i.e., grouped
by discussion). Unfortunately, this run was not successfully
submitted due to time constraints. However, given the eval-
uation scheme used, we would not have expected the results
to fare significantly better, because evaluation is based on a
ranked list, and not the representation presented to the user.

2.1.3 Summary of runs and results

The following runs were submitted and the results are dis-
played in Table2:

ToNsBs350 Baseline run using Bayes Smoothing (β =
350).

ToNsBs350F Same as ToNsBs350, but with Document
Type Filter.

ToNsBs350FT Same as ToNsBs350F, but with the Thread
Size Prior whereα = 1.

ToNsBs350FT5 Same as ToNsBs350F, but with the
Thread Size Prior whereα = 5.

All submitted runs were automatic and only the query field
of the topic was used. The application of the filter boosted
Mean Average Precision.

In Table2, the first column displays the run identifier, the
second reports the mean average precision (MAP), then the
following three columns display the precision at 10, 20 and
100. From these results, we can see that the influence of
the filter increases the MAP by about 6% over the baseline

Run identifier MAP p@10 p@20 p@100
ToNsBs350 0.2907 0.4441 0.4034 0.2047
ToNsBs350F 0.3518 0.5407 0.4449 0.2147
ToNsBs350FT 0.1947 0.3559 0.2873 0.1442
ToNsBs350FT5 0.1988 0.3610 0.2975 0.1480

Table 2: Results for Discussion Search

run. However, applying the filter resulted in a loss of 21 rele-
vant documents. This was due to either non-emails judged as
relevant or documents not being parsed correctly. The appli-
cation of the thread size prior introduced too much bias and
resulted in a massive loss of MAP. Further work is required
to examine the influence of the prior on performance.

2.2 Email known-item search

The goal of this task was to find the known (relevant) email
given the query topic. The intuition that motivated our re-
search was that users would pose queries for these known
emails, based on what they remembered about the known
email. We assumed that such query terms would invariably
be the most salient features of the email (date, subject, au-
thor, body). Our retrieval strategy for the known item email
search, is split into two components. First, we automatically
inferred the structure of a query (with respect to the email’s
structure) similar to [5]. Then, we execute the structured
query on a fielded language model to utilize this structure
in the retrieval process. So, instead of treating each email
as a whole document, we broken the email into four struc-
tured fields. These were: author, date, subject and body of
the email. All other text was disregarded. These fields were
chosen because they represented the key fields from which
queries appeared to be generated.

2.2.1 Automatic querying structuring

The query was structured by classifying each query term
t according to the probability of the fieldx given t (i.e.,
p(t|x)). This was evaluated by applying Bayes theorem and
then using a generative model, such that

p(x|t) =
p(t|x)p(x)

∑x′ p(t|x′)p(x′)
,(3)

wherep(t|x) is the probability oft givenx, which was esti-
mated with Laplace estimator and proportional to the count
of the number of timest occurred inx plus the Laplace con-
stant (α = 0.00001). Query terms were assigned to the field
x, if p(x|t) > δ, whereδ was a tuning parameter of the sys-
tem. This was set toδ = 0.1 after training the system on the
25 known item training topics and selectingδ with respect
to the mean reciprocal rank of the fielded language model
(Section2.2.2). Each automatically structured query con-
sisted of the set of fields, represented byqx, which contained
any assigned terms from the original query.

2.2.2 Fielded language model

The fielded language model is a simple extension of the stan-
dard language modeling approach described in Section2.1.1
and treats each field of and email document as independent
source of evidence, from which each of the fields in the
query are generated. Formally, this can be represented as

p(q|d) = ∏
x

p(qx|θx
d),(4)

wherep(qx|θx
d) is the probability of the query fieldqx being

generated from the model of the document fieldθx
d. This

probability is computed as above for standard documents,
but for each of the four fields instead.

We also considered an alternative approach, where we
considered the sources of evidence to be linearly indepen-
dent, such that by marginalizing over all fields the query
likelihood can be expressed as:

p(q|d) = ∑
x

p(x)p(qx|θx
d)(5)

wherep(x) denotes the importance of the query field in the
document.

2.2.3 Known-item runs

Our experiments focused on the hypothesis that automati-
cally inferred queries could be used to improve retrieval per-
formance over unstructured queries. The email fields author,
date, subject and body were indexed separately in LEMUR,
with Porter stemming applied and standard stop words re-
moved. The 125 known item queries were processed in a
similar fashion. We first submitted a baseline run, that used
the standard language modeling approach on the entire email
document using the original unstructured query and then
submitted four further runs using the field language model.
Two runs used the query likelihood as shown in Equations4
and5. However, we were concerned that the differences in
length between query fields affected retrieval performance,
and thus tried two runs where the normalized query likeli-
hood was used. This is equivalent to computing the odds ra-
tio of the query being generated by the document versus the
query being generated from the collection). For the model
defined in Equation5, the priorp(x) was set on a query by
query basis.p(x) was proportional to the number of query
terms that were assigned to that fieldx, which we assumed
would correlate to its importance. The 25 training topics
were used to tune the free model parameters and compare
smoothing methods. We found Jelinek Mercer smoothing
tended give the best performance and subsequently used this
form of smoothing for all runs and models.

2.2.4 Summary of runs and results

qdFlat Baseline run using language modeling approach
with Jelinek Mercer Smoothing (λ = 0.1).

qdC Automatically structured queries (δ = 0.1), using the
model in Equation4 with Jelinek Mercer Smoothing
(λ = 0.5 for all fields).

qdWcEst Same as qdC, but using the model in Equation5.

OddsC Same as qdC, but normalized.

OddsWcEst Same as qdWcEst, but normalized.

Run identifier MRR S@10 S@100 F@100
qdFlat 0.494 75.2% 91.2% 8.8%
qdC 0.423 56.8% 78.4% 21.6%
qdWcEst 0.579 79.2% 92.0% 8.0%
OddsC 0.423 56.8% 78.4% 21.6%
OddsWcEst 0.547 56.8% 89.6% 10.4%

Table 3: Results for Known Item Finding

The results for the known item finding subtask are shown
in Table3. The second column gives the mean reciprocal
rank (MRR) score. The third and forth columns report the
percentage of topics for which the known item was found in
the top 10 and 100 documents, respectively. Whilst, the last
column, reports the percentage of topics where no known
item was found in top 100 documents (F@100). From our
results, using the model in Equation5 we were able to ob-
tain an improvement over our baseline run, with a good in-
crease in the MRR. Once we obtained the corresponding set
of known items, we tagged the query terms according to the
fields in the known emails. We found that the accuracy of our
automatic query structuring procedure was just over 50%,
whilst if we had simply assumed all terms were from the
subject accuracy would have been just under 50%. The am-
bigious nature of the queries seriously degraded the models
performance, as the structure could not be reliably inferred.

2.3 Expert search

The Expert Search task presents the following scenario into
consideration: Given the document repositories of the orga-
nization, find the experts in a particular topic, field or area.
Our approach employs language modeling, information re-
trieval, and name entity recognition techniques. Our results
indicate that the latter is especially important for the task.

2.3.1 Introduction

Our approach focuses on building candidate representations
from the corpus, and then identifying the set of experts. To
achieve this we apply the language modeling approach to
the expert search problem. Under this approach, each can-
didate is represented by the documents that are found to be
the most relevant given the topic and the candidate is asso-
ciated with. When a query is issued, we select the subset of
the collection, containing documents, found to be the most
relevant given the query. To obtain these cut-offs we apply

information retrieval techniques over the document set and
against the topic as a query. Then the candidates are ranked
according to the probability of the query being generated by
the candidate model.

The main research problem within this work is to find the
associations between documents and candidates.

2.3.2 Modeling

Our method is a direct application of standard language
modeling techniques, where we infer a candidate modelθca

for each candidateca, such that the probability of a term
given the candidate model isp(t|θca). Using this model, we
then can estimate the probability of a query by taking the
product across terms in the query.

p(q|θca) = ∏t∈q p(t|θca)n(t,q)(6)

Here, the standard term independence assumption is made.
The candidate model is constructed by using a mixture
model:

p(t|θca) = (1−λ)∑d p(t|d)p(d|ca)+λp(t),(7)

where p(t) is the maximum likelihood estimate of the un-
conditional probability of the term occurring in the collec-
tion. The final estimation of the probability of a query given
the candidate model is:

p(q|θca) =(8)

∏t∈q{(1−λ)(∑d∈Sp(t|d)p(d|ca))+λp(t)}n(t,q)

whereS is a subset of documents that are found to be the
most relevant given the queryq.

2.3.3 Candidate document associations

As pointed out before, the W3C corpus is a heterogeneous
document repository containing a mixture of different doc-
ument types (technical reports, emails, web pages, etc). A
documentd in this collection, is assumed to be associ-
ated with a candidateca, if there is a non-zero association
a(d,ca) > 0. The forming of these associations is vital to
the performance of our methods and overall performance.
Here we introduce four different methods that we used for
associating documents with candidates.

Extracting candidates is a special named entity recogni-
tion task where the list of possible candidates—with names
and e-mail addresses—are given.

Extract candidates by name Identification based on the
candidates’ name might be the most natural approach. In
spite of the apparent simplicity, one has to face with dif-
ferent challenges when solving this task. Some cases when
a simpleexact-matchingtest on the candidate’s name may
fail:

• different name length: middle name(s)

• accentuated letters

• dash in the name

• only initials of one or more names

We have experimented with different name matching meth-
ods of which we expect to handle the presented key diffi-
culties. The candidate’s name and the documents are rep-
resented as a sequence of terms. Moreover we assume
that terms are lowercased, accents on letters are replaced
and names with dash are considered as two different terms
(Hazael-Massieux ⇒ hazael massieux).

• M0 EXACT MATCH: returnstrue if the name appears in
the document exactly as it is written

• M1 NAME MATCH: returnstrue if the last name and at
least the initial of the first name appears in the docu-
ment.

• M2 LAST NAME MATCH: returnstrue if the last name ap-
pears in the document

Note that each methodMi (i = 1,2) keeps, and improves
upon, the results achieved by the precedingMi−1.

Extract candidates by email address This method
(EMAIL MATCH) simply extracts all email addresses appear-
ing in a document. Email addresses were identified using a
regular expression. According to experiments this technique
is less effective in terms of the number of identified candi-
dates while the associations found by this method look like
stronger relationships. See Table4 for detailed results.

method #candidates #assoc #docs
EXACT MATCH 696 324.258 136.627
NAME MATCH 757 354.315 139.801
LAST NAME MATCH 924 945.518 212.425
EMAIL MATCH 456 73.747 59.355

Table 4: Results of different name extraction methods.

2.3.4 Runs

We submitted the following 5 runs:

uams05run0 m= 500,EXACTMATCH

uams05run1 m= 200,EXACTMATCH

uams05run2 m= 200,EMAILMATCH

uams05run3 m = 200, 0.5 · EXACTMATCH + 0.5 ·
EMAILMATCH

uams05run4 m = 200, 0.375 · EXACTMATCH + 0.208 ·
NAMEMATCH+0.416·EMAILMATCH,

wherem= |S| is the number of documents retrieved as most
relevant given a topic. In the last two runs we experimented
with a linear combination of different candidate-document
association methods.

2.3.5 Results

Table5 gives our overall results for the Expert Search task,
using the various evaluation measures proposed by the task
organizers; the best score per measure is indicated in bold
face.

uams05 #rel ret map R-prec bpref reciprank
...run0 477 0.1225 0.1802 0.3963 0.3942
...run1 472 0.1277 0.1811 0.3925 0.4380
...run2 284 0.0918 0.1288 0.2531 0.4975
...run3 479 0.1158 0.1489 0.4023 0.4891
...run4 478 0.1177 0.1444 0.4004 0.5062

Table 5: Results for the Expert Search task.

The results ofuams05run0 anduams05run1 show no sig-
nificant difference. We conclude that using differentm val-
ues for cut-offs does not really affect overall performance.

At the same time the name matching methods show inter-
esting results;NAMEMATCH retrieves more relevant hits while
the reciprocal rank of the top relevant document (reciprank)
is much higher forEMAILMATCH. This underlines our ex-
pectations that the use ofEMAIL MATCH results in fewer but
stronger associations. Combining different matching meth-
ods (uamsrun3, uamsrun4) shows promising results and
suggests experimenting with more sophisticated estimation
of candidate-document associations.

3 Terabyte Track

We participated in two of the Terabyte Track’s tasks: ad-
hoc and named page finding. Our aim for the Terabyte track
was to investigate the effects of larger collections. First, we
want to test whether our retrieval system scales up to 25 mil-
lion documents. Second, we hope to find out whether results
from earlier Web Tracks carry over to this task. Third, we
want to investigate the role of smoothing for collections of
this size. Our retrieval system is based on the Lucene engine
with a number of home-grown extensions [7, 17].

3.1 Experiments

3.1.1 Indexes

The Terabyte track uses theGOV2 test collection, contain-
ing 25,205,178 documents (426 Gb uncompressed). We cre-
ated three separate indexes for (1) the full documents, (2) the
text in the title tags, (3) the anchor-texts pointing toward the
document. For the anchor-texts index, we ignored relative
links and only extracted full links. We normalized URLs,

and did not index repeated occurrences of the same anchor-
text. This is similar to our earlier experiments in the TREC
Web track [13, 14]. As to tokenization, we removed HTML-
tags, punctuation marks, applied case-folding, and mapped
marked characters into the unmarked tokens. We used the
Snowball stemming algorithm [22].

We created a single, non-distributed index for the collec-
tion. The size of our full-text index is 61 Gb. Building the
full-text index (including all further processing) took a mas-
sive 15 days, 6 hours, and 21 minutes.

3.1.2 Retrieval models

For our ranking, we use either a vector-space retrieval model
or a language model. Our vector space model is the default
similarity measure in Lucene [17], i.e., for a collectionD,
documentd and queryq:

sim(q,d) =

∑
t∈q

tft,q · idft
normq

·
tft,d · idft
normd

·coordq,d ·weightt,

where

tft,X =
√

freq(t,X)

idft = 1+ log
|D|

freq(t,D)

normq =
√

∑
t∈q

tft,q · idft2

normd =
√
|d|

coordq,d =
|q∩d|
|q|

Our language model is an extension to Lucene [7], i.e., for a
collectionD, documentd and queryq:

P(d|q) = P(d) ·∏
t∈q

((1−λ) ·P(t|D)+λ ·P(t|d)) ,

where

P(t|d) =
tft,d
|d|

P(t|D) =
doc freq(t,D)

∑t ′∈D doc freq(t ′,D)

P(d) =
|d|

∑d′∈D |d|

The standard value for the smoothing parameterλ is 0.15.

3.1.3 Official runs

We submitted six runs in total, using only the short topic
statement in the title. For the adhoc task, we submitted the
following two runs:

UAmsT05aTeVS Vector space model on the full-text in-
dex.

UAmsT05aTeLM Language model (λ = 0.15) on the full-
text index.

For the named page finding task, we submitted four runs.
We submitted a plain language model run:

UAmsT05nTeLM Language model (λ = 0.70) on the full-
text index.

We also experimented with web-centric priors [12]. First, we
assumed that pages with more inlinks are more likely to be
relevant. Since our implementation of the language model
calculates the logs of the probabilities, we took the expo-
nent of the retrieval score, and multiplied it with the root of
the indegree. We used the incomplete indegree scores we
obtained from the anchor-text index. Second, we assumed
that pages with shorter URLs are more likely to be relevant.
We calculated the number of components in the domain and
file path of the URL, e.g,trec.nist.gov/act_part/act_
part.html has 3 (domain) plus 2 (file path) components.
Again, we took the exponent of the retrieval score, and mul-
tiplied it with the reciprocal of the length of the URL.

UAmsT05nTind Language model (λ = 0.70) on the full-
text index, with an indegree prior.

UAmsT05nTurl Language model (λ = 0.70) on the full-
text index, with a URL prior.

Finally, we have not yet implemented a proper mixture lan-
guage model incorporating different document representa-
tions. Instead, we combined separate runs made on the dif-
ferent full-text, anchor-text, and titles indexes.

UAmsT05n3SUMCombSUM of language model (λ = 0.70)
runs on the full-text index (relative weight 0.8), anchor-
text index (relative weight 0.8), and titles index (relative
weight 0.8).

3.2 Results

3.2.1 Efficiency task

We created a run for the efficiency task as a post-submission
experiment. Table6 shows the total and average query pro-
cessing times for the 50,000 efficiency task topics. We used

Task #Topics Model Total Avg.Q
Efficiency 50,000 VS 23,976 (6h39m36s) 0.480
Adhoc 50 VS 43 (43s) 0.862
Adhoc 50 LM 798 (13m18s) 15.962
Named Page 272 VS 594 (9m54s) 2.184
Named Page 272 LM 12,180 (3h23m) 44.781

Table 6: Performance measurements in seconds for max. 20
results per topic using the full-text index.

trec.nist.gov/act_part/act_part.html
trec.nist.gov/act_part/act_part.html

a non-dedicated, dual processor machine running Linux with
the retrieval system running as a single Java process with a
heap size of 1 Gb. For the efficiency task we used the vector-
space model. Total processing time for the 50,000 queries
was 6 hours and 39 minutes. On average, it took 0.480
seconds to produce the top 20 results for a single query.
For comparison, we also list the system performance for the
other Terabyte tasks.

3.2.2 Adhoc task

There are in total 50 adhoc task topics. The number of rele-
vant documents per topics varies from 4 to 559, with an av-
erage of 208 and a median 171. Table7 shows the results for
the adhoc task. We see an interesting comparison between

UAmsT05 #rel ret map R-prec bpref reciprank
. . .aTeVS 5717 0.1996 0.2696 0.2290 0.4437
. . .aTeLM 4180 0.1685 0.2097 0.1737 0.6023

Table 7: Results for the adhoc task.

the two retrieval models. First, we see that the vector-space
model is superior on the overall measures (map, r-prec, and
bpref). Second, we see that the language model is superior
at early precision (reciprank). The outcome deviates from
results on the training data—the Terabyte track 2004 ad-
hoc task topics—, where the language model outperformed
the vector space model with a map score of 0.1562 versus
0.1413. Below, we will further zoom in on the language
model and experiment with the amount of smoothing.

3.2.3 Named page finding task

In total there are 252 named page finding topics (20 top-
ics have been deemed adhoc topics, and have been retracted
from the qrels). The minimal number of relevant documents
per topic is 1 and the maximum is 4525. For 187 topics there
is a unique relevant page, the few topics with thousands of
relevant pages are caused by page-duplicates in the collec-
tion. This leads to a skewed distribution with a mean of 47
and a median of 1 relevant page. Table8 shows the results
for the named page finding task (note that the 20 retracted
topics are shown here as ‘not found’). We make a number

UAmsT05 recip rank top 10 not found
. . .nTeLM 0.3364 112 44.44% 78 30.95%
. . .nTind 0.2649 99 39.29% 78 30.95%
. . .nTurl 0.3251 115 45.63% 78 30.95%
. . .n3SUM 0.3653 12348.81% 77 30.56%

Table 8: Results for the named page finding task.

of observations. First, the indegree prior results in a loss of
performance. Second, the URL prior leads to mixed results:
a loss of mean reciprocal rank, but a gain in the number of
topics with the relevant page in the top 10. Third, the combi-
nation run leads to improved performance on all measures.

The success of the combination run shows the value of
different document representations. On the Web Track data,
mixture language models proved far more effective than
straightforward run combination [13, 14]. This may also ex-
plain, in part, the mixed results for the link and URL priors.
Other factors such as the incompleteness of the extracted
links may also play an important role.

3.3 Smoothing experiments

In the language modeling framework, smoothing plays an
important role: it helps to overcome data-sparseness, it in-
troduces an inverted document frequency effect, and it ex-
presses the relative importance of query terms [23]. In prac-
tice, smoothing is also a handle to tune a run toward re-
call (much smoothing) or precision (little smoothing). It is
known that collection size is a factor influencing precision
measures [6]. Hence, collection size may also be a factor
influencing the amount of smoothing needed in the language
modeling framework. Here, we focus on linear or Jelinek-
Mercer smoothing, and investigate the effect of varying the
smoothing parameter.

3.3.1 Named page finding task

First, we focus on the named page finding task. Since find-
ing a ‘unique’ page requires precision rather than recall, we
choose a relatively high value for the smoothing parame-
ter(i.e., λ = 0.7). Table9 shows the results while varying
the smoothing parameter over the interval between 0 and 1.
We make a few observations. As expected, we see that the

λ recip rank top 10 not found
0.1 0.1684 57 22.62% 155 61.51%
0.2 0.2124 78 30.95% 127 50.40%
0.3 0.2417 83 32.94% 110 43.65%
0.4 0.2753 98 38.89% 99 39.29%
0.5 0.3046 103 40.87% 90 35.71%
0.6 0.3158 110 43.65% 84 33.33%
0.7 0.3364 112 44.44% 78 30.95%
0.8 0.3447 115 45.63% 77 30.56%
0.9 0.3557 11846.83% 74 29.37%

Table 9: Smoothing for the named page finding task.

named page finding topics do not require much smoothing.
In fact, the less smoothing the better. This is in contrast with
results on the Web Track data, where performance actually
drops at the highest values of the smoothing parameter.

3.3.2 Adhoc task

Next, we focus on the adhoc task. Since adhoc topics require
a delicate balance between precision and recall, we choose
the standard relatively low value for the smoothing parame-
ter (i.e.,λ = 0.15). Table10 shows the results while varying
the smoothing parameter over the interval between 0 and 1.

A few observations present themselves. We see that perfor-

λ MAP Prec@10
0.1 0.1467 0.3620
0.2 0.1856 0.4120
0.3 0.2138 0.4600
0.4 0.2355 0.4900
0.5 0.2540 0.5060
0.6 0.2707 0.5380
0.7 0.2863 0.5420
0.8 0.2998 0.5620
0.9 0.3107 0.5680

Table 10: Smoothing for the adhoc task using the full-text
index.

mance increases if we apply less smoothing. In fact, the gain
is substantial; already the improvement forλ = 0.2 is statis-
tically significant (99.9%, one tailed) overλ = 0.15. In sum,
the adhoc task evaluated by mean average precision behaves
like an early precision task.

3.4 Conclusions

Our participation in the Terabyte track was inspired by a
number of aims related to the size of the Terabyte track col-
lection, we now draw some initial conclusions.

Our retrieval system did scale up to the 25 million docu-
ments in theGOV2 collection. Performance at query time is
impressive, especially for the optimized implementation of
the vector space model. With respect to indexing time, with
over two week to build a full-text index we seem to have
reached the limits of building a non-distributed index.

For the adhoc task, we saw that standard IR techniques on
a full-text index lead to good performance. We found that,
on the 2005 topics, the vector space model outperformed the
language model, although the language model can be sub-
stantially improved by using less smoothing.

For the named page finding task, we found that, on the one
hand, indegree and URL priors did not promote retrieval ef-
fectiveness, but that, on the other hand, the combination of
different document representations improved retrieval effec-
tiveness.

Last, but not least, we zoomed in on the role of smooth-
ing and found that less smoothing leads to the best perfor-
mance. Whereas this is roughly according to expectation for
the named page finding topics, it is unexpected for the ad-
hoc topics. In addition to known relations between retrieval
effectiveness and collection size [6], there also seems to be
a relationship between collection size and the appropriate
amount of smoothing in the language modeling framework.

4 Question Answering Track

This year, we took part in the main task of the question an-
swering track as well as in the relationship finding task. We

describe the results of our participation in the main task in
Sections4.1, and the results of the relationship finding task
in Section4.3.

4.1 QA: main task

We built on the multi-stream QA architecture that we have
been developing over the past few years as part of our work
for the TREC and CLEF QA tasks. The architecture has sev-
eral streams run in parallel: each is based on a different ap-
proach to QA and is a self-contained QA system in itself. No
new streams were added this year, leaving us with a total of
seven streams: a table stream (detailed in §4.1.1below), pat-
tern matching and ngram mining (both against the collection
and against the web), a Wikipedia stream (which gets an-
swers out of Wikipedia), and Tequesta (which was replaced
updated to Xquesta this year, see §4.1.2below). For a more
detailed description of our multi-stream approach we refer
to [1, 2, 8, 10, 11].

Our QA efforts for the main task were concentrated in two
areas. First, we enabled the table module to handle more
question types and generate more candidate answers. Sec-
ond, we upgraded the Tequesta stream by encoding the docu-
ment collection as well as the different linguistic annotations
in XML, thus enabling a “QA-as-XML-retrieval” strategy.

Question processingis the first stage in our system archi-
tecture which is common to all the streams. Each of the
questions is tagged, and a question class is assigned based
on our question classification module. The question types
correspond to WordNet words and their senses. For instance,
the question type of (9) is COACH%1. To determine the ex-
pected answer types, we also use the WordNet hierarchy. In
our example, the question typeCOACH%1 is mapped to the
expected answer typePERSON.

(9) Q69.6: Who was the coach of the French team?

Our question analysis was extended by exploiting the syntac-
tic structure of the questions. Thus, we parse the questions
using Charniak’s parser [3]. The parses provide information
about the NP/PP-chunks which are used to determine the fo-
cus of the sentence, hereFrench team.

4.1.1 Table stream modifications

An important part of our QA system is a table stream which
relies on question-specific tables with answers which were
extracted offline rather than during question processing [9].
The tables contain, among other, information on abbrevia-
tion expansions, birthdays, country leaders, and event dates.
Evaluation of this stream on the 2004 factoid questions
showed that while the accuracy of the returned answers was
low (28% lenient evaluation), its coverage was even worse
(7%). The work described in this section was intended to
improve these scores.

The first step we took was to add extra tables. The top-
ics of the tables were chosen based on TREC 2004 fac-
toid questions which the system had been unable to answer:
birthplaces of people, definitions, groups and their members,
nicknames, and organizations, their founders and founding
dates. The tables were filled by applying to the document
collection hand-crafted extraction rules which utilized avail-
able syntactic and named entity annotation of the documents.
Most of the tables were small (about 20k entries or less)
with the group table (100k) and the definition tables (5M)
as exceptions. The latter grew this large because the extrac-
tion rules included rules that derived definitions for arbitrary
noun phrases. The new tables enabled the stream to handle
previously unanswered questions likeWhat kind of animal
is an agouti?and their positive effects were larger than the
side effect of pattern overgeneration.

Next, the question analysis and the table processing mod-
ules were updated. This work included defining new ques-
tion topics, creating new question templates and making new
links between question topics and tables. We also added
a filter to the output of the table stream to make sure that
when named entity answers from a certain category (person,
location or organization) were requested by the question,
ill-typed answers were removed. The filtering step could
not be as precise as we would have liked it to be since the
categories returned by our named entity analysis are more
coarse-grained than the categories of the question analysis.

The adaptations of the table stream had a positive effect on
its performance on the TREC 2004 factoid questions. The
recall of the top answers went up from 7% (lenient evalua-
tion) to 21% and even the precision of the answers went up
(from 28% to 35%).

For factoid questions, we highly depend on the correct
output of our named entity recognizer. We find some prob-
lems when assigning the correct named entities to a sen-
tence. One improvement was to post-process the output
of the recognizer by correcting obvious inconsistencies of
named entity sequences. The following two examples ex-
emplifies the sort of errors corrected in the output. The
named entity recognizer often failed to assign the correct tag
to names which are included in the name of an organization
such as in (10).

(10) the/O director/O of /O the/O Rose/E-PER Insti-
tute/I-ORG of /I-ORG State/I-ORG and/I-ORG Lo-
cal/I-ORGGovernment/I-ORG

In such cases, the named entity tags are changed to the
most common one. Moreover, film titles and quotes in quo-
tation marks are hard to detect for the named entity recog-
nizer such as in (11). They are often misclassified asORG or
PER instead ofMISC.

(11) you/O ’re/O in/O ” /O The/I-ORG Sixth/I-ORG
Sense/E-ORG ./O ” /O

These errors have also been corrected with a postprocess-
ing filter.

4.1.2 Semi-structured information retrieval

The system used in our previous participations in TREC-
QA [1, 11] contained a text retrieval stream named Tequesta.
This year we changed the task of the stream to XML ele-
ment retrieval. The document collection was enriched au-
tomatically with token boundaries, syntactic and named en-
tity annotation. Both the annotation and the original doc-
uments were stored in stand-off XML format. Our new
stream XQuesta is able to query the collection with XPath
and to retrieve elements that satisfy lexical, syntactic and
named entity constraints. For this purpose the document col-
lection was divided in non-overlapping sequences of para-
graphs containing at least 400 characters. We found that
having access to the corpus annotation improved the qual-
ity of the text snippets and allowed more elaborate answer
filtering.

4.1.3 Handling “other” questions

The system changes described in the previous two section
dealt with factoid questions. For list questions we only made
a small modification: we return the same number of an-
swers for each question (eight, when available) because with
that number we obtained the best results for the TREC-2004
questions.

The basic strategy for answering the “other” questions
has not changed significantly from last year. The method
uses IR and NLP techniques to locate documents contain-
ing information about the topic, and extract nuggets from
the retrieved documents. The nuggets are assigned an initial
score, i.e., the retrieval score of the document from which
the nugget was extracted. Furthermore, the method makes
use of a reference corpus, an encyclopedia, in order to locate
“good” facts for the given topic and use them to rerank the
nuggets extracted from the target corpus in case the topic is
found in the encyclopedia.

This year we introduced a centroid-based summarization
technique for ranking nuggets extracted from the retrieved
documents. It involves computing centroids, a set of statis-
tically significant words which describe the list of nuggets
extracted from the documents. The nuggets are then ranked
based on their distance from the centroid [19].

4.1.4 Runs

We submitted three runs for TREC-QA 2005. We were in-
terested in two research questions. First, would the system
perform better with all six3 streams or with a subset of these
streams? This question was important since our work this
year has focused on two streams (table and XQuesta) while
other streams were not changed. In order to determine the
best combination, we evaluated different stream combina-
tions on the TREC 2004 questions. We found that the com-

3The web pattern match stream which was employed in the last two
editions was not included this year because of technical difficulties.

bination of table, XQuesta, Wikipedia and web ngrams was
the best for factoid questions while XQuesta, ngrams from
the web and ngrams from the collection performed best for
list questions.

Using ngrams from the web for generating factoid an-
swers has as a disadvantage that answers will be generated
for almost all questions. This means that few NIL answers
will be produced. We considered the presence of NIL an-
swers as an interesting difference between the run with all
streams (uams05all) and the run with a subset (uams05be3)
and therefore we excluded the web ngrams stream from the
factoid questions run. This means that the stream subset
run used combinations of three streams: table, XQuesta and
Wikipedia for factoid questions and XQuesta, ngrams from
the web and ngrams from the collection for list questions.
All runs contained the same answers for other questions.

The second question in which we were interested was:
Will answer reranking based on web frequencies improve
the quality of the top answers? In order to test this we cre-
ated a run (uams05rnk) in which the answers of the question
have been reranked based on their frequency. We replicated
thesearch engine corroborationmethod of [4], in which an-
swers are ranked according to their frequency of occurrence
in the summaries of the top 1000 hits returned by a search
engine for a query based on the question. We depart from the
Bangor method in two respects: first, we use Yahoo rather
than Google, because of the more convenient API, and sec-
ond, we use a different method to construct queries on the
basis of questions. Instead of extracting all NPs and VPs
from a question to use as a single query, we submit two
queries for each question and use the top 500 hits from each.
One query is simply the question itself as a set of keywords,
i.e., not constrained to be a phrase. The other query con-
sists ofquestion selectors, words from the question that are
highly likely to occur in a correct answer snippet [20]. Ques-
tion selectors are extracted from a question using a C4.5 de-
cision tree trained on pairs of questions and correct answer
snippets from previous editions of the TREC QA track; we
followed [20] in our training procedure.

As the results in Table11 show, however, this re-ranking
method does not improve performance—in fact, re-ranking
produces substantially fewer correct answers. The primary
reason for this decline is that re-ranking tends to prefer an-
swers that are shorter and more common on the web (irre-
spective of the question). An analysis of the 287 factoid
questions for which the uams05rnk run yielded a different
answer than the uams05all run reveals that in 241 cases, the
answer chosen by re-ranking is more common than the an-
swer chosen without re-ranking (according to Yahoo).4 This
analysis suggests that the first step to improving re-ranking
is to use a more sophisticated scoring mechanism that nor-
malizes with respect to the overall frequency of candidate

4Of the 46 times in which the answer chosen by re-ranking is less com-
mon, that answer is correct (or inexact) 9 times, while the answer chosen
without re-ranking is correct (or inexact) 10 times.

answers; see [18, 21] for discussion of using web statistics
in QA.

4.1.5 Results

Table11 gives the combined results for the 3 QA tasks (ac-
curacy for factoids, F score for list and other questions) and
the overall scores of our three runsuams05all, uams05be3
anduams05rnk. The column factoid accuracy contains three
numbers exact answers, unsupported answers and inexact
answers.

factoid accuracy
run (exact,unsup.,inex.) list F other F overall
be3 0.119 , 0.052 , 0.050 0.064 0.201 0.127
all 0.105 , 0.058 , 0.086 0.050 0.200 0.113
rnk 0.066 , 0.025 , 0.039 0.029 0.201 0.090

Table 11: Results for the main QA task.

A potential cause for the low numbers could be a ranking
problem: correct answers might not be ranked as number
one. In order to check this, we estimated the accuracy of
the system on factoid questions while looking at the top-n
answers rather than only examining the top answer. This
evaluation was performed automatically and therefore inex-
act and unsupported answers have also been counted as cor-
rect unlike in the official TREC-QA evaluation where only
supported exact answers are correct. As Table12shows, our
system potentially could have answered close to 60% of the
factoid questions correctly (corresponding to an estimated
32% exact score) with a perfect ranking scheme.

n-answers uams05all uams05be3 uams05rnk
top 1 102 (28.2%) 85 (23.5%) 47 (18.0%)
top 2 126 (34.8%) 102 (28.2%) 73 (20.2%)
top 3 139 (38.4%) 109 (30.1%) 90 (24.9%)
top 5 160 (44.2%) 126 (34.8%) 109 (30.1%)

top 10 177 (48.9%) 149 (41.2%) 151 (41.7%)
top 20 190 (52.5%) 163 (45.0%) 188 (51.9%)

any rank 216 (59.7%) 188 (51.9%) 215 (59.4%)
MRR 35.1% 28.8% 21.9%

Table 12: Potential improvements of QA factoid scores.

A close look at the top 1 factoid answers generated for the
first five targets by our best run (uams05be3) revealed that
the errors made by the system had causes in different mod-
ules. Of the 27 factoid questions in this group, 22 were an-
swered incorrectly. Incorrect handling of the target topic or
the questions caused errors in twelve of the latter questions.
We use Wikipedia for finding the most common version of
names in the topic but unfortunately this process mapped the
topic France wins World Cup in soccerto FIFA Beach Soc-
cer World Cupwhich made finding correct answers for the
related six questions hard. In other cases it was just diffi-
cult to determine the question topic or to find the right fo-
cus words. Question analysis is over-represented in the error

cause list but to its defense it should be noted that where in-
put processing failed, problems in other modules usually did
not have a chance to surface.

The most important other problem was the justification of
Wikipedia answers. In five cases the presented justification
document was irrelevant for the question topic. Incorrect
named entity labeling also caused problems for five ques-
tions although in two of these a solution would require an-
notation at a micro level which is beyond our current auto-
matic annotation efforts (stadium andplaceInItaly rather
thanlocation). Another system task which we need to re-
view carefully is answer tiling (i.e., the combination of sev-
eral partial answers to produce the final answer delivered as
output). Four questions displayed tiling problems, often be-
cause correct answers were lost after they were combined
with incorrect ones.

The three streams involved in this evaluation caused fewer
errors than the previously mentioned parts. The Wikipedia
and the XQuesta stream each produced three incorrect an-
swers while the table stream generated one of these. The in-
ternal ranking of the Wikipedia stream should be improved
as should answer filtering within XQuesta. An extra cor-
rect answer was missed because the wordcompetitorwas
not linked to its synonymcontestant. A more careful future
use of WordNet could be helpful.

4.1.6 Conclusions

In our TREC-QA efforts for 2005, we built on our exist-
ing QA system and focused on on question analysis, named
entity recognition, offline information extraction, encoding
the document collection, and its annotation in XML and
processing other questions. However, the performance of
our system (our best run scores just over the median overall
score and well under the median factoid score), leaves much
room for improvement. The errors seem to be caused by dif-
ferent modules of the system. In our initial error analysis we
have uncovered some of the problems to which we need to
devote attention in the near future.

4.2 QA: Document ranking task

Our multi-stream QA architecture does not rely on an or-
dered set of documents returned from a preprocessing phase.
In order to create the obligatory entry for the document rank-
ing task, we returned the justification documents for each an-
swer set in the same order as the final ranking of the answers.
Note that our system associates exactly one justification doc-
ument with each answer.

Table13 lists the results obtained by the three runs sub-
mitted to the document ranking task with the scores for av-
erage precision, precision at 10 answers and precision at R
answers, where R is the number of correct answers found by
the human assessors. Since our main interest in the QA task
lies with QA and not with IR, we have not taken any sepa-
rate actions to optimize these scores. However, this change

in combination with adaptations of the named entity anno-
tation, question analysis and the table stream have not lead
to an improvement of our 2004 score. We have identified
a number of potential causes on which we will work in the
coming year.

run avg. prec. prec. at 10 R-prec.
uams05all 0.108 0.170 0.129
uams05rnk 0.094 0.156 0.106
uams05be3 0.071 0.132 0.082

Table 13: Results for the document ranking task

4.3 QA: Relationship finding task

In the Relationship Finding task, systems were given top-
ics, i.e., relatively verbose descriptions of user information
needs, and had to return collection nuggets answering these
needs. In most cases, a topic set a context and asked an ex-
plicit question about relationship between two or more enti-
ties. E.g.,

(12) The analyst is interested in information regard-
ing the Nobel Prize winners from previous years.
Records indicate that David Trimble and John
Hume shared the Nobel Peace Prize in 1998.
Who are Trimble and Hume, and what was their re-
lationship?

This year we took part in this task with a system based on
passage retrieval, word similarity, and named entity match-
ing. The system first retrieved passages relevant to a topic,
thenextracted sentences from the retrieved passages, and
reranked the sentences based on similarity to the topic. We
describe the process in some detail.

Passage retrieval. The collection documents were split
into passages of 400 characters (extended to the end of a
paragraph). As in the main QA task, we used Lucene [17]
with the standard Lnu.ltc model for passage retrieval. We
used original full topics as retrieval queries, after (automati-
cally) removing phrases and words likely to be irrelevant for
user information needs, such as “The analyst is interested in
information regarding” in example12. The top 10 retrieved
passages were split into sentences and processed further.

Topic processing. For a topicT, our system took its last
sentencet (most often, the question expressing the user’s
information need) for subsequent processing. We extracted
named entities fromt using our NE tagger; in caset con-
tained fewer than two named entities, we expandedt with
preceding sentences, until it contained at least two NEs.
For the example12, t is “Who are Trimble and Hume, and
what was their relationship?” and two NEs “Trimble” and
“Hume” are extracted. The textt and the list of extracted

named entities were used to rerank sentences obtained in the
passage retrieval step.

Word-based sentence score.Each retrieved sentences
was assigned a score based on directed word similarity be-
tweens andt. In essence, we summed similarities between
each word int and its most similar word ins, according to
a specific word similarity measure [15]. More details on the
word-based calculation of similarity can be found in [16].

NE-based sentence score.We combined the word
similarity-based score with the score based on the number
of shared named entities betweens andt. To detect whether
two sentences contain common named entities (persons, or-
ganizations, locations, miscellaneous entities), we used a
dictionary of NE variants created from lists of location-
adjective correspondences (e.g.,EuropeandEuropean) and
redirecting links in Wikipedia (e.g.,William Jefferson Blythe
IV is also known asBill Clinton, andBurmais an alternative
name forMyanmar).

Collection sentences were ranked using the sum of word-
based and NE-based scores, duplicates and near duplicates
were removed using a simple string distance measure, and
the best 5 sentences for each topic were returned as answer
nuggets.

4.3.1 Runs and results

We submitted two fully automatic runs for the 25 official
test topics. The runuams05lwas created as described above
and the runuams05swas identical, expect for the fact that
the nuggets were shortened by removing all definite and
indefinite articles, adjectives and adverbs (other thanfirst,
last, etc.). With the second run, we tried to create answers
that were as short as possible (evaluation included a length
penalty) without removing important material.

Both runs obtained the F-score of 0.12, with the median
over all submitted fully automatic runs being 0.12, the best
0.228 and the worst 0.06.

5 Conclusions

In this paper we have described our participation in the
TREC 2005 Enterprise, Terabyte, and Question Answering
tracks.

For the Enterprise track, we found that structured infor-
mation was not particularly useful for either email search
task. In the case of the discussion search, this was because
too much bias was introduced by the thread size prior, whilst
in the known-item task the ambiguity of the queries meant
that the classification accuracy was mediocre, which influ-
enced the quality of retrieval. As to the expert search task,
we found that the performance depends crucially on the abil-
ity to recognize names of experts.

For the Terabyte track, our main findings can be summa-
rized as follows. First, our retrieval system scales up to 25
million documents, although in terms of indexing time we
are approaching the limits of non-distributed retrieval sys-
tem. Second, we found that larger collections require far
less smoothing: especially for the adhoc task, using very
little smoothing leads to substantial gains in retrieval effec-
tiveness.

This year, our work for the Question Answering track was
largely motivated by the wish to port one of the streams to
a “pure” QA-as-XML-retrieval setting, where the target col-
lection is automatically annotated with linguistic informa-
tion at indexing time, incoming questions are converted to
semistructured queries, and evaluation of these queries gives
a ranked list of candidate answers.

Acknowledgments

This research was supported by the Netherlands Organi-
zation for Scientific Research (NWO) under project num-
bers 017.001.190, 220-80-001, 264-70-050, 612-13-001,
612.000.106, 612.000.207, 612.066.302, 612.069.006, and
640.001.501.

References

[1] D. Ahn, V. Jijkoun, G. Mishne, K. M̈uller, M. de Rij-
ke, and S. Schlobach. Using Wikipedia in the TREC
QA Track. In E. Voorhees and L. Buckland, edi-
tors,The Thirteenth Text Retrieval Conference (TREC
2004), 2005.

[2] D. Ahn, V. Jijkoun, K. Müller, M. de Rijke,
S. Schlobach, and G. Mishne. Making stone soup:
Evaluating a recall-oriented multi-stream question an-
swering stream for Dutch. In C. Peters, P. Clough,
G. Jones, J. Gonzalo, M. Kluck, and B. Magnini, ed-
itors,Multilingual Information Access for Text, Speech
and Images: Results of the Fifth CLEF Evaluation
Campaign, LNCS 3491, pages 423–434. Springer,
2005.

[3] E. Charniak. A Maximum-Entropy-Inspired Parser. In
Proceedings of NAACL-00, 2000.

[4] T. Clifton, A. Colquhoun, and W. Teahan. Bangor at
TREC 2003: Q&a and genomics tracks. InThe Twelfth
Text Retrieval Conference (TREC 2003). National In-
stitute for Standards and Technology, 2003.

[5] M. A. Gonçalves, E. A. Fox, A. Krowne, P. Calado,
A. H. F. Laender, A. S. da Silva, and B. Ribeiro-Neto.
The effectiveness of automatically structured queries in
digital libraries. InJCDL ’04: Proceedings of the 4th
ACM/IEEE-CS joint conference on Digital libraries,
pages 98–107, New York, NY, USA, 2004. ACM Press.

[6] D. Hawking and S. Robertson. On collection size and
retrieval effectiveness.Information Retrieval, 6:99–
150, 2003.

[7] ILPS. The ILPS extension of the Lucene search engine,
2005.http://ilps.science.uva.nl/Resources/.

[8] V. Jijkoun and M. de Rijke. Answer selection in
a multi-stream open domain question answering sys-
tem. In S. McDonald and J. Tait, editors,Proceed-
ings 26th European Conference on Information Re-
trieval (ECIR’04), volume 2997 ofLNCS, pages 99–
111. Springer, 2004.

[9] V. Jijkoun, G. Mishne, and M. de Rijke. Preprocessing
documents to answer dutch questions. InProceedings
of BNAIC’03. Nijmegen, The Netherlands, 2003.

[10] V. Jijkoun, G. Mishne, and M. de Rijke. How frogs
built the Berlin Wall. InProceedings CLEF2003, vol-
ume LNCS. Springer, 2004.

[11] V. Jijkoun, G. Mishne, C. Monz, M. de Rijke,
S. Schlobach, and O. Tsur. The University of Ams-
terdam at the TREC 2003 Question Answering Track.
In Proceedings TREC 2003, pages 586–593, 2004.

[12] J. Kamps. Web-centric language models. InProceed-
ings of the Fourteenth ACM Conference on Informa-
tion and Knowledge Management (CIKM 2005). ACM
Press, New York NY, USA, 2005.

[13] J. Kamps, G. Mishne, and M. de Rijke. Language mod-
els for searching in Web corpora. In E. M. Voorhees
and L. P. Buckland, editors,The Thirteenth Text RE-
trieval Conference (TREC 2004). National Institute of
Standards and Technology. NIST Special Publication
500-261, 2005.

[14] J. Kamps, C. Monz, M. de Rijke, and B. Sig-
urbjörnsson. Approaches to robust and web retrieval.
In E. M. Voorhees and L. P. Buckland, editors,The
Twelfth Text REtrieval Conference (TREC 2003), pages
594–599. National Institute of Standards and Technol-
ogy. NIST Special Publication 500-255, 2004.

[15] D. Lin. An information-theoretic definition of simi-
larity. In Proceedings of International Conference on
Machine Learning, 1998.

[16] D. Lin. Recognizing textual entailment: Is word sim-
ilarity enough? InLecture Notes in Artificial Intelli-
gence, 2005. to appear.

[17] Lucene. The Lucene search engine, 2005.http://
jakarta.apache.org/lucene/.

[18] B. Magnini, M. Negri, R. Prevete, and H. Tanev. Is it
the right answer? Exploiting web redundancy for an-
swer validation. InProceedings of ACL 40th Anniver-
sary Meeting (ACL-02), pages 425–432, University of
Pennsylvania, Philadelphia, 2002.

[19] D. R. Radev, H. Jing, M. Stys, and D. Tam. Centroid-
based summarization of multiple documents.Informa-
tion Processing and Management, 40:919–938, 2004.

[20] G. Ramakrishnan, S. Chakrabarti, D. Paranjpe, and
P. Bhattacharya. Is question answering an acquired
skill? In Proceedings of the 13th international con-
ference on World Wide Web, 2004.

[21] S. Schlobach, D. Ahn, M. de Rijke, and V. Jijkoun.
Data-driven type checking in open domain question an-
swering.Journal of Applied Logic, 2006. To appear.

[22] Snowball. Stemming algorithms for use in information
retrieval, 2005. http://www.snowball.tartarus.
org/.

[23] C. Zhai and J. Lafferty. A study of smoothing meth-
ods for language models applied to ad hoc information
retrieval. InACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages
49–56, Tampere, Finland, 2001. ACM Press.

http://ilps.science.uva.nl/Resources/
http://jakarta.apache.org/lucene/
http://jakarta.apache.org/lucene/
http://www.snowball.tartarus.org/
http://www.snowball.tartarus.org/

	1 Introduction
	2 Enterprise Track
	2.1 Email discussion search
	2.1.1 Language model
	2.1.2 Discussion runs
	2.1.3 Summary of runs and results

	2.2 Email known-item search
	2.2.1 Automatic querying structuring
	2.2.2 Fielded language model
	2.2.3 Known-item runs
	2.2.4 Summary of runs and results

	2.3 Expert search
	2.3.1 Introduction
	2.3.2 Modeling
	2.3.3 Candidate document associations
	2.3.4 Runs
	2.3.5 Results

	3 Terabyte Track
	3.1 Experiments
	3.1.1 Indexes
	3.1.2 Retrieval models
	3.1.3 Official runs

	3.2 Results
	3.2.1 Efficiency task
	3.2.2 Adhoc task
	3.2.3 Named page finding task

	3.3 Smoothing experiments
	3.3.1 Named page finding task
	3.3.2 Adhoc task

	3.4 Conclusions

	4 Question Answering Track
	4.1 QA: main task
	4.1.1 Table stream modifications
	4.1.2 Semi-structured information retrieval
	4.1.3 Handling ``other'' questions
	4.1.4 Runs
	4.1.5 Results
	4.1.6 Conclusions

	4.2 QA: Document ranking task
	4.3 QA: Relationship finding task
	4.3.1 Runs and results

	5 Conclusions

