
The Effect of Structured Queries and Selective
Indexing on XML Retrieval

Börkur Sigurbjörnsson1 and Jaap Kamps1,2

1 ISLA, Faculty of Science, University of Amsterdam
2 Archives and Information Studies, Faculty of Humanities, University of Amsterdam

Abstract. We describe the University of Amsterdam’s participation in
the INEX 2005 ad hoc track, covering the Thorough, Focused, and Fetch-
Browse tasks and their structured (+S) counterparts. Our research ques-
tions for this round of INEX were threefold. Our first and main research
question was to investigate the contribution of structural constraints to
improved retrieval performance. Our main results were that the two types
of structural constraints have different effects. Constraining the target
of result elements gives improvements in terms of early precision. Con-
straining the context of result elements improves mean average precision.
Our second research question was to experiment with selective indexing
strategies based on either the length of elements, the tag-name of ele-
ments considered relevant in earlier INEX years, or simply by indexing
all sections or articles. Our experiments show that disregarding 80–90%
of the total number of elements does not decrease retrieval performance.
Third, we considered the automatic creation of structured queries us-
ing blind feedback. Here, our results are inconclusive, mainly due to few
queries used and lack of comparison to traditional blind feedback.

1 Introduction

In this paper we describe the University of Amsterdam’s participation in the
INEX 2005 adhoc track. The three research questions we addressed in this year’s
round of INEX were to explore the contribution of structured constraints, to
try to make our system more efficient by reducing the size of our index, and
to construct structured queries as a form of query expansion. These research
questions built on experiences obtained in our previous INEX participations.

In previous years we created our runs based on an index of all overlapping
XML elements [10,11]. Our main technical objective this year was to experiment
with different methods of creating a more selective index. The aim was to create
a more efficient retrieval system without sacrificing retrieval effectiveness. We
measured the effect of several different index reduction schemes. In the Focused
task we looked at two simple non-overlapping indexes: section index and article
index. As a baseline we used a run from our overlapping element index, where
overlap was removed in a list based manner. Both the section run and the article
run performed considerably worse than the baseline. In the Thorough task we

looked at two reductions of our full overlapping element index: one based on ele-
ment length and another based on past relevance assessments. Our main finding
was that even with a 80–90% reduction in the number of indexing units, we do
not see a reduction in retrieval effectiveness.

In our experiments with structured queries in previous years, we found that
structural constraints lead to improvements in early precision. This year we
wanted to explore whether different types of structural constraints contribute
differently to this gain. We measured the effect of different aspects of structural
constraints. The CO+S tasks provide an excellent framework for these exper-
iments. We compared four runs using different structural aspects. First of all,
we had a baseline where no structural constraints were used. We had two runs
which used a single aspect of the structured queries: either by restricting the
type of target element, or by restricting the context of target element. Finally,
we had a run which used both aspects of structured queries. Our main finding is
that the target constraints are useful for improving early precision. On the other
hand, the context constraints are more useful for mean average precision.

Some of the topics in the CO+S task were only formulated using a content
only query, but had no content and structure formulation. For these queries we
attempted to create a structured query automatically using blind relevance feed-
back. As with so many blind feedback experiments, our results are inconclusive,
partly due to a limited number of queries used.

Finally, we also looked at the the new FetchBrowse task, for which we con-
sidered the simple clustering of our Focused runs. That is, for the FetchBrowse
task we re-ordered our Focused runs such that results from the same document
appear at consecutive positions in the ranking. Our results for this task are
inconclusive, mainly because it is not clear how to evaluate this task.

The remainder of the paper is organized as follows. In Section 2 we introduce
our retrieval framework: indexing, query processing, and retrieval. We describe
our runs in Section 3. In Section 4 we present and discuss our results. We re-
view related work in Section 5. Finally, we provide some more discussion and
conclusions in Section 6.

2 Retrieval System

2.1 Indexing

For effective and efficient XML retrieval indexing plays an important role. Any
element can, in theory, be retrieved. It has been shown, however, that not all
elements are equally likely to be appreciated as satisfactory answers to an infor-
mation need [4]. In particular, retrieval of the very many, very small elements
is not likely to be rewarded by users. Furthermore, users (and hence metrics)
may be willing to partially reward near misses. This prompted us to investigate
whether we could reduce our indexing size, both in terms of retrievable units
and storage size, without harming our retrieval effectiveness.

Element Indexes For retrieving elements we built four indexes.

– Overlapping element index We built the “traditional” overlapping element
index in the same way as we have done in the previous years (see fur-
ther [10,11]).

– Length based index : Very short elements are not likely to be regarded as
relevant. We analyzed the average length of elements bearing different tag-
names. We then indexed only element types having an average length above
a certain threshold. For INEX 2005 we set the threshold to be 25 terms.
The term count was applied before stop-words were removed. The choice of
threshold value was not based on rigorous empirical analysis; hence, thresh-
olding is a subject for future work.

– Qrel based index : Elements with certain tag-names are more likely than
others to be regarded as relevant. We analyzed the INEX 2003 and 2004
assessments and looked at which elements were assessed more frequently than
other. We indexed only elements that had appeared relatively frequently in
previous assessment sets (i.e., they should constitute at least 2% of the total
assessments). As a result, we indexed only 8 element types: article, bdy,
sec, ss1, ss2, p, ip1, and fig.

– Section index : Retrieval of non-overlapping elements is a hot topic in XML
retrieval. We wanted to investigate how simple one can make non-overlap-
ping retrieval. We built an index based on non-overlapping passages, where
the passage boundaries are determined by the structure. We decided to go
for a simple solution. We indexed only section elements (<sec>). We believed
that this simple strategy would be effective, despite (or perhaps even due
to) the fact that the sections do not provide a full coverage of the collection.

Article Indexes For retrieving articles we built two indexes.

– Article index : the “normal” article index
– Fielded index : An article index containing both content and a selection

of fields. This index was used for processing context restrictions for the
structured queries. The fields were chosen based on INEX 2003 and 2004
structured queries. For our INEX 2005 experiments we used: abs, fm//au,
fm//atl, kwd, st, bb//au, bb//atl, and ip1. Those fields were the ones most
frequently used in the INEX 2003 and INEX 2004 content-and-structure
queries.

For all indexes, stop-words were removed, but no morphological normalization
such as stemming was applied. Table 1 shows some statistics of the different
indexes.

2.2 Query Pre–Processing

Recall that the fielded article index only contains the most common query con-
straints. More precisely, our system handles two types of constraints: target
constraints and context constraints. The context constraints we support are a

Table 1. Properties of the the different indexes. Unit stands for the number of
retrievable units. Storage stands for the size occupied in physical storage. Query
time stands for the time needed to retrieve 200 retrieval units from the index
for each of the INEX 2003-2005 CO topics. All retrieval times are relative to the
maximum retrieval time.

Index Units Storage Query time

Element index 10,629,617 1.9G 1.00
Length based 1,502,277 1.3G 0.81
Qrel based 1,581,031 1.1G 0.66
Sections 96,600 223M 0.14

Articles 16,819 204M 0.08
Query fields 16,819 275M –

kind of ‘meta-data’ constraints on the article. We support 8 types of context
constraints. In terms of end-to-end usage, one can think of this as an advanced
query interface where the user can add query terms to the following meta-data
fields:

– Abstract : Article’s abstract (abs).
– Article author : Authors of the article (fm//au).
– Article title: Title of the article (fm//atl).
– Article keywords: Keywords manually assigned to the article (kwd).
– Section title: Section title (st).
– Referenced author : Author name in the bibliography (bb//au).
– Referenced title: Article title in the bibliography (bb//atl).
– Initial paragraph: First paragraph of a section (ip1).

We pre-processed the <castitle> queries such that they matched our indexing
scheme. We processed the <castitle> constraints in different ways, depending
on their format. First, for the the <castitle> constraints that match our fielded
article index, we only need to rewrite the query such that it fits our indexing
scheme. For example, the query:

//article[about(.//abs, ipv6)]//sec[about(., ipv6 deployment) or
about(., ipv6 support)]

becomes

abs:ipv6 ipv6 deployment ipv6 support.

Second, for the constraints that only partly match our indexing scheme, we need
to do additional processing, i.e.,

//*[about(.//au, moldovan) and about(., semantic networks)]

becomes

fm//au:moldovan bb//au:moldovan semantic networks,

Table 2. Frequency of different context constraints in the castitle queries. Query
freq. refers to how many queries contained the constraint. Total freq. refers to
how often the constraint was used in total. Match refers to how the constraint
matches our indexing scheme.

Context constraint Query freq. Total freq. Match

//*//au 1 1 partial
//*//p 1 1
//sec//fig 1 1
//article//atl 1 2 partial
//article//abs 3 3 full
//article//kwd 1 1 full
//article//bdy 3 4
//article//sec 1 1
//article//bb 1 1
//article//bdy//sec 1 1
//article//sec//p 2 2

since our index makes a distinction between article authors and referenced au-
thors. Third, for <castitle> constraints that do not fit our index, we simply
extract the query terms. I.e.,

//article[about(.//bdy, synthesizers) and about(.//bdy, music)]

becomes

synthesizers music.

For the 28 INEX 2005 <castitle> queries, 11 had context constraints that did
not match our scheme and 2 had context constraints that did partially match
our scheme. Table 2 shows the frequency of different context constraints in the
query set. Out of 11 types of constraints we only support 4. Of the 7 constraint
types that we do not support 5 have the element names p, sec, and bdy as their
deepest context. We believe that the usefulness of these constraints is limited
since almost all text is contained within such a context. The remaining two
constraint types (using bb and fig) it might have been useful to be able to
handle.

2.3 Automatically Generating Structured Queries

For queries without a <castitle>, we added structured query fields using pseudo
relevance feedback on the fielded article index [9]. We calculated the top 20
feedback terms and we added up to n fielded terms where n is the length of the
original query. For example, the query

computer assisted composing music notes midi

becomes

bb//atl:music bb//atl:musical st:music ip1:musical ip1:music
fm//au:university computer assisted composing music notes midi.

2.4 Retrieval

For all our runs we used a multinomial language model [3]. We use the same
mixture model implementation as we used in INEX 2004 [11]. We assume query
terms to be independent, and rank elements according to:

P (e|q) ∝ P (e) ·
k∏

i=1

P (ti|e), (1)

where q is a query made out of the terms t1, . . . , tk. We estimate the element
language model by taking a linear interpolation of three language models:

P (ti|e) = λe · Pmle(ti|e) + λd · Pmle(ti|d) + (1 − λe − λd) · Pmle(ti), (2)

where Pmle(·|e) is a language model for element e; Pmle(·|d) is a language model
for document d; and Pmle(·) is a language model of the collection. The parameters
λe and λd are interpolation factors (smoothing parameters). Finally, we assign a
prior probability to an element e relative to its length in the following manner:

P (e) =
|e|∑
e |e|

, (3)

where |e| is the size of an element e. For a more thorough description of our
retrieval approach we refer to [11].

We handled the structured queries slightly differently. For each structured
query, e.g.

//*[about(.//au, moldovan) and about(., semantic networks)]

we have a fielded version, e.g.

fm//au:moldovan bb//au:moldovan semantic networks,

and a content-only version, e.g.

moldovan semantic networks.

We used the fielded version to create an article run using the fielded article index.
We used the content-only version to create an element run using an element
index. We created a new element run by re-ranking the existing element run
using the scores from the article run, i.e., each element is assigned the score
of its containing article. Finally, we combined the two element runs using the
combination method combSUM [2].

3 Runs

Our retrieval model has two smoothing parameters, λe for the element model
and λd for the document or article model, and the remaining weight (1−λe−λd)
will be put on the collection model. These parameters determine the amount of

smoothing and optimal values, especially in the case of XML retrieval, depend
on the statistics provided by the index. We are using widely different indexes,
varying from an index containing all individual elements or subtrees to indexes
containing only the article or section elements, it is non-trivial to compare these
settings over different indexes. Hence, we typically fix the parameters at values
corresponding to traditional adhoc document retrieval, with 0.85 of the weight
on the collection model. The exception here are the Focused element index runs,
where we put more weight on the element and document model based on pre-
submission experiments.

3.1 Content-Only Runs

CO.Focused In our focused task we experimented with two different ways
of choosing focused elements to retrieve: first, based on the hierarchical seg-
mentation of the collection, and second, based on a linear segmentation of the
collection. We also wanted to compare these two approaches with a non-focused
baseline, namely a document retrieval system. We submitted three runs:

– F-Articles (UAmsCOFocArticle) A baseline run created using our article
index. We used a λ = 0.15 and a normal length prior.

– F-Elements (UAmsCOFocElements) A run created using a mixture model
of the overlapping element index and the article index. We set λe = 0.4 and
λd = 0.4. No length prior was used for this run. Overlap was removed in a
list-based fashion, i.e., we traversed the list from the most relevant to the
least relevant and threw out elements overlapping with an element appearing
previously in the list.

– F-Sections (UAmsCOFocSections) A run created using a mixture model of
the section index and the article index. We set λe = 0.05 and λd = 0.1. A
normal length prior was used.

CO.Thorough The main research question was to see if we could get away with
indexing only a relatively small number of elements. In our runs we compared
three element indexes. The “normal” element index, the qrel-based element se-
lection and the length-based element selection. We submitted three runs:

– T-Elements (UAmsCOTElementIndex) A run using a mixture model of the
full element index and the article index. We set λe = 0.05, λd = 0.1, and
used a normal length prior.

– T-Qrel (UAmsCOTQrelbasedIndex) A run using a mixture model of the
qrel-based element index and the article index. We set λe = 0.05, λd = 0.1,
and used a normal length prior.

– T-Length (UAmsCOTLengthbasedIndex) A run using a mixture model of
the length-based element index and the article index. We set λe = 0.05,
λd = 0.1, and used a normal length prior.

CO.FetchBrowse For the fetch and browse we mirrored the focused task sub-
missions, but clustered the results so that elements within the same article ap-
pear together in the ranked list.

– FB-Articles (UAmsCOFBArticle) This run was exactly the same as the ar-
ticle run we submitted for the focused task.

– FB-Elements (UAmsCOFBElements) We took the focused element run and
reordered the results in such a way that elements from the same document
are clustered together. The document clusters are ordered by the highest
scoring element within each document. We returned a maximum of 10 most
relevant elements from each article.

– FB-Sections (UAmsCOFBSections) We took the focused section run and
reordered the result set in such a way that the elements from the same
document are clustered together. The document clusters are ordered by the
highest scoring section within each document.

3.2 Content-Only with Structure Runs

For the CO+S task we experimented with three ways of using structural con-
straints.

Target-only For queries that have a CAS title we only return elements which
satisfy the target constraint of the CAS title. For queries asking for sections,
we accepted the equivalent tags as listed in the topic development guidelines.
NB! We used the terms in the title field of the queries because we want a direct
comparison to CO runs. Retrieval was performed using a mixture model using
the overlapping element index and the normal document index.

Context-only We retrieved elements as described in Section 2.4.

Target and Context We retrieved elements as described in Section 2.4. Addition-
ally we filtered out elements that did not match the target constraint.

+S.Focused

– F-Target (UAmsCOpSFocStrictTarget) A run created using a mixture model
of the overlapping element index and the article index. We set λe = 0.4 and
λd = 0.4. No length prior was used for this run. Target restriction was
implemented for queries that had one. Overlap was removed in a list-based
fashion

– F-Context (UAmsCOpSFocConstr) We applied the context-only approach,
described above, on the focused CO element run (UAmsCOFocElements).

– F-ContTarg (UAmsCOpSFocConstrStrTarg) We applied the context-only
approach on the strict on target run (UAmsCOpSFocStrictTarget).

+S.Thorough

– T-Target (UAmsCOpSTStrictTarget) A run created using a mixture model
of the overlapping element index and the article index. We set λe = 0.05
and λd = 0.1. We applied a normal length prior. Target constraints were
respected for queries that had one.

– T-Context (UAmsCOpSTConstr) We applied the context-only approach, de-
scribed above, on the thorough CO element run (UAmsCOTElementIndex).

– T-ContTarg (UAmsCOpSTConstrStrTarg) We applied the context-only ap-
proach on the strict on target run (UAmsCOpSTStrictTarget).

+S.FetchBrowse

– FB-Target (UAmsCOpSFBStrictTarget) We reordered the focused strict on
target run (UAmsCOpSFocStrictTarget) such that results from the same
article were clustered together. Only the 10 most relevant elements were
considered for each article.

– FB-Context (UAmsCOpSFBConstr) We reordered the focused run using
constraints (UAmsCOpSFocConstr) such that results from the same article
are clustered together. Only the 10 most relevant elements were considered
for each article.

– FB-ContTarg (UAmsCOpSFBConstrStrTarg) We reordered the focused run
using constraints and strict targets (UAmsCOpSFocConstrStrTarg) such
that results from the same article are clustered together. Only the 10 most
relevant elements were considered for each article.

4 Results

In this section we will present and discuss our results. The results are based
on version 7 of the INEX 2005 assessments. The results were generated using
version 1.0.3 of EvalJ. We will report our results using a limited number of
metrics, compared to the plethora of metrics available as part of EvalJ. We will
use two MAP-like metrics: MAnxCG@1500 (called MAnxCG from now on), and
ep/gr (MAep). Three early-precision metrics will be used: nxCG@5, nxCG@10,
and R-measure. Our assumption is that these metrics provide a representative
subset of all the available metrics. We will report results using the generalized
quantization. The INEX organizers have labeled the nxCG measures as the “the
official” measures for user-oriented tasks and ep/gr measures as “the official” for
system-oriented tasks.

We will report results in 4 subsections. First, we will look at index reduc-
tion experiments. Next, we will look at effects of manually adding structural
constrains. Then, we will look at the effects of automatically created structural
constraints. Finally, we will present our results for the FetchBrowse task.

Table 3. CO.Focused runs, using generalized quantization and overlap on.

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

F-Elements 0.262 – 0.068 – 0.202 – 0.194 – 0.155 –
F-Sections 0.200 -24% 0.062 -8.8% 0.174 -14% 0.150 -23% 0.211 36%
F-Article 0.096 -63% 0.046 -32% 0.178 -12% 0.165 -15% 0.189 22%

Table 4. CO.Thorough runs, using generalized quantization and overlap off.

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

T-Elements 0.301 – 0.082 – 0.266 – 0.257 – 0.262 –
T-Length 0.294 -2.3% 0.083 1.2% 0.268 0.8% 0.256 -0.4% 0.265 1.1%
T-Qrel 0.294 -2.3% 0.086 4.9% 0.280 5.3% 0.267 3.9% 0.269 2.7%

4.1 Index Reduction

For the INEX reduction we will look at two tasks: CO.Focused and CO. Thor-
ough. For the CO.Focused task we compare a general element index to two
reduced indices, section index and article index. For the CO.Thorough task we
compare the same general element index to two reduced indices, length-based
reduction and qrel-based reduction.

Results for the CO.Focused task can be seen in Table 3. We see that the full
element retrieval approach improves over both index reduction methods, except
in the case of R-measure.

Results for the CO.Thorough task can be seen in Table 4. There is very little
difference between the three runs. This means that reducing the indexed elements
from 10.6M elements to circa 1.5M (14-15%) did not affect the effectiveness of
the retrieval. Table 1 shows, however, that the reduced indexes lead to improved
efficiency.

4.2 Structural Constraints

In this section we will analyze the effect of adding structural constraints to
queries. We will distinguish between two types of constraints: target-constraints
and context-constraints. Target constraints restrict the target of the results to
be of certain tag-type, e.g. “give me only sections”. Context-constraints restrict
the environment in which the result elements live, e.g. “give me results from
articles that are authored by Moldovan”.

We will report results for the CO(+S).Focused task. We will look at results
for 4 runs: our 3 official CO+S.Focused runs and our CO.Focused baseline run
(F-Elements). In this sub-section we will only look at the 19 (assessed) CO+S
topics that had a structured version. The remaining 10 (assessed) CO+S topics
will be discussed in the next sub-section.

Table 5. CO(+S).Focused runs, using generalized quantization and overlap on.
Here, we evaluate only over the 19 queries having a <castitle>.

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

F-Elements 0.289 – 0.074 – 0.219 – 0.211 – 0.139 –
F-Context 0.326 13% 0.086 16% 0.234 7% 0.213 1% 0.166 19%
F-Target 0.226 -22% 0.077 4% 0.253 16% 0.246 17% 0.204 47%
F-ContTarg 0.241 -17% 0.092 24% 0.260 19% 0.246 17% 0.228 64%

Table 6. CO(+S).Focused runs, using generalized quantization and overlap on.
Here we evaluate only over the 10 queries that do not have a <castitle>.

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

F-Elements 0.213 – 0.057 – 0.171 – 0.163 – 0.185 –
F-Context 0.230 8.0% 0.046 -19% 0.161 -5.8% 0.166 1.8% 0.155 -16%

Table 5 shows the evaluation results. First let’s look at the effect of context-
constraints. The context-constraint run (F-Context) performs considerably bet-
ter than our CO baseline (F-Elements). The improvement is, however, negligible
for the nxCG@5 and nxCG@10. Next let’s look at the effect of target-constraints.
We see that in terms of MAnxCG the performance of our target-constraint run
(F-Target) is considerably worse than our CO baseline. In terms of nxCG@5,
nxCG@10, and R-measure, there is a considerable performance improvement
when we constrain the target. By using both context and target constraints we
gain back some of the MAP score lost by enforcing the target constraint, while
maintaining our early-precision improvement.

4.3 Automatic Structural Constraints

In this section we will look at the effects of automatically generating structural
constraints. We could, in principle, have generated automatic structured queries
for all the CO queries. However, in practice, we only did it for the topics that did
not have a <castitile> representation. Hence the comparison will only be done
over the limited number of topics. Since we only create context-constraints we
will only compare our baseline CO (F-Elements) run and our F-Context run. The
F-Target is in this case equivalent to F-Elements and F-ContTarg is equivalent
to F-Context.

Table 6 shows the results of the evaluation. As with so many blind-feedback
experiments the results are mixed. We will not analyze these results further here.
It remains as future work to evaluate the structured blind-feedback over a greater
number of queries, and compare it with normal content-based blind-feedback.

Table 7. CO.FetchBrowse runs, using generalized quantization and overlap on.

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

FB-Elements 0.263 – 0.066 – 0.162 – 0.171 – 0.160 –
FB-Sections 0.207 -21% 0.052 -21% 0.130 -20% 0.119 -30% 0.194 21%
FB-Article 0.096 -63% 0.046 -30% 0.178 10% 0.165 -3.5% 0.189 18%

Table 8. CO.Focused and CO.FetchBrowse runs, using generalized quantization
and overlap on.

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

F-Elements 0.262 – 0.068 – 0.202 – 0.194 – 0.155 –
FB-Elements 0.263 0.4% 0.066 -2.9% 0.162 -20% 0.171 -12% 0.160 3.2%

F-Sections 0.200 – 0.062 – 0.174 – 0.150 – 0.211 –
FB-Sections 0.207 3.5% 0.052 -16% 0.130 -25% 0.119 -21% 0.194 -8.1%

Table 9. CO.Focused and CO.FetchBrowse runs, using generalized quantization.

MAP P@5 P@10 R-prec

FB-Articles 0.489 0% 0.690 0% 0.648 0% 0.481 0%
FB-Elements 0.441 -10% 0.655 -5.1% 0.635 -2.0% 0.465 -3.3%
FB-Sections 0.455 -7.0% 0.648 -6.1% 0.607 -6.3% 0.483 0.4%

4.4 FetchBrowse

Here we discuss our FetchBrowse results. We will evaluate the task in with
respect to two different aspects. First, since our FetchBrowse runs are simply
reordering of our Focused runs, we evaluate the FetchBrowse using the same
metrics as the Focused task. Second, since the FetchBrowse is an extension of a
document retrieval task, we will massage our runs into document retrieval runs
and evaluate using trec eval.

Table 7 shows the results of evaluating the FetchBrowse task as a Focused
task. The results are quite similar to the results for the Focused task. That is,
the element run outperforms the section and article runs, except for R-measure.

Let us take a closer look at the difference between our Focused and our
FetchBrowse runs. Table 8 shows the difference between the two run-types. The
results are quite similar except perhaps for nxCG@5 and nxCG@10. That is, the
reordering we did to transform the Focused runs into FetchBrowse runs did not
change our results much, when we look at the metrics for Focused.

Let us now look at the document retrieval quality of our FetchBrowse runs.
Since the ‘Fetch’ part of the task refers to plain old document retrieval we
evaluate it using the standard document retrieval metrics that come with the
trec eval package. We transform our runs and assessments to TREC format. An
article is considered relevant in the TREC sense if it contains a relevant element.
We use thus a rather lenient quantization. Results of our evaluation can be seen

in Table 9. We see that the two element-based runs are worse than the article
run. In terms of mean average precision, FB-Elements is even significantly worse
than FB-Articles (at .95 significance level).

5 Related Work

Here we will discuss some related work. The main goal with this section is to
locate our work within the INEX community.

Language-Models for XML Retrieval A number of alternative language model-
ing approaches for XML retrieval have been used in INEX. Mihajlović et al. [7]
use a standard multinomial language model [3] including a number of advanced
features such as phrase modeling. Especially in the context of the relevance feed-
back task, they experimented with a range of priors, such as a length prior, an
XML tag name prior, and a journal prior. Ogilvie and Callan [8] take a quite
different approach. First, standard language for all text nodes are estimated. Sec-
ond, language models for all elements are constructed by, bottom-up, repeatedly
calculating a mixture language model of all child nodes.

Selective Indexing Various types of selective indexing schemes have been used in
INEX. Gövert et predefined list of tag names. The list is compiled after careful
analysis of tag name semantics. Mass et al. [6] and Clarke et al. [1] used existing
relevance assessments to define the appropriate units for their index. Index re-
duction based on eliminating the very many very short elements has been used
by many teams at INEX.

Structured constraints In this paper we have looked at the effectiveness of strict
interpretation of target constraints and compared it to a baseline where target
constraints are ignored. There is quite some room in between the two approaches.
Liu et. al. [5] propose a few relaxations of target constraints, both based on path
similarity and content similarity.

Structured Feedback Automatic generation of structured queries has been pro-
posed previously by Mihajlović et al. [7]. They use true relevance feedback to
expand queries with journal information and target constraints.

6 Conclusions

In this year’s INEX we had three main research questions. We wanted to explore
the effect of different types of structured constraints on retrieval effectiveness.
We also wanted to see if we could use selective indexing to make our system
more efficient without loosing retrieval effectiveness. And, third, we consider the
automatic construction of structured queries using blind relevance feedback.

We showed that context-constraints and target-constraints have different ef-
fect on retrieval performance. The context constraints are helpful for improving

average precision. Interpreting the target constraints in a strict manner does
hurt average precision, but do give considerable improvement if we look at early
precision.

For the Focused task, we compared two selective indexes to our full element
index: section index and article index. Retrieving sections and articles is more
efficient than retrieving from the full element index. The effectiveness of section
and article retrieval is, however, inferior to retrieval from the full element index.

For the Thorough task, we experimented with two different pruning of the
full overlapping element index, using element length and past qrels as pruning
criteria. Neither of the pruning strategies lead to a considerably lower average
performance. Both pruning strategies were, however, more efficient than the full
overlapping element index.

For the FetchBrowse task, it is difficult to draw any final conclusions since
it is not clear how this task should be evaluated. For the document ranking
part of the FetchBrowse task, ranking documents based on their own retrieval
score outperformed the document retrieval based on the highest scoring of either
elements or sections.

The results of our automatic generation of structured queries are inconclusive.
Further experiments are needed to verify its (in)effectiveness.

Acknowledgments

This research was supported by the Netherlands Organization for Scientific Re-
search (NWO) under project numbers 017.001.190, 220-80-001, 264-70-050, 354-
20-005, 612-13-001, 612.000.106, 612.000.207, 612.066.302, 612.069.006, 640.001.-
501, and 640.002.501.

References

1. C. L. Clarke and P. L. Tilker. MultiText experiments for INEX 2004. In N. Fuhr,
M. Lalmas, S. Malik, and Z. Szlávik, editors, Advances in XML Information Re-
trieval: Third International Workshop of the Initiative for the Evaluation of XML
Retrieval, INEX 2004, volume 3493 of LNCS, pages 85–87. Springer-Verlag GmbH,
2005.

2. E. A. Fox and J. A. Shaw. Combination of multiple searches. In The Second Text
REtrieval Conference (TREC-2), pages 243–252, 1994.

3. D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis, Uni-
versity of Twente, 2001.

4. J. Kamps, M. de Rijke, and B. Sigurbjörnsson. The importance of length normal-
ization for XML retrieval. Information Retrieval, 8:631–654, 2005.

5. S. Liu, R. Shahinian, and W. Chu. Vague content and structure (VCAS) retrieval
over document-centric XML collections. In A. Doan, F. Neven, R. McCann, and
G. J. Bex, editors, Proceedings of the Eighth International Workshop on the Web
and Databases (WebDB 2005), pages 79–84, 2005.

6. Y. Mass and M. Mandelbrod. Retrieving the most relevant XML components.
In N. Fuhr, M. Lalmas, and S. Malik, editors, INEX 2003 Workshop Proceedings,
pages 53–58, 2004.

7. V. Mihajlović, G. Ramı́rez, A. P. de Vries, D. Hiemstra, and H. E. Blok. TIJAH
at INEX 2004 modeling phrases and relevance feedback. In N. Fuhr, M. Lal-
mas, S. Malik, and Z. Szlávik, editors, Advances in XML Information Retrieval:
Third International Workshop of the Initiative for the Evaluation of XML Re-
trieval, INEX 2004, volume 3493 of LNCS, pages 276–291. Springer-Verlag GmbH,
2005.

8. P. Ogilvie and J. Callan. Hierarchical language models for XML component re-
trieval. In N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik, editors, Advances in
XML Information Retrieval: Third International Workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2004, volume 3493 of LNCS, pages 224–
237. Springer-Verlag GmbH, 2005.

9. J. Ponte. Language models for relevance feedback. In W. Croft, editor, Advances
in Information Retrieval, chapter 3, pages 73–96. Kluwer Academic Publishers,
Boston, 2000.

10. B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An Element-Based Approch to
XML Retrieval. In INEX 2003 Workshop Proceedings, pages 19–26, 2004.

11. B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Mixture models, overlap, and
structural hints in XML element retrieval. In N. Fuhr, M. Lalmas, S. Malik, and
Z. Szlávik, editors, Advances in XML Information Retrieval: Third International
Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2004, vol-
ume 3493 of LNCS, pages 196–210. Springer-Verlag GmbH, 2005.

