
Structured Queries in XML Retrieval

Jaap Kamps1,2 Maarten Marx2 Maarten de Rijke2 Börkur Sigurbjörnsson2

1 Archives and Information Studies, University of Amsterdam, Amsterdam, The Netherlands
2 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

{kamps,marx,mdr,borkur}@science.uva.nl

ABSTRACT
Document-centric XML is a mixture of text and structure.
With the increased availability of document-centric XML
content comes a need for query facilities in which both struc-
tural constraints and constraints on the content of the docu-
ments can be expressed. How does the expressiveness of lan-
guages for querying XML documents help users to express
their information needs? We address this question from
both an experimental and a theoretical point of view. Our
experimental analysis compares a structure-ignorant with a
structure-aware retrieval approach using the test-suite of the
2004 edition of the INEX XML retrieval evaluation initia-
tive. Theoretically, we create mathematical models of users’
knowledge of a set of documents and define query languages
which exactly fit these models. One of these languages cor-
responds to an XML version of fielded search, the other to
the INEX query language.

Our main findings are: First, while structure is used in
varying degrees of complexity, over half of the queries can
be expressed in a fielded-search like format which does not
use the hierarchical structure of the documents. Second,
structure is used as a search hint, and not a strict require-
ment, when judged against the underlying information need.
Third, the use of structure in queries functions as a precision
enhancing device.

Categories and Subject Descriptors
H.2 [Database Management]: H.2.3 Languages—Query
Languages; H.3 [Information Storage and Retrieval]:
H.3.1 Content Analysis and Indexing; H.3.3 Information
Search and Retrieval; H.3.4 Systems and Software; H.3.7
Digital Libraries

General Terms
Measurement, Performance, Experimentation

Keywords
Full-text XML querying, XPath, XML Retrieval

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010 ...$5.00.

1. INTRODUCTION
There is an ever growing availability of semi-structured in-

formation, on the Web and in digital libraries. Increasingly,
users, both expert and non-expert, have access to text doc-
uments, equipped with some semantic hints through XML-
markup. How can we query such data? We could adopt a
standard information retrieval (IR) approach: perform best
match querying using plain text queries. But this would not
allow users to specify constraints on the document struc-
ture. Alternatively, we could query the documents using a
database approach: perform exact-match using XPath or
XQuery queries. But here, recall is often too low.

Based on their content, XML documents may be catego-
rized into two groups: data-centric and document-centric.
The former contain highly structured data marked up with
XML tags, an example being geographic data in XML [13].
Document-centric documents are loosely structured docu-
ments (often text) marked-up with XML, with electronic
journals in XML providing important examples. Whereas
emerging standards for querying XML, such as XPath and
XQuery, can be very effective for querying data-centric XML,
another approach seems to be needed for querying document-
centric XML. The latter task is a natural meeting point of
two disciplines: the XML nature of the documents calls for
methods from the database field for querying structure, and
the textual nature of the documents calls for approaches
from the field of IR (cf. [24, Section 5]). It is interesting to
contrast the two subtasks. As to querying structure, XML
query languages such as XPath have a definite semantics.
Judging whether an element satisfies an XPath query can be
done by a computer (XPath processor), based on the pat-
tern appearing in the XML document, using an exact match
approach. It is clearly defined which elements match a given
query. An XPath processor will return precisely these ele-
ments with no inherent ranking of results. In contrast, for
querying text IR uses free text queries. These can be key-
words or full sentences describing an information need. An
IR system uses a best match approach: it attempts to rank
results by their topical relevance to the user’s query.

At INEX, the INitiative for the Evaluation of XML Re-
trieval (INEX) [9], the focus is on a combined approach to
XML retrieval, featuring aspects of exact match and best-
match retrieval. Free text search functionality is added to
XPath, in the form of a new about function. With the same
(standard) syntax as the standard contains function, the
about function has two main features; it allows the user to
(1) express information needs with a mixture of content and
structure requirements; and (2) use best-match querying of

document-centric XML. Although the about function has
the same syntax as contains, its semantics is not strictly
defined but left to relevance judgments by human assessors.

The aim of this paper is to understand the combined DB
and IR approach to XML retrieval. The specific reearch
problem we tackle is how the exact match and the best
match approaches can be combined in an effective and useful
manner. We address this problem by answering the follow-
ing questions:

1. How do users exploit the additional expressive power
of structural constraints in their queries?

2. What is the effect on retrieval performance of adding
structural constraints to queries?

3. What is the appropriate query language for XML re-
trieval?

We will answer the first two questions by an analysis of the
INEX data. For the third, such an analysis has been carried
out in [15], resulting in a proposal for a query language
based on their findings. We give a mathematical model of
users’ knowledge of an XML collection and link this to the
appropriate expressive power of query languages. Our main
results are:

• Structural constraints are mainly used as search hints,
not as strict requirements. The hierarchical nature of
the documents is used in less than half of the examined
queries.

• Adding structural constraints has a positive effect on
early precision and a negative effect on overall recall.

• A typology of different uses of content and structure
queries.

• Intuitive mathematical models of users’ knowledge of
a set of XML documents and the formulation of query
languages which exactly fit this knowledge.

The rest of this paper is organized as follows. In Section 2 we
discuss the retrieval task at INEX and analyze the queries
used, resulting in an answer to question 1. In Section 3
we report on experiments comparing the retrieval effective-
ness of structured queries versus ordinary queries, thereby
answering question 2. Section 4 describes content-oriented
flavors of XPath and provides semantic characterizations of
their expressive power. It gives a mathematical basis for
answering the third question. We conclude in Section 5.

2. EXPRESSING INFORMATION NEEDS
WITH CONTENT-AND-STRUCTURE

In this section we answer the first question from the intro-
duction. We examine how users express their information
needs in the XPath-like query language used at INEX 2004.
We will see that about half of the queries do not use the hi-
erarchical structure of the documents. They simply require
that certain keywords occur in elements with a certain tag
name.

In addition, we find that the requested elements in queries
should be viewed as retrieval hints, not as strict require-
ments on the results: over half of the relevant elements has
another tag name than the one specified in the query.

2.1 The INEX XML Document Collection
The queries we study are run against the document-centric

XML collection that comes with the INitiative for the Eval-
uation of XML Retrieval (INEX) [9]. It contains over 12,000
articles from 21 IEEE Computer Society journals, marked
up with XML tags. The DTD of the INEX XML document
collection is extremely complex. There are 192 different con-
tent types, including 11 different tag names for representing
paragraphs; about 170 tag names are actually used in the
collection, including articles 〈article〉, sections 〈sec〉, author
names 〈au〉, affiliations 〈aff〉, etc. On average an article con-
tains 1,532 elements and the average element depth is 6.9.

The INEX setup is such that we should think of the INEX
document collection as a forest of articles. These are XML
documents whose roots have the tag name article. Because
the actual storage of the documents may be different, most
queries start with the prefix //article.1 This is only an
artefact of the representation and we will treat the tag name
article as referring to the root of a document.

2.2 The INEX Topic Format
At INEX, two types of topic are used: Content-Only (CO)

topics and Content-And-Structure (CAS) topics. All topics
contain the same three fields as traditional IR topics [8]: ti-
tle, description and narrative. The title is the actual query
submitted to the retrieval system. The description and nar-
rative describe the information need in natural language.
The described information need is used to judge the rele-
vancy of the retrieved answers to the queries. The difference
between the CO and CAS topics lies in the topic title. In
the case of the CO topics, the title describes the information
need as a small list of keywords. In the case of CAS topics,
the title describes the information need using (a flavor of)
XPath extended with the about function discussed below.
At INEX 2003, full XPath was allowed, and at INEX 2004
a restricted version of XPath was used [21, 23]. Here we
analyze the title part of the CAS topics, which we simply
call queries from now on.

2.3 INEX 2004 Queries
The specific instructions for topic development at INEX

2004 [20] stated that CAS queries

• should use only descendant axis (i.e., //),

• should use only boolean and and or,

• should contain at least one about statement, and

• the rightmost filter should be an about statement.

The about function is the IR counterpart of the familiar
XPath contains function. Although they have the same
syntax, their semantics are radically different. Because of
its strict, boolean character, contains is not suitable for
text rich documents. The semantics of about is meant
to be very liberal. Consider the element <aff>Stanford

University</aff>. Unlike an XPath processor equipped
only with contains, a human assessor will likely decide that
about(.//aff,’California’) returns true if that element
is below the node of evaluation. For a more elaborate ex-
ample, look at the following query (against a collection con-
taining several articles):
1Only three queries (out of the 34 used at INEX 2004) do
not start with this prefix; however, these queries are prefixed
with either 〈sec〉 or 〈abs〉 tags that only occur in the context
of an 〈article〉 tag anyway.

Find articles where the author is affiliated in Cal-
ifornia. From those articles return sections about
weather forecasting systems.

In a hybrid syntax, mixing content and structural constraints,
this would be something like

//article[about(.//au//aff,’California’)]//sec[
about(.,’weather forecasting systems’)].

This query has two content-based restrictions, linked by a
structural constraint. The semantics of this query is not
strict. In the spirit of IR, the ultimate decision of rele-
vancy is in the hands of a human assessor, who may bring
lots of context and world knowledge to her judgment. E.g.,
a human assessor is likely to judge a section about ‘storm
prediction systems’ to be relevant to the information need
expressed above.

The resulting language is called NEXI (Narrowed Ex-
tended XPath I) [23]. For our analysis, we use the set of
34 CAS queries (version 2004-7) with query numbers 127–
147, and 149–161 [for details, see 6].

Requested Elements. One of the main advantages of using
CAS queries is that they allow the user to specify the types
of elements that should be returned as answers. Table 1
lists which kind of elements were requested in the 34 CAS
queries studied.

Element Frequency Percentage
sec (section) 16 47.06%
article 5 14.71%
p (paragraph) 4 11.76%
* 2 5.88%
abs (abstract) 2 5.88%
bb (bibliography entry) 1 2.94%
bdy (body) 1 2.94%
bib (bibliography) 1 2.94%
fig (figure) 1 2.94%
vt (vita) 1 2.94%

Table 1: Frequency of requested elements in the 34
CAS queries of INEX 2004.

Note that the requested element is not strictly enforced, but
merely regarded as a retrieval hint.2 For instance, para-
graphs may be judged relevant answers to a query of the
form //sec[about(.,’xxx’)]. Hence, it is of interest to
look at the tag names of elements that are judged relevant
for the respective queries.

Elements Judged Relevant. We use version 3.0 of the as-
sessments, containing judgments for the 26 queries num-
bered 127–137, 139–145, 149–153, and 155–157. Moreover,
2At INEX, relevance is assessed on the basis of the narra-
tive describing the underlying information need [10, p. 237]:
“CAS queries are topic statements, which contain explicit
references to the XML structure, and explicitly specify the
contexts of the user’s interest (e.g. target elements) and/or
the contexts of certain search concepts (e.g. containment
conditions). . . . Although users may think they have a clear
idea of the structural properties of the collection, there are
likely to be aspects to which they are unaware. The idea
. . . is to allow the evaluation of XML retrieval systems . . .
where not only the content conditions within a user query
are treated with uncertainty but also the expressed struc-
tural conditions. . . . The path specifications should there-
fore be considered hints as to where to look.”

Element Frequency Percentage
p+ 854 31.41%
vt 747 27.47%
sec+ 262 9.64%
au 110 4.05%
bb 104 3.82%
fnm 104 3.82%
st 90 3.31%
article 73 2.68%
fig 53 1.95%
it 37 1.36%
bdy 36 1.32%
ref 34 1.25%
scp 32 1.18%
atl 23 0.85%
abs 13 0.48%
fm 11 0.40%
b 10 0.37%

Table 2: Frequency of elements judged relevant for
all assessed CAS queries at INEX 2004. We only
show tag names that occur at least 10 times.

we focus on elements rated as highly exhaustive and highly
specific—also called strict or (3,3) assessments. For the 4
queries numbered 133, 140, 143, and 144, there are no ele-
ments judged as highly exhaustive and highly specific. Ta-
ble 2 lists the frequencies of element-types judged relevant
for the remaining 22 CAS queries. We collapse the tag equiv-
alences for sections and paragraphs, as defined in [20]. We
use sec+ and p+ to denote the equivalence classes of sections
and paragraphs, respectively.

Requested versus Relevant Elements. Next, we investigate
how often the element that is judged relevant actually has
the tag name specified by the query. Consider Table 3; the
rows show the tag names of requested elements as stated in
the query and the columns show the tag names of elements
judged relevant. E.g., if we look at the assessments of topics

article sec+ p+ abs vt
article (2) 10.8% 1.3% 1.6% – –
sec (10) 3.3% 27.7% 24.7% 0.9% 0.4%
p (4) 4.0% 26.0% 48.0% – –
abs (2) 16.0% – 24.0% 24.0% –
vt (1) – – 44.0% – 52.0%

Table 3: Frequency of relevant elements (columns)
for queries asking for elements with tag name
(rows). The number of aggregated queries is indi-
cated between brackets.

requesting sections (sec), we see that 27.7% of the relevant
elements are sections (sec+), 24.7% are paragraphs (p+),
and 3.3% are articles.3 We conclude that the element names
as requested in the query can indeed only be considered as a
retrieval hint, and not as a strict constraint on the output of
a query. While not strictly enforced, however, there seems
to be a preference for the type of XML elements satisfying

3The surprising numbers for the article topics are due to
strange assessments of one of the article topics, which is
most likely due to a misinterpretation of the assessment
guidelines.

Queries without structure Queries using structure

root

requested

root

uuuuuuuuu

IIIIIIIII

test test

requested

root

•

requested

•uu
uu

uuuu •
III

I

IIII

test test

root

•uuuu

uuuu •
IIII

IIII

test • test

requested

•uu
uu

uuuu •
III

I

IIII

test test
Restricted Search Contextual Content Information Search Hints Search Hints in Context

Figure 1: The tree shapes of the queries.

it. E.g., if people ask for sections, they are more likely to
judge sections as relevant than any other kind of tag.4

2.4 How Structure is Used
To see how users use structure in their queries, we break

down the set of queries by increasing complexity. This re-
sults in four categories, to be discussed below and graphi-
cally depicted in Figure 1; note that hierarchical information
about the documents is only used in the last two categories.

Restricted Search. This category has queries in which struc-
ture is only used as a constraint on the returned elements.
The query is an ordinary content-only query, but the search
is restricted to particular XML elements. A typical example
of such a query is to restrict the search to sections:

//sec[about(.,’xxx’)].

In general, such queries have the form //tag[P] with P a
positive boolean combination of functions about(.,’xxx’).

Contextual Content Information. This category is similar
to the Restricted Search category, but additionally we may
put content restrictions on the environment in which the
requested element occurs. A typical example looks like:

//sec[about(.,’yyy’) and about(//abs,’xxx’)].

This query asks for sections about yyy in documents which
contain an abstract (abs) about xxx. In general, such queries
have the form //tag[P], with P a positive boolean combina-
tion of functions about(.,’xxx’) and about(//tag,’xxx’).
Note that about(//abs, ’xxx’) expresses that somewhere
below the root of the document there is an abstract (abs)
which is about xxx.

Search Hints. This category is again similar to the Restricted
Search category, but additionally we may put content re-
strictions on subelements of the requested element, and we
may use the hierarchical nature of the documents. These
extra restrictions can be viewed as search hints or retrieval
cues to the system. A typical example is a query which asks
for sections about xxx containing a theorem about yyy:

//sec[about(.,’xxx’) and about(.//thm,’yyy’)].

4Note, especially for the granularity constraints abs and vt,
that we do not distinguish between paragraphs appearing
within or outside the element matching the granularity con-
straint.

The general form of such queries is path[P] with P a posi-
tive boolean combination of functions about(.,’xxx’) and
about(.path ,’xxx’), and path a location path sequence
of the form //tag1//...//tagn.

Search Hints in Context. This category combines the Search
Hints with the Contextual Context Information categories.
An example is a query which asks for sections about xxx con-
taining a theorem about yyy, in documents which contain
an abstract (abs) about zzz:

//sec[about(.,’xxx’) and about(.//thm,’yyy’)
and about(//abs,’zzz’)].

The general form of queries of this category is path[P]

with P a positive boolean combination of about(.,’xxx’),
about(.path,’xxx’) and about(path ,’xxx’), and path a
location path sequence of the form //tag1//...//tagn.

To help situate the query categories just introduced, we re-
call the XML fragments proposed by Carmel et al. [3, 4]
as a simple alternative to XPath for content and structure
queries. Using the intuitive query-by-example underlying
XML Fragments, only the Restricted Search and Search Hint
categories can be expressed. For capturing queries in the
other categories, a syntactic device is introduced [3]. Our
approach differs from XML fragments in our focus on the de-
scendant axis instead of the child axis, and our distinction
between users having varying degrees of knowledge about
valid tag nestings. E.g., Contextual Content Information
can only be correctly specified in XML fragments using ad-
ditional knowledge of the DTD.

Returning to our 34 CAS queries, we provide a classifica-
tion in terms of our four categories in Table 4. We based
this classification not on the actual syntactic shape of the
queries, but on the fact whether they could equivalently be
expressed in the query format of the category.

Category Fraction Query number
Restricted Search 15% 127,136,142,143,152
Contextual Content 47% 128, 129, 130, 131, 132, 134,
Information 135, 137, 138, 141, 144, 145,

151, 158, 159, 160
Search Hints 6% 147, 153
Search Hints in 32% 133, 139, 140, 146, 149,150
Context 154, 155, 156, 157, 161

Table 4: Classification of CAS queries.

As to the first research question in the introduction (How
do users exploit the additional expressive power of structural

constraints in their queries?), our main finding is that 62%
of the 34 CAS queries does not use the hierarchical structure
of the documents. The remaining 38% only uses the NEXI
query language in a rather restricted form. That is, the
hierarchical nature of the documents is used in less than
half of the queries we examined. However, we also see that
no less than 79% of the queries use contraints on the context
of the elements to be returned. These contextual constraints
cannot be captured by ordinary keyword queries.

3. THE EFFECT OF STRUCTURE ON RE-
TRIEVAL EFFECTIVENESS

In this section we answer the second question from the
introduction: What is the effect on retrieval performance of
adding structural constraints to queries?

3.1 Experimental Setup
We base our experimental evidence on the INEX test-suite

for the vague content and structure task. The difference
with earlier results [19] is that none of the structural con-
straints was enforced, they were treated as search hints. We
treat only highly specific and highly exhaustive elements
as relevant (i.e., the so-called strict assessments) and use
trec eval for computing the scores.

Our aim is to contrast structured queries with keyword
queries. That is, from a structured query like

//article[about(.,’sorting’)]//sec[about(.,’heap sort’)]

we simply collect all the content terms

sorting heap sort.

We refer to the latter type of representation of the informa-
tion need as full content query. We create two runs:

Content oriented This run is based on the full-content
query, and uses a language model approach together
with query expansion [16]; we refer to [18] for details.

XPath oriented This run is based on the structured query,
and target constraints are interpreted as strict; we re-
fer to [19] for details.

3.2 Results

Average Precision. We first consider the results in terms of
mean average precision (MAP). Table 5 shows the respective

CO XPath Change
MAP 0.1377 0.0811 −41.1%

Table 5: Mean average precision.

scores. The content oriented (CO) run is clearly superior.
This is, indeed, a disappointing result because the poorer
scoring XPath-oriented run uses a more articulate query.
Let us take a closer look and zoom in on the performance at
different recall levels. Figure 2 shows the interpolated pre-
cision at the eleven standard recall levels. We see an inter-
esting phenomenon. While the content-oriented run clearly
outperforms the XPath-oriented run on higher recall levels,
the XPath-oriented run outperforms the content oriented
run on lower recall levels.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Recall

 P
re

ci
si

on

CO
XPath

Figure 2: Interpolated precision at standard recall
levels.

Initial Precision. Let us zoom in further and look explic-
itly at the performance on the initially retrieved elements.
Table 6 shows the mean precision at ranks 5, 10, 20, and
30. Here, we see a complete reversal from the picture in Ta-
ble 5: now, the XPath-oriented runs are superior. We zoom

Precision CO XPath Change
@ 5 0.2091 0.3091 +47.8%
@ 10 0.1818 0.2591 +42.5%
@ 20 0.1614 0.1977 +22.5%
@ 30 0.1439 0.1788 +24.3%

Table 6: Mean precision at rank 5, 10, 20, and 30.

in even further and look solely at the first relevant element
retrieved. Table 7 shows the mean reciprocal rank (MRR) of
the first found relevant element. The outcome confirms the
early precision results: the XPath-oriented run is superior
to the content-oriented run.

CO XPath Change
MRR 0.3778 0.4667 +23.5%

Table 7: Mean reciprocal rank scores.

Success. Next, we shift our focus to topics for which we do
not score well. Does XPath-oriented querying help us score
well on a larger set of topics, or does it simply improve our
score where we did well already? Table 8 shows the mean

Success CO XPath Change
@ 1 0.3182 0.3182 0.0%
@ 5 0.4091 0.5909 +44.4%
@ 10 0.5455 0.7273 +33.3%
@ 20 0.6364 0.7273 +14.3%

Table 8: Mean success at rank 1, 5, 10, and 20.

success—the fraction of topics for which at least one relevant
element is found—at ranks 1, 5, 10, and 20. Again, the
results are in favor of the XPath-oriented run. At rank 10,
we fail to retrieve a relevant element for 27% of the topics.

0 100 200 300 400 500 600 700 800 900 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Rank

 S
uc

ce
ss

CO
XPath

Figure 3: Success at n.

Recall that the task at hand is XML element retrieval, where
each of the millions of XML elements may be relevant.

There is no such thing as mean average success (since it
would trivially approximate the best success score at any
rank if we average over an infinite number of ranks), but we
can investigate the increase of success over ranks. Figure 3
shows the success over the first 1000 ranks. We see a pic-
ture similar to the interpolated precision curves in Figure 2:
at lower ranks, the XPath-oriented run finds a relevant ele-
ment for a larger fraction of topics, but at higher ranks the
content-oriented run wins.

In sum, our results show that structured queries do not lead
to improved mean average precision scores; in fact, we see
a substantial drop in mean average precision. However, this
can be attributed completely to poor scoring at higher re-
call levels. If we zoom in on the initially retrieved elements,
or on the first found relevant element, the outcome is re-
versed: structured queries lead to substantially better initial
precision scores. The experimental evidence indicates that
structured queries function as a precision enhancing device:
useful for promoting the precision of initially retrieved doc-
uments, possibly reducing fall-out but also reducing recall.

4. QUERY LANGUAGES FOR CONTENT
AND STRUCTURE QUERIES

As stated previously, the NEXI query language is an ex-
tension of a subset of XPath. The motivation for restricting
XPath is that users find it hard to state their information
need in XPath and tend to make semantic mistakes in their
query formulations. We analyze why users make such mis-
takes and build a user model. Then we show that the NEXI
query language is a perfect fit for this user model: on the
one hand, users cannot make the found semantic mistakes
because the language is restricted (the language is safe); on
the other, they can express every information need belong-
ing to this user model (the language is complete).

4.1 Less Power is Better
At INEX, the focus is on retrieving sets of elements from

document-centric XML using information about the content
of the elements and their location in the documents. For this
reason, it was decided to restrict the query language to the

root

uuuuuuuuu

IIIIIIIII

paragraph paragraph

root

paragraph

Figure 4: Two simple XML document trees.

navigational part of XPath 1.0; in [7] this language is defined
as Core XPath. The only objects which are manipulated in
this language are sets of nodes (i.e., there are no arithmeti-
cal or string operations). Besides these restrictions, the full
power of location paths is supported (except for namespace
and attribute axis), including filter expressions being closed
under the boolean operators. At INEX 2003, Core XPath
expanded with the about function was used as a query lan-
guage. The results were disappointing: many queries did
not match the information need as described in the narra-
tive and description part; often, the information need was
much broader than the XPath expression [15]. The most
typical mistake was the use of / (child axis) where // (de-
scendant) was intended. These semantic mistakes can likely
be attributed to the fact that users have no, or at best in-
complete, knowledge of the structure of documents, that is,
of the DTD (see Section 2.1 for details on the INEX col-
lection). To reduce the chance of making such semantic
mistakes, O’Keefe and Trotman [15] argued that apart from
the descendant axis no other axis relations should be used
in queries. This recommendation was implemented in the
INEX 2004 NEXI query language (described in Section 2).
We will provide a theoretical basis for this recommendation
by giving a mathematical model of a user’s knowledge of a
DTD and relating the expressive power of the NEXI query
language to this model.

A user’s knowledge about a set of XML documents can be
naturally formalized in terms of an indiscernibility relation
between documents. For instance, most INEX users will
not distinguish the two documents in Figure 4 solely based
on the tag names. For a user, two indiscernible documents
are the same, and a query should return the same answers
from both documents. But there are XPath queries which
return different answers on these two documents. This is
the reason for considering weaker fragments of XPath, those
for which indiscernible documents yield identical answers.
Naturally, given an indiscernibility relation, we would like
those fragments to be as large as possible.

In sum, given an indiscernibility relation, there are two
competing forces: safety, which reduces expressive power,
and completeness, which asks for as much expressivity as
possible. In a safe query language, users cannot write queries
which return different answers from documents which these
users consider to be the same. A safe language is designed
to avoid making semantic mistakes by forbidding the user
to pose such queries. We will shortly see that the NEXI lan-
guage is an example of a safe and complete query language.

4.2 User Profiles
Below, we define two user profiles in terms of indiscern-

ability relations, both capturing users with limited knowl-
edge of the DTD. First, we consider what we call ignorant
users who only know the tag names. Second, we consider
semi-ignorant users, who know the tag names and have some
clue about the hierarchal structure of the elements, without

knowing the full details. For both profiles we will design
fragments that are safe and complete for these profiles.

Ignorant Users. Users formulating queries at INEX did not
have a clear idea of the DTD of the collection [15]. Typically,
they browsed the documents and picked up some knowledge
about the available tags in this manner. Their queries can
be viewed as an XML version of fielded search. For users
who know (a subset of) the tag names, but do not (want to)
know the structure of the documents, we create an XPath
fragment which exactly fits their knowledge. The typical
queries of an ignorant user are the Restricted Search and
Contextual Content Information queries from Section 2.4.

The following syntax, which we call structure unaware
XPath, allows us to pose these queries. A query is of the
form //tag[P], where tag is either the wild card * or a tag
name, and P is a predicate created using ‘and,’ ‘or,’ and
‘not’ from location paths of the form //tag and self::tag.
Note that when //tag is used in a filter it means “there ex-
ists a descendant of the root labeled tag”. I.e., //tag simply
says that somewhere in the document there is a tag element.
self::tag expresses that the current node is labeled by tag.

We turn to a semantic characterization of this fragment.
In social network theory [25] several indiscernibility relations
have been proposed, including the useful and robust notion
of bisimulation (a.k.a. ‘regular equivalence’). We need the
following special “structurally unaware” version.

Definition 1. Let D, D′ be documents and B a binary
relation between the elements of D and D′ connecting the
roots. We call B a structure unaware bisimulation if, when-
ever xBy holds for two elements x, y in D, then

1. x and y have the same tag name;

2. if there exists an x′ ∈ D, then there exists a y′ ∈ D′

such that x′By′; and

3. conversely for y′ ∈ D′.

Let φ(x) be a first-order formula (in one free variable) in a
suitable vocabulary; φ(x) is invariant under bisimulations
whenever the following holds: for any a, b and bisimulation
B, if φ(a) and aBb hold, then φ(b) holds as well.

A few comments. First, the relation which connects the
roots and the paragraph elements in Figure 4 to each other
is a bisimulation. Secondly, first-order formulas in one free
variable can be seen as an alternative stronger query lan-
guage than XPath (for the relative expressive power of the
two cf., [12]). Thirdly, in the usual definition of bisimula-
tion, the clauses in items 2 and 3 above are conditioned on
x′ (and y′) being “structurally” related to x (and y, respec-
tively); but our ignorant user is not aware of the structure,
hence we omitted these conditions.

Theorem 2. 1. Let D, D′ be documents and B a struc-
ture unaware bisimulation. Then any structure un-
aware XPath expression yields the same answer set on
D and D′.

2. For every first-order formula that is invariant under
structure unaware bisimulations there exists an equiv-
alent structure unaware XPath expression.

We can conclude that this language fits perfectly to the
sketched user profile: the first part of the theorem states
that it is safe, the second that it is complete.

root

section

section

theorem

root

section

theorem

Figure 5: Document trees that do not bisimulate.

Semi-ignorant Users. Semi-ignorant users have some clue
about the hierarchical structure of the documents. E.g.,
they know that paragraphs are below sections, but need not
know that there can be elements in between [15]. For this
reason, O’Keefe and Trotman [15] proposed Positive De-
scendant XPath: the fragment of XPath in which only the
descendant axis may be used and the booleans in the pred-
icates are restricted to “and” and “or”. Note that all types
of queries discussed in Section 2 can be formulated in this
fragment. As this XPath fragment does not contain nega-
tion, bisimulation is too strong a notion [11]. As a general
fact, positive fragments correspond to simulations, which are
bisimulations from which one of the directions is dropped.
We use < to denote the descendant relation between ele-
ments; i.e., x < y means that y is a descendant of x.

Definition 3. Let D, D′ be documents and B a binary
relation between the elements of D and D′ connecting the
roots. We call B a vertical simulation if, whenever xBy,
then

1. x and y have the same tag names;

2. if there exists an x′ ∈ D such that x < x′, then there
exists a y′ ∈ D′ such that y < y′ and x′By′; and

3. similarly when x′ < x.

Vertical simulations correspond to users that know the ele-
ment hierarchy: note that both elements below and above
have to be simulated. The next theorem is an analogue of
Theorem 2 for Positive Descendant XPath: it is both safe
and complete for semi-ignorant users.

Theorem 4. Let X be a set of elements. The following
are equivalent:

1. X is definable by a first-order formula in one free vari-
able which is preserved under vertical simulations.

2. X is definable as the answer set of a union of Positive
Descendant XPath formulas.

The proof uses ideas from modal logic [2, Theorem 2.78]
together with ideas from [1, Theorem 3.2].

Descendant or Descendant-or-self? . Positive Descendant
XPath has great syntactic appeal because the only operator
is //. It is a natural fragment because it corresponds exactly
to the semi-ignorant users. Still, one could argue that it is
too expressive for these users. Consider the two document
trees in Figure 5. There are no vertical simulations between
these two. But, according to the data and the arguments in

[15], INEX users consider them to be the same. We can eas-
ily adjust our notion of simulation to cater for this: instead
of simulating the descendant relation <, only simulate the
descendant-or-self relation ≤. Then, these two documents
bisimulate! Unfortunately, there is no appealing abbrevi-
ated syntax for the corresponding query language (“Positive
Descendant-or-Self XPath”), but probably this language can
further reduce the number of semantic mistakes.

5. DISCUSSION AND CONCLUSIONS
We can identify a number of important lessons for fu-

ture work in information retrieval from document-centric
XML collections. Simply combining powerful XML query
languages with IR-style retrieval and ranking of results does
not work. The addition of structure to queries is not a sim-
ple recipe for improving results. This is in line with ear-
lier work: the use of structure in queries has been studied
extensively; prominent examples include booleans, proxim-
ity and phrase operators. In early publications, the usage
of phrases and proximity operators—as well as a careful
usage of boolean operators—showed improved retrieval re-
sults but rarely anything substantial [e.g., 5]. As retrieval
models became more advanced, the usage of query opera-
tors was questioned. E.g., Mitra et al. [14] conclude that
when using a good ranking algorithm, phrases have no ef-
fect on high precision retrieval (and sometimes a negative
effect due to topic drift). Rasolofo and Savoy [17] combine
term-proximity heuristics with an Okapi model, obtaining
3%–8% improvements for Precision@5, 10, 20, with hardly
observable impact on the MAP scores.

For XML retrieval we draw the following conclusions. First,
as observed in [15], less expressivity is better in that it re-
duces the chance of making semantic mistakes. We have
shown that the proposed NEXI query language [15] is not
ad hoc, but has a precise mathematical chracterization in
terms of an intuitive user model. Secondly, users tend not
to use structure in their queries. Although structure is used
in varying degrees of complexity, over half of the queries
can be expressed in a the very restrictive ignorant user lan-
guage. We also found that structure is used as a search hint,
and not as a strict search requirement, when judged against
the underlying information need. As a consequence, we hy-
pothesized that the use of structure in queries functions as
a precision enhancing device.

To test this hypothesis we conducted a set of experiments.
The outcomes confirm that structured queries function as a
precision enhancing device: useful for promoting the preci-
sion of initially retrieved documents, possibly reducing fall-
out but also reducing recall. Structured queries can be a
powerful tool, catering for the typical web searcher who is
interested solely in the precision of the first handful of docu-
ments. As the INEX Interactive Track revealed, users rarely
look beyond the first handful of returned elements [22].

Acknowledgments. We thank our referees and the partici-
pants of the Topic Format Working Groups at INEX 2002,
2003, and 2004.

This research was supported by the Netherlands Organi-
zation for Scientific Research (NWO) under project num-
bers 017.001.190, 220-80-001, 264-70-050, 365-20-005, 612.-
000.106, 612.000.207, 612.013.001, 612.066.302, 612.069.006,
and 640.001.501.

REFERENCES
[1] M. Benedikt, W. Fan, and G. Kuper. Structural properties

of XPath fragments. In Proc. ICDT, 2003.

[2] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic.
Cambridge University Press, 2001.

[3] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and
A. Soffer. Searching XML documents via XML fragments.
In Proc. SIGIR, pages 151–158, 2003.

[4] D. Carmel, Y. S. Maarek, Y. Mass, N. Efraty, and G. M.
Landau. An extension of the vector space model for querying
XML documents via XML fragments. In Proceedings SIGIR
2002 Workshop on XML and Information Retrieval, pages
14–25, 2002.

[5] J. Fagan. Experiments in automatic phrase indexing for
document retrieval: A comparison of syntactic and non-
syntactic methods. Technical report, Cornell University,
1987.

[6] N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik, editors. INEX
2004 Workshop Pre-Proceedings, 2004.

[7] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms
for processing XPath queries. In VLDB’02, 2002.

[8] D. Harman. Overview of the first Text REtrieval Conference
(TREC-1). In Proc. TREC-1, 1993.

[9] INEX. INitiative for the Evaluation of XML Retrieval, 2004.
http://inex.is.informatik.uni-duisburg.de:2004/.

[10] G. Kazai, M. Lalmas, and B. Piwowarski. INEX 2004 rele-
vance assessment guide. In Fuhr et al. [6], pages 241–248.

[11] N. Kurtonina and M. de Rijke. Expressiveness of concept
expressions in first-order description logics. Artificial Intel-
ligence, 107(2):303–333, 1999.

[12] M. Marx and M. de Rijke. Semantic Characterizations of
Navigational XPath. ACM SIGMOD Record, 34(2):41–46,
2005.

[13] W. May. Information extraction and integration with
Florid: The Mondial case study. Technical report, Uni-
versität Freiburg, Institut für Informatik, 1999.

[14] M. Mitra, C. Buckley, A. Singhal, and C. Cardie. An analysis
of statistical and syntactic phrases. In Proc. RIAO-97, 1997.

[15] R. A. O’Keefe and A. Trotman. The simplest query language
that could possibly work. In Proceedings of the 2nd INEX
Workshop, 2004.

[16] J. Ponte. Language models for relevance feedback. In
W. Croft, editor, Advances in Information Retrieval, chap-
ter 3, pages 73–96. Kluwer, 2000.

[17] Y. Rasolofo and J. Savoy. Term proximity scoring for
keyword-based retrieval systems. In Proc. ECIR 2003),
pages 207–218, 2003.

[18] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. The Univer-
sity of Amsterdam at INEX 2004. In Fuhr et al. [6], pages
104–109.

[19] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Processing
content-oriented XPath queries. In Proc. CIKM 2004, pages
371–380. ACM Press, 2004.

[20] B. Sigurbjörnsson, B. Larsen, M. Lalmas, and S. Maalik.
INEX04 guidelines for topic development. In Fuhr et al. [6],
pages 219–236.

[21] B. Sigurbjörnsson and A. Trotman. Queries, INEX 2003
working group report. In Proceedings of the 2nd INEX
Workshop, 2004.

[22] A. Tombros, B. Larsen, and S. Malik. The interactive track
at INEX 2004. In Fuhr et al. [6], pages 24–29.

[23] A. Trotman and B. Sigurbjörnsson. Narrowed Extended
XPath I (NEXI). In Fuhr et al. [6], pages 219–236.

[24] V. Vianu. A Web odyssey: from Codd to XML. In Proc.
PODS, pages 1–15. ACM Press, 2001. ISBN 1-58113-361-8.

[25] S. Wasserman and K. Faust. Social Network Analysis. Cam-
bridge University Press, 1994.

http://inex.is.informatik.uni-duisburg.de:2004/

	1 Introduction
	2 Expressing Information Needs with Content-and-Structure
	2.1 The INEX XML Document Collection
	2.2 The INEX Topic Format
	2.3 INEX 2004 Queries
	2.4 How Structure is Used

	3 The Effect of Structure on Retrieval Effectiveness
	3.1 Experimental Setup
	3.2 Results

	4 Query Languages for Content and Structure Queries
	4.1 Less Power is Better
	4.2 User Profiles

	5 Discussion and Conclusions

