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THE UBIQUITY OF
BACKGROUND KNOWLEDGE

ABSTRACT. Scientific discourse leaves implicit a vast amount
of knowledge, assumes that this background knowledge is taken into
account—even taken for granted—and treated as undisputed. In par-
ticular, the terminology in the empirical sciences is treated as an-
tecedently understood. The background knowledge surrounding a the-
ory is usually assumed to be true or approximately true. This is in
sharp contrast with logic, which explicitly ignores underlying presup-
positions and assumes uninterpreted languages. We discuss the prob-
lems that background knowledge may cause for the formalization of
scientific theories. In particular, we will show how some of these prob-
lems can be addressed in the context of the computational representa-
tion of scientific theories.

1 Introduction

Background knowledge is ubiquitous in all forms of meaningful human commu-
nication. People engaged in fruitful discussion rely on a vast amount of shared
background knowledge. How can we communicate if, for example, we do not
have a shared understanding of the meaning of the words we utter? or make the
same underlying assumptions? I vividly recall a discussion with Professor Kuipers
on our common interests in artificial intelligence and philosophy of science. Af-
ter much agreement, we suddenly reached an awkward difference of opinion that
left me puzzled for some time. Then it turned out to be the case that Professor
Kuipers was talking about the beneficial effects philosophy of science can have
on artificial intelligence, and I was talking about the beneficial effects artificial in-
telligence can have on philosophy of science. Since these two positions are by
no means incompatible, our difference of opinion was immediately resolved. This
anecdote illustrates how a minor difference in the implicit presuppositions can give
rise to confusion and even apparent disagreement, and moreover, how this may be
resolved after the background assumptions have been made explicit. Background
knowledge does not only occur in free forms of conversation, but also in more reg-
ulated discourse we make all sorts of presuppositions. This is even true for the
way in which we report our findings and theories in the scientific literature. That
is, even in cases where the clarity and unambiguity is of principal importance, au-
thors routinely presuppose a variety of background knowledge, for example, by the
terminology that they use.



The notion of ‘background knowledge’ is traditionally used to denote the vast
amount of knowledge we take for granted when discussing a problem; this knowl-
edge is treated as undisputed, if only for the time being and for the problem at
hand (Popper 1963, p.238). If some parts of the background knowledge are called
into question, they do no longer belong to the background knowledge. As Kuipers
(2001, p.6) puts it: “It should also be stressed that, at least as a rule, observa-
tion and hence observation terms are, and remain, laden by theoretical presuppo-
sitions which are considered to belong to the so-called unproblematic background
knowledge.” The background knowledge is “unproblematic” in the sense that we
(have to) assume that it is true or approximately true (Kuipers 2001, p.48/p.51).
A well-known consequence of the background knowledge surrounding a theory is
the Duhem-Quine thesis, i.e., the observation that we can make a theory immune
for falsification by making modifications in the background knowledge (Kuipers
2001, p.225/p.244). This paper discusses the problems that background knowl-
edge may cause for the formalization of scientific theories. In particular, we will
address these problems in the context of computational representation of scientific
theories.

Due to the fact that background knowledge is taken for granted, it will re-
main implicit in written expositions of a theory, and only the relevant knowledge
is mentioned. The explicit treatment of underlying assumptions is one of the main
reasons for the formalization of scientific theories (Suppes 1968). Of course, one
may argue that the background assumptions that are left implicit are often rela-
tively innocuous, and frequently the authors may safely assume that these implicit
assumptions belong to the common knowledge of the readers. However, if our goal
is to provide a version suitable for computational reasoning, this assumption is no
longer valid. Computers are simply not endowed with this underlying background
knowledge, and all relevant implicit assumptions need to be added explicitly. This
gives rise to several problems. The first is a problem of acquisition: how to bring
to light the knowledge that has been left implicit? The second is a problem of rel-
evance: the amount of implicit background knowledge seems without an end, how
to decide which part of it are relevant for the problem at hand?

The problem of background knowledge will occur in any situation where there
is prior knowledge at stake, including all of the empirical sciences. Regardless of
the used representation language, there will always be the question of whether one
has faithfully represented the presuppositions of the domain. In order to explicate
the role of background knowledge in the formalization of theories, we will situate
our discussion in the context of the axiomatization in first-order logic of theories
from the empirical sciences. Our experience in this area concerns the informal
theories of fields like sociology rather than the mathematical theories of physics.1

1This is roughly based on some recent attempts to axiomatize informal sociological theory (Péli
et al. 1994; Hannan 1998; Kamps and Pólos 1999). Although one may expect that the more rigorous
and formal an exposition is, the more of the background assumptions have been added explicitly
and that the more informal an exposition is, the greater the amount of background knowledge that
is presupposed. As a consequence, one would expect that, relative to the explicitly discussed part,



2 Background Knowledge and Interpreted Languages

Suppose that we start out with a conventional exposition of a scientific theory, think
of an article appearing in a scientific journal. A careful rational reconstruction of
such a text will result in a list of statements representing the axioms of the theory,
and a list of statements representing the claims or predictions of the theory. This
rational reconstruction is by no means a trivial step, but we will ignore these com-
plications and assume that, at least for some texts, it can be accomplished. As a
next step, we would want to give a formal rendition of the selected statements, and
thus construct an initial formal version of the theory. This initial formal theory,
which we assume here to be in first-order logic, will have a number of axioms and
a set of conjectures representing the statements that the theory claims to predict
or explain. We can now try to find out which of these conjectures can be derived
from the axioms. In particular, we can use the standard tarskian consequence re-
lation by using standard rules of inference (see standard textbooks like Enderton
1972). As may come as no surprise, this will generally be a disappointing effort:
in the (initial) formal theory many of the conjectures will not be derivable from the
axioms. As is well-known, informal arguments do not straightforwardly extend to
rigorous formal proofs. Admittedly, in some cases this might be due to infelicitous
argumentation. Some of the informal conjectures may turn out to be false when
subjected to greater scrutiny. However, more generally speaking, there are other
reasons for a failure to derive some of the informal conjectures.

In particular, one may question whether the standard consequence relation is
faithfully singling out the intended consequences of our theory. As (Tarski 1946,
pp.121–122) put it:

Our knowledge of the things denoted by the primitive terms . . . is very
comprehensive and is by no means exhausted by the adopted axioms.
But this knowledge is, so to speak, our private concern which does
not exert the least influence on the construction of our theory. . . . We
disregard, as is commonly put, the meaning of the primitive terms
adopted by us, and direct our attention exclusively to the form of the
axioms in which these terms occur.

Now consider the empirical science theory we are axiomatizing: it contains primi-
tive terminology that has a specific meaning—it is ‘antecedently understood.’ The
standard logical consequence relation does not take into account the underlying un-
derstanding of the terminology. In other words, by using a standard consequence
relation we explicitly ignore all background knowledge and assume that there are
no logical relations among the atomic sentences other than those explicitly stated
in the axioms. This is in sharp contrast with the discussion of unproblematic and
undisputed background knowledge, which assumes that the antecedent meaning

authors in social sciences would leave larger parts of their theories implicit than is the case in, for
example, mathematical physics. However, this is only a difference in degree, and does not affect the
main points of our arguments.



of the used terminology is taken into account—even taken for granted. The un-
avoidable conclusion is that the failure to derive some of the informal conjectures
can be attributed to the false assumption that we are dealing with an uninterpreted
language (by using a tarskian consequence relation). In particular, some of the in-
formal conjectures might materialize into formally proven theorems, were we to
use a consequence relation that takes the underlying interpretation of terminology
into account.

This has some far-reaching consequences. It is simply incorrect to regard our
initial formal theory as an uninterpreted first-order language, but it should be re-
garded as an interpreted first-order logic in which the vocabulary has a specific,
fixed interpretation. A direct result of using an interpreted language is that we
cannot use the standard consequence relation. This requires a non-standard conse-
quence relation that takes into account the interpretation of the terminology in the
vocabulary of the theory. That is, for every set of interpreted vocabulary we need a
special consequence relation that takes the antecedent meaning of the terminology
into account.2 In order to decide whether an informal conjecture is a theorem or
not, we need to use the particular consequence relation associated with the specific
used interpreted language. The problem now is that the specific interpretation is left
implicit in conventional discourse, and therefore the needed special consequence
relation is generally unknown. We may use the standard consequence relation only
if we can ensure that all relevant background knowledge is explicitly added to the
theory. However, the acquisition of the relevant background knowledge is a far
from trivial task for precisely this knowledge is taken for granted and left implicit
in standard scientific discourse.

3 Logical Analysis

In order to investigate consequence relations for interpreted languages, we need
to make our discussion a bit more precise. This initial formal theory in first-order
logic will have a number of axioms, denoted withΣexp for the explicit axioms of the
(initial) theory, and a set of conjecturesΓ for the statements that the theory claims
to predict or explain. Now let|= denote the standard (tarskian) consequence rela-
tion for an uninterpreted first-order language, and let|=theory denote the unknown
non-standard consequence relation of the specific interpreted first-order language
of our theory. We want to investigate the logical dependencies between these two
possible consequence relations that can be used to determine whether a conjecture
γ ∈ Γ is derivable from the explicitly mentioned axiomsΣexp. The four logical
possibilities in Table 1 present themselves.

Let us first consider case I,Σexp |= γ andΣexp 6|=theory γ. In the case of
2For an example of such an interpreted first-order language, see the the language ofTarski’s World

that features prominently in a textbook on logic (Barwise and Etchemendy 1992). We will later draw
upon some examples from this book. An interesting discussion of logical consequence relations can
be found in (Etchemendy 1990).



Σexp |=theory γ Σexp 6|=theory γ
Σexp |= γ II. I.
Σexp 6|= γ III. IV.

Table 1: Noninterpreted and Interpreted Consequences.

an interpreted first-order logic, this cannot occur. The non-standard consequence
relation |=theory will be supraclassical: all|=-consequences are also|=theory-con-
sequences.3 Some theorems will hold irrespective of the specific interpretation of
the language, that is, they will hold in any interpretation of the language (including
the intended interpretation). This gives us the reassurance that we can immediately
conclude thatΣexp |=theory γ in case we find thatΣexp |= γ (case II).4 As a
result, if we treat an interpreted first-order language as if it were an uninterpreted
language, then we can be sure that the theorems we find (using the standard conse-
quence relation|=) are also theorems in the interpreted language (using|=theory).

However, as argued above, the used terminology will have antecedent meaning.
Therefore, we generally expect that several of the informal conjectures will depend
on the specific intended interpretation of the language. So what should we do
in case a conjecture is not a|=-consequence of the explicit axioms, i.e., when
Σexp 6|= γ? One option is case IV, the informal conjecture is no theorem, i.e.,
when alsoΣexp 6|=theory γ. We will return to case IV below. The remaining option
is case III, the informal conjecture is a theorem when we take the interpretation
of the language into account, that is whenΣexp 6|= γ andΣexp |=theory γ.
This is the crucial case for here it would be an important failure to ignore the
(implicit) interpretation of the language—we would falsely judge a theorem as a
false conjecture. What can we do to prevent this?

The obvious way out is to find a way to ensure that all the relevant implicit
background knowledge is explicitly added to the formal theory. Of course, if we
would have an axiomatization of all underlying background knowledge, call this set
Σimp, then there would be no more implicit relations between atomic sentences, and
we could use the standard consequence relation. In case the background knowledge
is first-order expressible (which we may assume in case of an interpreted first-order
language) and finitely axiomatizable, we have that

Σexp |=theory γ if and only if Σexp ∪ Σimp |= γ

Under these conditions, we can reduce the question of how to use the unknown
non-standard consequence relation, to the question of how to make the relevant
part of the implicit background knowledge explicit. The situation we are interested

3This is true for interpreted versions of classical logic. If we consider interpreted non-classical
logics, the underlying consequence relation will not satisfy structural properties like monotony, and
the resulting logic need not be supraclassical. This points to considerable difficulty in establishing
what is implied by an interpreted nonmonotonic theory.

4An second result is that, by contraposition,Σexp 6|=theory γ impliesΣexp 6|= γ.



in can now be reformulated as:

Σexp 6|= γ and Σexp ∪ Σimp |= γ

with Σimp being the unknown set of implicit background knowledge. Our goal is
now to make relevant parts ofΣimp explicit.5

We can push our analysis even further by considering this situation in terms
of formal semantics. A first observation is thatΣexp 6|= γ implies that there
must exist modelsM such thatM |= Σexp ∪ {¬γ}. In fact, constructing such a
model would be one of the straightforward ways of proving thatΣexp 6|= γ. More-
over, there is nothing magical about the construction of these models for it involves
only the explicitly known axioms and the conjecture, and the standard consequence
relation—a simple algorithm suffices for constructing these models (as we will il-
lustrate in the next section). Each of these models represents a counterexample
against the derivation of the conjecture under the assumption that the language is
uninterpreted. In our case, however, the conjecture would become derivable in case
we would succeed in explicitly adding the background knowledge that enforces the
interpreted language, that isΣexp ∪ Σimp |= γ. A second observation is that all
the models that are counterexamples (in the uninterpreted case) must be violating
the implicit background knowledge. That is, for all these modelsM, it must be the
case thatM 6|= Σimp (sinceM |= Σexp∪{¬γ} andM 6|= Σexp∪Σimp∪{¬γ}).
The models that are counterexamples in the uninterpreted case are ‘witnesses’ of
the implicit background knowledge that we need to add explicitly to the axioma-
tization. Therefore, finding such models can allow us to come to grips with the
implicit background knowledge. Consider what happens when we inspect such a
model: it necessarily conflicts with some part of our implicit background knowl-
edge on the domain of the theory. To a human observer these models appear strange
or extraordinary in some respects. This will prompt us to formulate appropriate ax-
ioms that will prevent these models from occurring—axioms that make part of the
implicit background knowledge explicit (i.e., some elements ofΣimp). Since these
background axioms are based on the specific models that we have examined, this
need not be a one-step approach. Further testing may reveal different counterex-
amples, giving rise to more of the background knowledge being made explicit.

This will, in general, not lead to the axiomatization of all underlying back-
ground knowledge. This is hardly unfortunate, since there seems to be no end to
the underlying background knowledge. Attempting an axiomatization of all the
background knowledge that is taken for granted is at least impractical, if not im-
possible. We propose to use the informal conjectures for determining which parts
of the background knowledge are relevant for the question at hand. That is, we
want to use it as a sufficient condition for relevance: if some implicit background
knowledge is used for deriving one of the informal conjectures, this is a tell-tale
sign for its relevance. In this case there are obvious benefits to making these partic-
ular background assumptions explicit, for example, they can become part of future

5Note that, even in case the total background knowledge is not first-order expressible or not
finitely axiomatizable, some parts of it may still be.



discussion. Note that we do not think that this is a necessary condition, there may
be other reasons for including parts of the background knowledge. Also, in a later
stage one may want to extend the set of conjectures we want to explain, which may
require more of the background knowledge to be explicitly added to the theory.

It is well known that, from a logical point of view, one can always find some ad-
ditional assumptions that will make a conjecture derivable (Quine 1953, p.43). So
it is a legitimate concern if we are able to distinguish false conjectures from infor-
mal conjectures that can be made derivable by explicating background knowledge
(case IV in Table 1 we delayed discussing above). That is, how can we identify
false conjectures, i.e., conjectures for which we have thatΣexp 6|=theory γ? Inspec-
tion of the models that are counterexamples provides an easy safe-guard against
this. In this case there will, again, be modelsM such thatM |= Σexp ∪ {¬γ}.
However, since in this caseΣexp∪Σimp 6|= γ, some of these counterexamples will
be in perfect harmony with all the background knowledge that we would take for
granted, i.e.,M |= Σexp ∪ Σimp ∪ {¬γ}. Inspection of these models will reveal
a genuine counterexample—an intended model of the theory in which the conjec-
ture fails—proving that the informal conjecture does not hold. We may only rebut
a potential counterexample by relying on unproblematic background knowledge.
Otherwise, we must conclude thatΣexp 6|=theory γ.

4 Applications and Computational Support

Our discussion up to this point has been rather abstract. However, as we will show
in this section, our analysis above can be directly applied to concrete situations.
In particular, we will show how this can immediately be supported by standard
tools from automated reasoning. The formalization of an empirical science the-
ory is typically using an interpreted language, with the interpretation being en-
forced by the implicit background knowledge that is taken for granted. Barwise
and Etchemendy (1992) introduce the interpreted first-order language of Tarski’s
world with an associated computer program that visualizes this blocks world. The
vocabulary of this first-order language contains constants (a throughf plusn1, n2,
. . . ), predicates (unary predicates:Tet, Cube, Dodec, Small, Medium, Large; bi-
nary predicates:=, Smaller, Larger, LeftOf, RightOf, BackOf, FrontOf; and a
tertiary predicateBetween), and no functions. The predicates have a fixed inter-
pretation in the associated computer program, for example an object cannot be both
a cube and a tetrahedron. The fixed interpretation assigned by Tarski’s world is one
that is “reasonably consistent with the corresponding English verb phrase” (Bar-
wise and Etchemendy 1992, p.11). The authors assume that readers share common
background knowledge on names of these predicates, and that the program’s inter-
pretation is consistent with it. Although the predicates have a very precise meaning,
the authors do not give the axioms that are assumed to hold. Instead, they invite
the reader to experiment with the program, and get acquainted with their meaning
by trail and error—not unlike in ordinary language acquisition. We can use some



examples from (Barwise and Etchemendy 1992) in order to illustrate the strategy
for elucidating implicit background knowledge discussed in the previous section.

4.1 Interpreted consequence

We are particularly interested in arguments which depend on the fact that the lan-
guage of Tarski’s world is an interpreted language. In this case, the (formal) proofs
do strictly depend on the interpretation as given in the program, and would not
hold for arbitrary interpretations of the predicates. If we would substitute the used
predicate symbols with fresh ones having the same associated arity, the arguments
would not hold. An exercise which relies on the specific interpretation of the pred-
icates is (Barwise and Etchemendy 1992, Problem 5-30, p.143).

Is ∃x [FrontOf(c, x) ∧ Cube(x)] a consequence of

A1. ∀x [Cube(x) ∨ (Tet(x) ∧ Small(x))]
A2. ∃x [Large(x) ∧ BackOf(x, c)]

According to the instructor’s manual this is indeed the case in Tarski’s world
(Eberle 1993). It will be impossible to build a world that is a counterexample us-
ing the Tarski’s World program. Is it also valid for arbitrary interpretations of the
predicates? To answer this question, we can use standard tools from automated
reasoning, like automated theorem prover OTTER (McCune 1994b) and automated
model generator MACE (McCune 1994a). The answer turns out to be negative: the-
orem prover OTTER fails to find a proof, and model generator MACE has no trouble
in finding counterexamples. These counterexamples are models of the premises in
which the conjecture is false (the first model on universe{0, 1} is shown in Ta-
ble 2).6

c 0
Cube

0 T
1 T

Tet
0 F
1 F

Small
0 F
1 F

BackOf 0 1
0 T F
1 F F

FrontOf 0 1
0 F F
1 F F

Large
0 T
1 F

Table 2: Counterexample I.

6For example, by invoking MACE with the options ‘-n2 -p -m100 ’ (see for details McCune
1994a). MACE generates16 models on{0, 1} in less than a second. A formal model consists
of a universe (here the two elements{0, 1}) and a mapping between the non-logical symbols (here
constantc; unary predicatesCube, Tet, Small, andLarge; and binary relationsBackOf andFrontOf)
and elements of the universe. For example, consider the model in Table 2: here, the constant symbolc
is interpreted as object0, and predicate symbolCube is interpreted as bothCube(0) andCube(1) are
true. That is, all objects in the universe of this model are cubes making the sentence∀x [Cube(x) ∨
(Tet(x) ∧ Small(x))], the first premise, is indeed true in this model.



Finding this model proves that the argument does not hold using a standard
consequence relation, in symbols,

{A1,A2} 6|= ∃x [FrontOf(c, x) ∧ Cube(x)]

However, the argument should hold when we respect the interpretation of the pred-
icates. According to our above discussion, the counterexample in Table 2 must
conflict with the interpretation of the predicates in the Tarski’s world program.
Moreover, this model must also be in conflict with the ordinary language meaning
of the corresponding English phrases. That is, anybody with some proficiency in
English should find this model in violation of his or her background knowledge of
the domain. Our expectation is that, when confronted with this model, a person is
able to articulatewhythis model should not be allowed to occur.

Upon inspecting the model in Table 2, we immediately note a strange feature:
BackOf(0, 0) is true, the object0 is in back of itself. This is not in accordance with
the normal English interpretation of this predicate, and we decide to spell out this
background knowledge explicitly:

B1. ∀x [¬BackOf(x, x)]

After adding this background assumption explicitly to the premises, the model in
Table 2 will no longer be a model of the theory. We can now test anew if we
can now formally derive the conclusion. Notice that this need not be the case
for there may exist different counterexamples. Indeed, theorem prover OTTER

still fails to find a proof, and model generator MACE is able to construct further
counterexamples (now8 on{0, 1}, the first is shown in Table 3).

c 1
Cube

0 T
1 T

Tet
0 F
1 F

Small
0 F
1 F

BackOf 0 1
0 F T
1 F F

FrontOf 0 1
0 F F
1 F F

Large
0 T
1 F

Table 3: Counterexample II.

There must still be more background knowledge at stake. Inspecting the model
in Table 3, there seems to be no problem with the interpretation of each predicate
independently. However, some natural relations between the predicates are not
properly taken into account. In the modelBackOf(0, 1) is true while at the same
time FrontOf(1, 0) is false. This conflict with our background understanding of
these predicates. Our intuitions say that these two predicates are inversely related,
so we decide to explicitly add this relation betweenFrontOf andBackOf:

B2. ∀x, y [FrontOf(x, y) ↔ BackOf(y, x)]



Have we now added all relevant background knowledge? We test again using the-
orem prover OTTER, but still fail to find a proof. Yet again, the model generator
MACE is able to construct further counterexamples (still4 on {0, 1}, the first is
shown in Table 4).

c 0
Cube

0 T
1 F

Tet
0 F
1 T

Small
0 F
1 T

BackOf 0 1
0 F F
1 T F

FrontOf 0 1
0 F T
1 F F

Large
0 F
1 T

Table 4: Counterexample III.

Again, we examine this new counterexample to verify whether it is an intended
model of this domain. Inspection reveals that this model is not conform the normal
English interpretation of the predicates: bothSmall(1) andLarge(1) are true, the
same object is both small and large. We do not want to exclude that an object is
neither small or large (as object0 in Table 4) for, after all, there might be medium
sized objects. An object being both small and large at the same time, however,
conflicts with our implicit understanding of these two predicates, and we decide to
add a further background assumption explicitly to the theory:

B3. ∀x ¬[Small(x) ∧ Large(y)]

Did we now make all relevant background knowledge explicit? At last, the answer
is positive: theorem prover OTTER finds a proof using the two premises and two of
the background assumptions (B2 and B3).7 The proof constructed by OTTER is a
clause-based resolution proof. Paraphrasing this formal proof, we find that OTTER

derives from premise A2 and background assumption B2, thatc is in front of a
large object; and using premise A1 and background assumption B3, that this large
object must be a cube. That is, we can now formally derive thatc is in front of a
cube, in symbols,

{A1,A2,B2,B3} |= ∃x [FrontOf(c, x) ∧ Cube(x)]

The answer to this problem is, indeed, positive. We have now proved that the
argument is valid when respecting the (implicit) interpretations of Tarski’s world,
in symbols,

{A1,A2} |=TW ∃x [FrontOf(c, x) ∧ Cube(x)]

7That is, we may decide to relax the first background assumption B1 again because it is not
necessary for this argument. Notice that this implies that the model in Table 2 is also violating the
other background assumptions, otherwise this counterexample would still disprove the argument (in
this case B2).



4.2 Interpreted non-consequence

An exercise with the same premises as above is (Barwise and Etchemendy 1992,
Problem 5-31, p.143).

Assume the following premises:

A1. ∀x [Cube(x) ∨ (Tet(x) ∧ Small(x))]
A2. ∃x [Large(x) ∧ BackOf(x, c)]

Does it follow that¬∃x [Small(x) ∧ BackOf(x, c)]?

We are asked to establish whether this argument is valid when respecting the in-
terpretation of predicates. According to the instructor’s manual this is not the case
in Tarski’s world (Eberle 1993). Since we established above that B1, B2, and B3
are part of the implicit background knowledge, we will start with the set of explicit
premises{A1,A2,B1,B2,B3}. As expected, theorem prover OTTER fails to de-
rive the conjecture from this set of premises. We resort to model generator MACE

in order to find models of the premises in which the conjecture is false, that is, in
which there exists a small object in the back of objectc. Model generator MACE

fails to find any model of cardinality 2, but produces 24 models of cardinality 3
(the first of them is reproduced in Table 5).

c 1

Cube
0 T
1 T
2 T

Tet
0 F
1 F
2 F

Small
0 F
1 F
2 T

BackOf 0 1 2
0 F T F
1 F F F
2 F T F

FrontOf 0 1 2
0 F F F
1 T F T
2 F F F

Large
0 T
1 F
2 F

Table 5: Counterexample IV.

Can we rebut this model by mobilizing part of the background knowledge? Ex-
amining the model in Table 5, we have a configuration of one cubec that is placed
in front of two other cubes, one of which is large (as required by premise A2), and
the other small (refuting the conjecture). The interpretation of the predicates in
this model is conform our implicit background knowledge. We can confirm this
by replicating a corresponding world using the Tarski’s World program. We must
conclude that this model is a genuine counterexample disproving the conjecture.
That is, we have proved that the argument does not hold when respecting the inter-
pretations of Tarski’s world, in symbols,

{A1,A2} 6|=TW ¬∃x [Small(x) ∧ BackOf(x, c)]



These simple examples demonstrate the necessity of taking implicit background
knowledge into account in languages that have antecedent meaning. Moreover,
they illustrate how automated reasoning tools can assist in the acquisition of im-
plicit background knowledge by constructing the models that are in conflict with
our understanding of the domain. This has also proved to be crucial in more sub-
stantial applications: uncovering implicit theoretical presuppositions is one of the
main problems in the reconstruction of informal sociological theories (Kamps and
Pólos 1999; Kamps 1999). A word of warning is in place for it is important not
to underestimate the general complexity of this task. The use of automated tools
is subject to important limitations, both in principle (first-order logic is not de-
cidable), as in practice (time, memory, CPU-power). The above examples are
well within these limits: none of the successful or failed proof attempts or model
searches lasted more than a single second. It is interesting to note that the models
conflicting with our implicit understanding of the domain are particularly difficult
to find by hand. Since we ourselves possess the underlying background knowledge,
we have a natural tendency to focus our attention towards the intended models of
the theory. Computer programs, not endowed with this underlying understanding,
are not hindered with such a bias.

5 Discussion and Conclusions

Scientific theories about empirical phenomena are human constructions. Formal
theories do interface, on the one hand, with empirical reality, leading to all the
familiar problems of confirmation, falsification, and truth approximation. On the
other hand and less frequently discussed, formal theories also interface with human
conceptions and theoretical intuitions. It is well-known that in the empirical sci-
ences, terms “have a clear meaning independent of the theory and they retain this
meaning within the context of the theory” (Kuipers 2001, p.44). The terminology
is “antecedently understood” (Hempel 1966, p.75). One of the main reasons for
the formalization of scientific theories is to bring out the meaning of concepts in an
explicit fashion (Suppes 1968). Making the underlying background knowledge ex-
plicit contributes to our understanding of the theory by avoiding ambiguity.8 This
may work even if there is no full consensus on the meaning of terminology (as
is rarely the case in the social sciences). In case of partial consensus, researchers
would still agree that some background axioms should hold. At the same time,
making the underlying background knowledge explicit is a highly non-trivial task.
This is immediately clear once we realize that much of our background knowledge
is tacit knowledge (Polanyi 1958). This means that, even though we are carriers

8Arguably, it is more acceptable to revise implicit background knowledge, than to retract some
explicit statements of a theory. That does not imply that explicit background knowledge cannot
evolve over time. In fact, formalization is known to trigger the further development of terminology.
Even in the simplified setting of Tarski’s World the background knowledge may change over time:
in the new version of the program, the interpretation of theBetween predicate has changed (Barwise
and Etchemendy 1999).



of implicit background knowledge, the articulation of it may be beyond our own
control. That raises the question whether we can ever be sure that all relevant back-
ground knowledge has been made explicit. If we must assume, as Polanyi does,
that part of our background knowledge will always remain implicit, this has some
important methodological implications.

The general conclusion is a call for caution when discussing what are the sets
of consequences or models of a formal theory. If we cannot be sure that all back-
ground knowledge is explicitly added to the theory, we must anticipate that we can
only derive part of its consequences, and that the set of formal models of the the-
ory contains models that are conflicting with our intuitions. In particular, this may
interfere with attempts to compare formal theories by their sets of consequences
or models, as in approaches to truth-likeness (Kuipers 2000). If we are to com-
pare theories by the statements they imply, we must take into account that we are
systematically underestimating the set of consequences. Hence, in general, a state-
ment approach to truthlikeness will miss out some of the successes and failures of
a theory. If we compare theories by their models, we must take into account that
we are systematically overestimating the set of models. Thus a semantic approach
to truthlikeness will find, in general, more successes and failures than warranted
by the theory. Keeping this in mind, there is even more reason to pursue efforts to
make relevant parts of the implicit background knowledge explicit. After all, if our
implicit background knowledge is (approximately) true then adding this explicitly
to a formal theory should bring us even closer to the truth.9

Background knowledge not only affects the hypothetical problem of enumer-
ating deductively closed sets of consequences or all the models of a theory. Even
apart from the question of implicit background knowledge, comparing all conse-
quences or models of a theory is already infeasible in practice for these sets are
generally infinite. As a result, theory comparison is relativized to a particular set
of key predictions (such as the comparison of electrodynamic theories shown in
[Kuipers 2001, Table 8.2, p.236]). Precisely in such a setting we would want to
avoid falsely discarding conjectures by not fully taking into account the meaning
of terminology. In our discussion of the axiomatization in formal logic above, we
have focused on this case by assuming that a specific conjecture is at stake. We
have shown how formal semantics may be used to avoid the unjustified rejection
of a conjecture. Just as logic provides a formal notion of proof, it also provides a
formal notion of refutation. A formal refutation of a conjecture is a formal model
(in the logical sense) of the premises in which the conjecture does not hold. In

9Technically this will be somewhat more involved, since it points out an asymmetry between the
statement and models view on a theory. The ‘extra’ models of the theory are necessarily all in con-
flict with the implicit background knowledge (i.e., these are all nonintented or nonsensical models).
Thus, we will approximate truth in terms of models. However, even if the background knowledge
is (approximately) true, the ‘missed’ consequences of the theory may contain both interesting state-
ments and nonsensical ones. As a result, explicitly adding background knowledge may increase both
the number of successes and failures of the theory (in terms of statements). Only in case the ex-
plicit axioms of the theory are also (approximately) true, the ‘missed’ consequences will also be all
(approximately) true. Then, we will also approximate truth in terms of consequences of the theory.



the context of implicit background knowledge, a formal refutation need not cor-
respond to an empirical refutation (only models that respect the terminology may
correspond to an empirical possibility). If we are able to construct a formal model
refuting a conjecture, we can inspect the model to verify whether the refutation
is warranted. If this is not the case, inspecting the model immediately suggests
which background knowledge needs to be added explicitly to the theory. Recall
that much of our underlying knowledge is tacit, however, this need not prevent
us from identifying models that are in conflict with it. Identifying such a model
makes us aware of our tacit understanding, and can provide crucial help in its ar-
ticulation.10 This results in an interesting interplay between conjectures, proofs,
and refutations. Although the antecedent meaning of terminology is a principal
feature of the empirical sciences, we may also have background knowledge on ter-
minology in non-empirical fields like mathematics and philosophy. In fact, our
discussion shows some remarkable similarities with discussions on mathematical
discovery (Ṕolya 1945; Lakatos 1976).11 The main difference is that in the non-
empirical sciences, we have the luxury of being able to stipulate that the concept
as characterized in a theory is the ‘real’ concept.

It is known for long that logical axiomatization can contribute to theory devel-
opment in the empirical sciences (Woodger 1937; Kyburg 1968). In recent years,
this has resulted in the formalization of a number of sociological theories (Péli et al.
1994; Hannan 1998; Kamps and Pólos 1999). Having this is mind, we find it dif-
ficult to agree with the remark that a logical axiomatization or so-called statement
approach is not very useful and very difficult (compared with a semantic approach).
Kuipers (2001, p.319) has it that

the statement approach is certainly more difficult for specific recon-
structions. . . . Happily enough, not all interesting theoretical ques-
tions need logical treatment. . . . Given our intention to be as useful as
possible for actual scientific research we will restrict our attention to
the structuralist approach.

We do not disagree on the merits of semantic approaches. There are many ex-
amples of fruitful axiomatization in the structuralist approach (Balzer et al. 1987,
2000). We also immediately admit that, more generally, a semantic approach has
specific advantages over a statement approach. To mention just a few, a semantical
approach immediately suggests itself for establishing the consistency of a theory
or domain, or for disproving a conjecture. However, we disagree on the decision to
de-emphasize logical axiomatizations. Generally speaking, a statement approach

10It is important to bear in mind that tacit knowledge can be made explicit, and that doing so
has contributed to the theoretical development of various fields (Polanyi 1958). This does, however,
require significant effort, and it will be impossible to formalize all the tacit knowledge in a particular
field—a point with which we concur.

11Our discussion of models conflicting with the implicit antecedent meaning of terminology shows
resemblance with Lakatos’ monster-barring heuristic (dealing with doughnut-shaped or picture-
frame polyhedra discussed in [Pólya 1954, p.42] and [Lakatos 1976, p.19]).



also has specific merits, think of establishing the inconsistency of a theory. For cer-
tain cases a statement approach is intuitively more appropriate. It is of interest to
analyze reasons that might explain this discrepancy between these views on formal
theorizing.12

Perhaps a difference in appreciation of the statement and semantical approaches
is rooted on the difference between the sciences. Our experience in logical recon-
struction has focused on informal theories in sociology, whereas the structuralist
approach is based on reconstructions of mathematical physics (Sneed 1971), al-
though later also applied to various other fields (Balzer et al. 1987), including
sociology (Manhart 1994). The axiomatization of a highly mathematical theory
would also require the axiomatization of the used mathematical techniques. This is
a highly nontrivial task in case of the advanced, quantitative mathematics used in
mathematical physics. This view is consistent with the axiomatization of one of the
rare mathematical theories in sociology, a mathematical model of social groups (Si-
mon 1952). The resulting axiomatization is almost completely concerned with the
differential equations used in the mathematical model (Kyburg 1968, Ch.12). The
structuralist approach, in contrast, allows for freely using all kinds of useful mathe-
matics, allowing the reconstruction to focus on the theory at hand without first hav-
ing to axiomatize various mathematical theories. This will make reconstructions
certainly easier in case of advanced mathematical theories such as in theoretical
physics. However, the mathematical finesse of physics is not a rule in the empiri-
cal sciences. In fact, in fields like sociology, mathematical theories are even rare,
and the standard discourse is in natural language. At least for non-mathematical
theories in the empirical sciences, the statement approach to formalization seems a
viable option.

It is important to note that the flexibility of the structuralist approach does not
come without a price. Since the standard mathematical vernacular is only par-
tially formal, it requires substantial mathematical background knowledge usually
shaped by years of mathematical training. If the goal is to provide a computational
implementation of a theory, we are again confronted with the fact that computers
lack the mathematical background knowledge. It is unclear to what extent a struc-
turalist formalization renders our theories in a form that can be interpreted by a
computer.13 Standard mathematics is usually too informal to allow for construct-

12Some have argued that there is some form of resentment against logical empiricism (Friedman
1991, 1999). There may be some truth in this, e.g., the structuralist approach is also sometimes
referred to as the “non-statement view” (Stegmüller 1973). Needless to say, the field of logic has
changed dramatically since the days of positivism. As Hintikka (1998, p.304) writes: “[W]hen the
sharpest philosophers of science realized that a study of ‘the logical syntax of the language of science’
was not enough, they resorted to set theory for their conceptualizations. Ironically some misguided
philosophers of science have continued to seek salvation in set theory long after the development of
logical semantics and systematic model theory.” However interesting such arguments may be from a
historical point of view, we will restrict ourselves here to substantial reasons.

13Although Kuipers (2001, p.302) writes: “it will become quite clear . . . that the structuralist
analysis of theories can almost directly be used for the computational representation of theories.”
This is far from obvious to me, in fact, it seems to require pencil, paper, and a philosophy professor



ing formal proofs. Formal logic, in contrast, provides the needed rigorousness. A
formalization using the so-called statement approach immediately allows for com-
putational implementation. In fact, the automation of logical reasoning is one of the
oldest applications of artificial intelligence (Newell and Simon 1956; Beth 1958).
Current implementations of automated reasoning programs are powerful tools that
can support the formal reconstruction of theories in various ways (Kamps 1998,
1999). By using such tools, the construction of a logical axiomatization need not
be more difficult than a structuralist reconstruction. One of the reasons why logical
axiomatization is considered to be difficult, is because manually deriving theorems
using a particular formal proof system can be painstaking and prone to errors. Un-
like humans, computers are well-equipped for performing tedious tasks like proof
checking or proof finding in a formal proof system. In fact, the detailed rigorous-
ness is precisely what makes a logical axiomatization suitable for computational
reasoning. In sum, using these programs can greatly facilitate the process of re-
constructing scientific theories in formal logic. Moreover, if the aim is to provide a
computational representation of theories, an axiomatization produced by the state-
ment approach is still an attractive alternative.

In our experience, both a statement approach and a semantical approach have
their respective merits. Since these merits do not coincide, it is of particular interest
to investigate ways that can exploit both views. In this light, it is important to note
that most logics come with both a proof theory and a formal semantics. This allows
us to view our theory as either a set of statements and a set of models, depending
on which point of view is better suited for the question at hand. For example, for
proving a particular conjecture we can use syntactic proof theory and for disproving
a particular conjecture we can use semantic model theory. That is, the “pragmatic
choice” between a “statement approach” and a “semantic approach” as discussed
in (Kuipers 2001, p.319) need not be made: there is no reason why we cannot
have the best of both worlds. Our earlier discussion on background knowledge is
an illustrative example of how we can exploit a semantical view on the statement
approach. One can only hope that such considerations may ultimately lead to a
reconciliation of the two approaches.
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