
INEX 2006 Retrieval Task and
Result Submission Specification
Charlie Clarke, Jaap Kamps, Mounia Lalmas

Saturday, May 20, 2006

1 Retrieval Task

The retrieval task to be performed by the participating groups of INEX 2006 is defined
as the ad-hoc retrieval of XML elements. In information retrieval (IR) literature, ad-
hoc retrieval is described as a simulation of how a library might be used, and it involves
the searching of a static set of documents using a new set of topics. While the principle
is the same, the difference for INEX is that the library consists of XML documents, the
queries may contain both content and structural conditions and, in response to a query,
arbitrary XML elements may be retrieved from the library.

The general aim of an IR system is to findrelevant informationfor a given topic
of request. In the case of XML retrieval there is, for each article containing relevant
information, a choice from a whole hierarchy of different elements to return. Hence,
within XML retrieval, we regard asrelevant elementsthose XML elements that both

• contain relevant information (the element exhaustively discusses the topic), but

• do not contain non-relevant information (the element is specific for the topic).

That is, if an XML element contains another element but they have the same amount
of relevant text, the shorter element is strictly more specific and a preferred result.

Within the ad-hoc XML retrieval task we define the following four sub-tasks:

1. THOROUGH TASK asks systems to estimate the relevance of elements in the
collection.

2. FOCUSEDTASK asks systems to return a ranked list of elements to the user.

3. RELEVANT IN CONTEXT TASK asks systems to return relevant elements clus-
tered per article to the user.

4. BEST IN CONTEXT TASK asks systems to return articles with one best entry
point to the user.

1.1 THOROUGH TASK

1.1.1 Motivation for the Task

The core system’s task underlying most XML retrieval strategies is the ability to es-
timate the relevance of potentially retrievable elements in the collection. Hence, the
INEX 2006 THOROUGHTASK simply asks systems to return elements ranked by their
relevance to the topic of request. Since the retrieved elements are meant for further pro-
cessing (either by a dedicated interface, or by other tools) there are no display-related
assumptions nor user-related assumptions underlying the task.

What we hope to learn from this task is: How well are systems capable of estimat-
ing the relevance of XML elements? How well are systems capable of locating all the
relevant elements in the collection? How do structural constraints in the query help
retrieval?

1.1.2 Results to Return

The aim of the THOROUGH TASK is to find all relevant elements ranked in relevance
order. It will be therefore the case that, due to the nature of relevance in XML retrieval
(e.g. if a child element is relevant, so will be its parent, although to a greater or lesser
extent), an XML retrieval system that has estimated an element to be relevant may de-
cide to return all its ancestor elements. This means that runs for this task may contain a
large number of overlapping elements. It is however a challenge to rank these elements
appropriately.

Summarizing: THOROUGHTASK returns elements ranked in relevance order (where
specificity is rewarded). Overlap is permitted.

1.2 FOCUSED TASK

1.2.1 Motivation for the Task

A continuation of the Focused retrieval strategy from INEX 2005, the scenario under-
lying the FOCUSEDTASK is to return to the user a ranked-list of elements for her topic
of request. The INEX 2006 FOCUSED TASK asks systems to find the most focused
elements that satisfy a (focused) information need, without returning “overlapping” el-
ements. That is, for a given topic, no element in the result set may contain text already
contained in another element. Or, in terms of the XML tree, no element in the result
set should be a child or descendant of another element. The task makes a number of
assumptions:

Display the results are presented as a ranked-list of elements to the user.

Users view the result list top-down, one-by-one. Users do not want overlapping ele-
ments in the result-list, and prefer smaller elements over larger ones (if equally
relevant). User is mostly concerned with what happens at the early ranks.

What we hope to learn from this task is: How does the user-oriented FOCUSEDTASK

differ from system-oriented THOROUGH TASK? Can the FOCUSEDTASK be reduced
to a straightforward filter on the THOROUGH TASK? What techniques are effective at
the early ranks? How do structural constraints in the query help retrieval?

1.2.2 Results to Return

The aim of the FOCUSEDTASK is to return a ranked-list of elements, where no element
may be overlapping with any other element. Hence the decision to return a particular
element to the user will outlaw all its ancestors, as well as all its descendants to be re-
turned. Since all these ancestors and possibly also the descendants are relevant (be it to
a lesser or greater extent) it is however a challenge to chose the elements appropriately.
Please note that submitted runs containing overlapping elements will be disqualified.

Summarizing: FOCUSEDTASK returns elements ranked in relevance order (where
specificity is rewarded). Overlap isnot permitted in the submitted run.

1.3 RELEVANT IN CONTEXT TASK

1.3.1 Motivation for the Task

The scenario underlying the RELEVANT IN CONTEXT TASK is to return the relevant
information (captured by a set of elements) within the context of the full article. As

a result, an article devoted to the topic of request, will contain a lot of relevant infor-
mation across many elements. The INEX 2006 RELEVANT IN CONTEXT TASK asks
systems to find a set of elements that corresponds well to (all) relevant information in
each article. The task make a number of assumptions:

Display results will be grouped per article, in their original document order, providing
access through further navigational means.

Users consider the article as the most natural unit, and prefer an overview of relevance
in their context.

What we hope to learn from this task is: How does the user-oriented RELEVANT IN

CONTEXT TASK differ from THOROUGH TASK? What techniques are effective at
locating relevance within articles? How do structural constraints in the query help
retrieval?

The RELEVANT IN CONTEXT TASK is based on the INEX 2005 Fetch-And-Browse
retrieval strategy.

1.3.2 Results to Return

The aim of the RELEVANT IN CONTEXT TASK is to first identify relevant articles (the
fetching phase), and then to identify the relevant elements within the fetched articles
(the browsing phase). In the fetching phase, articles should be ranked according to
their topical relevance. In the browsing phase, we have a set of elements that cover
the relevant information in the article. The//article[1] element itself need not
be returned, but is implied by any result from a given article. Since the content of
an element is fully contained in its parent element and ascendants, the set maynot
contain overlapping elements.Please note that submitted runs containing results from
interleaved articles will be disqualified, as will submitted runs containing overlapping
elements.

Summarizing: RELEVANT IN CONTEXT TASK returns a ranked list of articles. For
each article, it returns an unrankedset of elements, covering the relevant material in
the article. Overlap is not permitted.

1.4 BEST IN CONTEXT TASK

1.4.1 Motivation for the Task

The scenario underlying the BEST IN CONTEXT TASK is to find the best-entry-point for
starting to read articles with relevance. As a result, even an article completely devoted
to the topic of request, will only have one best starting point to read. The INEX 2006
BEST IN CONTEXT TASK asks systems to find the XML elements that corresponds to
these best-entry-points. The task make a number of assumptions:

Display single result per article.

Users consider the article as the most natural unit, and prefer to be guided to the best
point to start to read the most relevant content.

What we hope to learn from this task is: How does the BEST IN CONTEXT TASK

differ from the RELEVANT IN CONTEXT TASK? How do best-entry points relate to
the relevance of elements (and THOROUGH TASK and FOCUSED TASK)? How do
structural constraints in the query help retrieval?

The BEST IN CONTEXT TASK is also based on the INEX 2005 Fetch-And-Browse
retrieval strategy.

1.4.2 Results to Return

The aim of the BEST IN CONTEXT TASK is to first identify relevant articles (the fetch-
ing phase), and then to identify the element corresponding to the best entry points for
the fetched articles (the browsing phase). In the fetching phase, articles should be
ranked according to their topical relevance. In the browsing phase, we have a single
element whose opening tag corresponds to the best entry point for starting to read the
relevant information in the article. Note that there is no implied end-point: if (the start
of) a paragraph is returned, it’s not indicating that the reader should stop at the end of
the paragraph. The//article[1] element itself may be returned in case it is the
best entry point, otherwise it will implied by any result from a given article.Please
note that submitted runs containing multiple results per article will be disqualified.

Summarizing: BEST IN CONTEXT TASK returns a ranked list of articles. For each
article, it returns asingleelement, representing the best entry point for the article with
respect to the topic of request.

1.5 Structured Queries

Queries with content-only conditions (CO queries) are requests that ignore the docu-
ment structure and contain only content related conditions, e.g. only specify what an
element should be about without specifying what that component is. The need for this
type of query for the evaluation of XML retrieval stems from the fact that users may
not care about the structure of the result components or may not be familiar with the
exact structure of the XML documents. CAS queries are more expressive topic state-
ments that contain explicit references to the XML structure, and explicitly specify the
contexts of the user’s interest (e.g. target elements) and/or the context of certain search
concepts (e.g. containment conditions). More precisely, a CAS query contains two
kinds of structural constraints: where to look (i.e. the support elements), and what to
return (i.e. the target elements). The structural constraints are considered as structural
hints, and similar to CO queries the elements will be assessed using the〈narrative 〉
part of the topics. Runs using CO queries and runs using CAS queries will be merged
to create the assessment pool (this will in fact improve the pool quality).

At INEX 2006. there is no separate CAS task, but the vast majority of topics have
both a keyword CO query and a structured CAS query.1 As noted above, for all the
tasks, we want to find out if, when and how the structural constraints in the query have
an impact on retrieval effectiveness. Although both types of queries may be used for
each task, mixing runs with both query types, the best performing CAS query runs
(restricted to topics containing a CAS query) will be reported. The use of CO/CAS
query fields is recorded in submission format.

2 Result Submission

Fact sheet:
1Of course, any CO query can be directly rephrased as a CAS query//*[about(.," CO query"]

using the tag wildcard* that matches any element.

• For all four tasks, we allow up to 3 CO submissions, and up to 3 CAS submis-
sions. That is, a participant can never submit more than 24 runs in total.

• All participants are required to submit a title-only run (free choice between the
CO title and the CAS title) for the THOROUGHTASK.

• There is a common format for all submission files (details below), which allows
up to 1,500 elements per topic.

• There are additional requirements on the submissions for three out of the four
tasks:

– FOCUSEDTASK: for the same topic, results may not be overlapping.

– RELEVANT IN CONTEXT TASK: articles may not be interleaved, and re-
sults may not be overlapping.

– BEST IN CONTEXT TASK: only one singleresult per article is allowed.

Runs that violate these requirements in any way, will be disqualified.

2.1 INEX 2006 Topics
There is only one set of topics to be used for all ad-hoc retrieval tasks at INEX 2006.
The format of the topics is defined in the following DTD:

<!ELEMENT inex_topic
(title,castitle?,description,narrative,ontopic_keywords)>

<!ATTLIST inex_topic
id CDATA #REQUIRED
ct_no CDATA #REQUIRED

>
<!ELEMENT title (#PCDATA)>
<!ELEMENT castitle (#PCDATA)>
<!ELEMENT parent (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT narrative (#PCDATA)>
<!ELEMENT ontopic_keywords (#PCDATA)>

The submission format will record the precise topic fields that are used in a run.
Participants are allowed to use all fields, but only runs using either the〈title 〉,
〈castitle 〉, or 〈description 〉 fields, or a combination of these, will be regarded
as trulyautomatic, since the additional fields will not be available in operational set-
tings.

The 〈title 〉 part of the INEX 2006 topics should be used as queries for the CO
submissions. The〈castitle 〉 part of the INEX 2006 topics should be used as queries
for the CAS submissions. In the number of runs allowed to be submitted, runs using
more fields than the〈title 〉 (or 〈castitle 〉) will still be regarded as an CO (or
CAS) submission.

Since the comparative analysis of CO and CAS queries is a main research question
at INEX 2006, we encourage participant to submit runs using only the〈title 〉 field
(CO query) or only the〈castitle 〉 field (CAS query). We do not outlaw the use of
the other topic fields, to allow participants to conduct their own experiments involving
them, and since such deviating runs may in fact improve the quality of the assessment
pool.

2.2 Runs

There is an obligatory run, which is a submission to the THOROUGHTASK, using only
the short topic statement from either the〈title 〉 or the 〈castitle 〉 field of the
topics.

For each of the four tasks, we allow up to 3 CO submissions, and up to 3 CAS
submissions. The results of one run must be contained in one submission file (i.e. up
to 24 files can be submitted in total). A submission may contain up to 1,500 retrieval
results for each of the INEX topics included within that task.

There are however a number of additional task-specific requirements.
For the THOROUGHTASK there are no further restrictions.
For the FOCUSED TASK, it is not allowed to retrieve elements than contain text

already retrieved by another element. That is, within the same article, the element
//article[1]//section[1] is disjoint from//article[1]//section[2] ,
but overlapping with all ancestors (e.g.,//article[1]) and all descendants (e.g.,
//article[1]//section[1]//p[1]).

For the RELEVANT IN CONTEXT TASK, articles may not be interleaved. That is, if
an element of articlea is retrieved, and then an element of a different articleb, then it is
not allowed to retrieve further elements from articlea. Additionally, it is not allowed to
retrieve elements than contain text already retrieved by another element (similar to the
FOCUSEDTASK). Note also that for this task the//article[1] element is implied
by any element of the article, and need not be returned.

For the BEST IN CONTEXT TASK, only a single element per article is allowed. The
//article[1] element may be returned in case it is regarded as the best place to
start reading, otherwise it is implied by any other element from this article. Note that
for this task, the//article[1] element may be returned in case it is regarded as
the best element to start reading the relevant information in the article, otherwise it will
be implied by any element of the article.

2.2.1 Submission format

For relevance assessments and the evaluation of the results we require submission files
to be in the format described in this section. The submission format for all tasks is
defined in the following DTD:

<!ELEMENT inex-submission (topic-fields, description, collections, topic+)>
<!ATTLIST inex-submission

participant-id CDATA #REQUIRED
run-id CDATA #REQUIRED
task (Thorough | Focused | AllInContext | BestInContext) #REQUIRED
query (automatic | manual) #REQUIRED

>
<!ELEMENT topic-fields EMPTY>
<!ATTLIST topic-fields

title (yes|no) #REQUIRED
castitle (yes|no) #REQUIRED
description (yes|no) #REQUIRED
narrative (yes|no) #REQUIRED
ontopic_keywords (yes|no) #REQUIRED

>
<!ELEMENT description (#PCDATA)>
<!ELEMENT topic (result*)>
<!ATTLIST topic topic-id CDATA #REQUIRED >
<!ELEMENT collections (collection+)>
<!ELEMENT collection (#PCDATA)>
<!ELEMENT result (in?,file, path, rank?, rsv?)>
<!ELEMENT in (#PCDATA)>
<!ELEMENT file(#PCDATA)>

<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Each submission must contain the participant ID of the submitting institute (avail-
able at the INEX web-sitehttp://inex.is.informatik.uni-duisburg.
de/2006/ShowParticipants.html), a run ID (which must be unique for the
submissions sent from one organization – also please use meaningful names as much as
possible), the identification of the task (e.g. Thorough, Focused, etc), and the identifi-
cation of whether the query was constructed automatically or manually from the topic.
Furthermore, the used topic fields must be indicated in the〈topic-fields 〉 tag.
Furthermore each submitted run must contain a description of the retrieval approach
applied to generate the search results. A submission contains a number of topics, each
identified by its topic ID (as provided with the topics).

For compatibility with the heterogeneous collection track, the〈collections 〉
tag is mandatory. There should be with〈collections 〉 at least one〈collection 〉
tag, which is by default set to ”wikipedia” for the ad hoc track. The〈in 〉 tag is optional
for the ad hoc track (〈in 〉 states from which collection each result comes from).

For each topic a maximum of 1500 result elements may be included per task. A
result element is described by a file name and an element path, and it may include
rank and/or retrieval status value (rsv) information. For the ad hoc retrieval task,
〈collection 〉 is set to ”wikipedia”. Here is a sample submission file for the THOR-
OUGH TASK:
<inex-submission participant-id="12" run-id="VSM_Aggr_06"

task="Thorough" query="automatic">
<topic-fields title="no" castitle="yes" description="no"

narrative="no" ontopic_keywords="no"/>
<description>Using VSM to compute RSV at leaf level combined with

aggregation at retrieval time, assuming independence and using
augmentation weight=0.6.</description>

<collections>
<collection>wikipedia</collection>

</collections>
<topic topic-id="01">

<result>
<file>9996</file>
<path>/article[1]</path>
<rsv>0.67</rsv>

</result>
<result>

<file>9996</file>
<path>/article[1]/name[1]</path>
<rsv>0.1</rsv>

</result>
[...]

</topic>
<topic topic-id="02">

[...]
</topic>
[...]

</inex-submission>

Rank and RSV The rank and rsv elements are provided for submissions based on a
retrieval approach producing ranked output. The ranking of the result elements can be
described in terms of:

• Rank values, which are consecutive natural numbers, starting with 1. Note that
there can be more than one element per rank.

• Retrieval status values (RSVs), which are positive real numbers. Note that there
may be several elements having the same RSV value.

http://inex.is.informatik.uni-duisburg.de/2006/ShowParticipants.html
http://inex.is.informatik.uni-duisburg.de/2006/ShowParticipants.html

Either of these methods may be used to describe the ranking within a submission. If
both rank and rsv are given, the rank value is used for evaluation. These elements may
be omitted from a submission if a retrieval approach does not produce ranked output.

File and path Since XML retrieval approaches may return arbitrary XML nodes
from the documents of the INEX collection, we need a way to identify these nodes
without ambiguity. Within INEX submissions, elements are identified by means of
a file name and an element (node) path specification, which must be given in XPath
syntax. The file names in the Wikipedia collection uniquely define an article, so there
is no need for including the directory in which the file resides (in contrast with the
earlier IEEE collection). The extension .xml must be left out. Example:

9996

Element paths are given in XPath syntax. To be more precise, only fully specified paths
are allowed, as described by the following grammar:
Path ::= ’ / ’ ElementNode Path| ’ / ’ ElementNode| ’ / ’ AttributeNode
ElementNode::= ElementNameIndex
AttributeNode::= ’@’ AttributeName
Index ::= ’ [’ integer ’] ’

Example:

/article[1]/body[1]/section[2]/p[1]

This path identifies the element which can be found if we start at the document root,
select the first ”article” element, then within that, select the first ”body” element, within
which we select the second ”section” element, and finally within that element we select
the first ”p” element. Important: XPath counts elements starting with 1 and takes into
account the element type, e.g. if a section had a title and two paragraphs then their
paths would be given as: ../title[1], ../p[1] and ../p[2].

A result element may then be identified unambiguously using the combination of
its file name and element path. Example:

<result>
<in>wikipedia</in>
<file>9996</file>
<path>/article[1]/body[1]/section[2]/p[1]</path>

</result>

2.3 Result Submission Procedure

To submit a run, please use the following link:http://inex.is.informatik.
uni-duisburg.de/2006/ Then go to Tasks/Tracks, Adhoc, Submissions. The
online submission tool will be available soon.

http://inex.is.informatik.uni-duisburg.de/2006/
http://inex.is.informatik.uni-duisburg.de/2006/

	1 Retrieval Task
	1.1 Thorough Task
	1.1.1 Motivation for the Task
	1.1.2 Results to Return

	1.2 Focused Task
	1.2.1 Motivation for the Task
	1.2.2 Results to Return

	1.3 Relevant in Context Task
	1.3.1 Motivation for the Task
	1.3.2 Results to Return

	1.4 Best in Context Task
	1.4.1 Motivation for the Task
	1.4.2 Results to Return

	1.5 Structured Queries

	2 Result Submission
	2.1 INEX 2006 Topics
	2.2 Runs
	2.2.1 Submission format

	2.3 Result Submission Procedure

