
University of Amsterdam at the TREC 2007 Legal Track

Avi Arampatzis1 Jaap Kamps1,2 Marijn Koolen1 Nir Nussbaum2

1 Archives and Information Studies, Faculty of Humanities, University of Amsterdam
2 ISLA, Informatics Institute, University of Amsterdam

Abstract: In this paper, we document our official
submissions to the TREC 2007 Legal track. Our
main aims were two-fold: First, we experimented
with using different query formulations trying to
exploit the verbose topic statements. Second,
we analysed how ranked retrieval methods can
be fruitfully combined with traditional Boolean
queries. Our main findings can be summarized
as follows. First, we got mixed results trying to
combine the original search request with terms ex-
tracted from the verbose topic statement. Second,
by combining Boolean and ranked retrieval allows
us to get the high recall of the Boolean retrieval,
whilst precision scores show an improvement over
both the Boolean and the ranked retrieval runs.

1 Introduction

As part of the TREC 2007 Legal track, we experimented
with different query formulations and run combinations.
Since the focus in the Legal track ad hoc evaluation is on re-
call oriented measures, we investigated methods to increase
recall by combining result lists based on different query
representations. We also analysed differences between our
ranked retrieval runs and the Boolean reference run, and in-
vestigated ways to fruitfully combine the strengths of both
approaches.

The rest of this paper is organized as follows. In Section 2,
we detail the experimental set-up. In Section 4, we discuss
our official submissions, results, and additional experiments.
Finally, we summarize our findings in Section 5.

2 Experimental Set-up

2.1 Retrieval set-up

Our retrieval system is based on the Lucene engine version
1.9 [3].

Indexes The Legal track uses the a test collection, con-
taining 6,910,192 documents (∼58Gb uncompressed). The

documents are legal documents, on issues of the tobacco in-
dustry. The documents are all in XML format, containing
limited meta-data.

For Trec Legal 2007, we created two separate indexes, as
following:

Full-text the full textual content of the documents, includ-
ing the meta-data tags, as is (∼37GB);

Text-only the text inside the tags, not including the tags
(∼33GB).

During indexing, we captured the document ID and stored
it in the index. In tokenization, we removed the common
stopwords and stemmed using the Snowball stemming algo-
rithm [4].

The original corpus contains almost 7 million documents
in 650 files and is over 58Gb uncompressed data. The
filename convention is iitcdip.x.y.xml, where x is
a letter a-z (excluding s) and y is a letter a-z. As a
first step we decided to create 25 partial indexes for each
of the two indexing choices mentioned above, for exam-
ple: index a indexed the files iitcdip.a.a.xml to
iitcdip.a.z.xml. We chose to index in chunks be-
cause a single indexing process would have taken relatively
very long time. Indexing in chunks enabled us to use
six computers concurrently, each indexing different chunks.
Since accessing multiple indexes is substantially slower, we
eventually merged the 25 indexes into one index, an action
that Lucene is handling straightforwardly.

Retrieval model For ranking, we use a vector-space re-
trieval model. Our vector space model is the default similar-
ity measure in Lucene [3], i.e., for a collection D, document
d and query q:

sim(q, d) =∑
t∈q

tft,q · idft
normq

· tft,d · idft
normd

· coordq,d · weightt ,

where

tft,X =
√

freq(t, X)

idft = 1 + log
|D|

freq(t, D)

normq =
√∑

t∈q

tft,q · idft2

normd =
√
|d|

coordq,d =
|q ∩ d|
|q|

3 Experiments

3.1 Runs
This was our first participation in Trec Legal, and we only
managed to complete a single run by the deadline, coded
catchup0701p. All the other runs are post-submission
experiments and have not been included in the pooling pro-
cess.

We made runs using the search request as stated in the
RequestedText tag:

Full-text Runs on the Full-text index. In this run, we used
the Snowball stemming algorithm on the RequestedText
meta-data in the query.

This is our official submission catchup0701p, how-
ever, we discovered a processing error so we show here
the results for the corrected run.

Text-only The same as Full-text, but it runs on the Text-only
index.

The Legal Track topics have very lengthy topic descriptions
providing a range of background information on the topic of
request. Hence, we tried to extract potentially useful terms
from it. Specifically, we decided to select only those terms
that are most characteristic for a single topic, with reference
to the whole topic set. That is, the terms that best distinguish
the topic at hand from the other topics in the topic set. For
this we used a variant of the parsimonious language mod-
eling techniques [2], and create a query by selecting the 25
terms that are most characteristic for the topic. For example,
topic 52 reads:

Please produce any and all documents
that discuss the use or introduction of
high-phosphate fertilizers (HPF) for the
specific purpose of boosting crop yield
in commercial agriculture.

and the 25 selected terms are:

hpf sugar mh vsf gcc valhalla candy
phosphate plaintiffs its fertilizers
crop high gladsheim beet yield community
groundwater health death use fertiliz
contamination phosphat cause

We use the selected terms in the following ways:

Table 1: Statistics over judged and relevant documents per
topic.

nr. of per topic
topics min max median mean st.dev

judged 43 488 1,000 499 567.53 164.84
relevant 43 10 391 72 101.02 97.76
B 43 103 22,518 2,665 5,004.02 6,156.75

SelectedTerms The query string fed into Lucene is the orig-
inal query (the RequestedText tag) appended by the
most significant 25 terms in the background informa-
tion supplied in the file fullL07 v1.xml. Duplicate
terms are removed.

CombiTextSelectedTerms A combination of Text-only
and SelectedTerms. We use the standard combination
method CombSUM [1] and combine full length runs,
without normalizing the scores.

4 Results

4.1 Topics and judgments
The results are based on the qrels over 43 topics. Statistics
of the assessments are shown in Table 1. We include the
number of results of the negotiated Boolean query (“B” for
short), since it plays an important role in the recall oriented
measures used. It is striking that the B number is orders of
magnitude larger than the number of known relevant docu-
ments. Moreover, there is no significant correlation between
B and the number of relevant documents (Pearson r = 0.059).
There is a significant correlation (0.55) between the number
of judged and number of found relevant documents, which
is not unexpected.

4.2 Runs
Table 2 shows the results for the Legal track (all scores based
on l07 eval v1.0). First, we look at (the corrected version of)
our official submission, Full-text, and compare it to the sim-
ilar Text-only run. The Full-text run scores marginally bet-
ter on bpref, but the Text-Only run scores marginally better
on all other measures including the main measure estimated
recall at B.

Second, we look at the SelectedTerms run. We see a
drop in performance for all measures. This is not unex-
pected: the selected terms from the complete topic state-
ment are less focused on the topic. Nevertheless, the run
may have picked up documents that are missed by the orig-
inal query or improve the ranking of retrieved relevant doc-
uments. Can we use these results to improve recall in our
original run? We combine the results from the two runs
Text-only and SelectedTerms using standard CombSUM.
That is, for a result ri, we compute the combined score

Table 2: Results for the Legal track (using l07 eval v1.0).

Run MAP bpref P10 num rel ret recallB est RB
Full-text 0.0878 0.3266 0.2837 3338 0.4792 0.1448
Text-only 0.0880 0.3255 0.2860 3339 0.4835 0.1548
SelectedTerms 0.0355 0.2619 0.1070 2522 0.3173 0.0772
CombiTextSelectedTerms 0.0846 0.3302 0.2698 3306 0.4841 0.1447
refL07B 0.0167 0.2902 0.0209 2145 0.4864 0.2158
CombiTextRef 0.1181 0.3842 0.3209 3553 0.4864 0.2158

SCombSum(ri) = SA(ri) + SB(ri). The results are mixed.
For the CombiTextSelectedTerms run, we see a drop in
MAP and Precision10 when compared to the best individ-
ual run, but an increase in bpref. We see a minimal gain in
recallB, but a loss of estimated recall at B.

4.3 Combining ranked and Boolean retrieval

We conducted further experiments trying to shed light on
the relative strength and weaknesses of our ranked retrieval
methods versus the Boolean reference run.

First, we looked at the reference Boolean run refL07B
which has unranked set results (all selected documents have
a RSV of 1). As Table 2 shows, this results indeed in very
poor MAP and p10 scores. The bpref score is comparable to
the scores of ranked retrieval (this is also clearly signalling
that bpref should not be treated as an approximation of tradi-
tional MAP). In terms of recall, the reference run is retriev-
ing fewer relevant documents overall (but has only B results
per topic, whereas our runs have up to 25,000), has slightly
better recall at B, and has much better estimated recall at B.
Summarizing, the reference run has unimpressive precision
but very good recall.

Is there a way to combine the strength of ranked and
Boolean approaches? What we did is the following. Recall
that refL07B run assigns a score of 1 to every document.
Our runs score in the range [0, 1]. Now, consider what hap-
pens if we combine the reference run with one of our runs: it
will first have all documents of the reference run, but ranked
by our retrieval score, and then have the remaining docu-
ments from our run, again ranked by our retrieval score. The
run CombiTextRef in Table 2 combines the Text-only run
with the refL07B run. What we see is that, indeed, the
recall at B and estimated recall at B of the Boolean run are
preserved. However, the MAP, bpref, and p10 scores even
improve over the scores from the ranked retrieval run alone.
Summarizing, combining Boolean and ranked retrieval al-
lows us to get the best of both worlds: the high recall scores
of the Boolean run are maintained, while the MAP and pre-
cision scores show an improvement over both the Boolean
and the ranked retrieval run.

5 Conclusions
In this paper, we documented our official submissions to
the TREC 2007 Legal track. Our participation in the Legal
Track was driven by two main aims: First, we experimented
with using different query formulations trying to exploit the
verbose topic statements. Second, we analysed how ranked
retrieval methods can be fruitfully combined with traditional
Boolean queries.

Our initial findings can be summarized as follows. First,
we got mixed results trying to combine the original search
request with terms extracted from the verbose topic state-
ment. Second, by combining Boolean and ranked retrieval
allows us to get the high recall of the Boolean retrieval,
whilst precision scores show an improvement over both the
Boolean and the ranked retrieval runs.

Acknowledgments This research was supported by the
Netherlands Organization for Scientific Research (NWO,
grant # 612.066.513, 639.072.601, and 640.001.501), and
by the E.U.’s 6th FP for RTD (project MultiMATCH con-
tract IST-033104).

References
[1] E. Fox and J. Shaw. Combination of multiple searches. In

D. Harman, editor, The Second Text REtrieval Conference
(TREC-2), pages 243–252. National Institute for Standards and
Technology. NIST Special Publication 500-215, 1994.

[2] D. Hiemstra, S. Robertson, and H. Zaragoza. Parsimonious
language models for information retrieval. In Proceedings of
the 27th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 178–
185. ACM Press, New York NY, 2004.

[3] Lucene. The Lucene search engine, 2007. http://
lucene.apache.org/.

[4] Snowball. Stemming algorithms for use in information
retrieval, 2007. http://www.snowball.tartarus.
org/.

http://lucene.apache.org/
http://lucene.apache.org/
http://www.snowball.tartarus.org/
http://www.snowball.tartarus.org/

	1 Introduction
	2 Experimental Set-up
	2.1 Retrieval set-up

	3 Experiments
	3.1 Runs

	4 Results
	4.1 Topics and judgments
	4.2 Runs
	4.3 Combining ranked and Boolean retrieval

	5 Conclusions

