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Abstract. As part of the INEX 2006 Adhoc Track, we conducted a
range of experiments with filtering and clustering XML element retrieval
results. Our basic retrieval engine retrieves arbitrary elements from the
collection (corresponding to the Thorough Task). These runs are filtered
to remove textual overlap between elements (corresponding to the Fo-
cused Task). The resulting runs can be clustered per article (correspond-
ing to the All in Context Task). Finally, we select the “best” element
for each article (corresponding to the Best in Context Task). Our main
findings are the following. First, a complete element index outperforms
a restricted index based on section-structure, albeit the differences are
small. Second, grouping non-overlapping elements per article does not
lead to performance degradation, but may improve scores. Third, all re-
strictions of the “pure” element runs (by removing overlap, by grouping
elements per article, or by selecting a single element per article) lead to
some but only moderate loss of precision.

1 Introduction

In this paper we document the University of Amsterdam’s participation in the
INEX 2006 Adhoc Track. Our overall motivation for INEX 2006 was to investi-
gate the effectiveness of our XML retrieval approaches on a new collection, the
Wikipedia XML corpus [1], which has a different nature than the IEEE collection
used in INEX 2002–2005. What are the characteristics of the new Wikipedia col-
lection, and how do they affect the performance on our element retrieval system?
We want to know which approaches transfer well to a new sort of collection, and
which approaches don’t and why.

During INEX 2006, we conducted a range of experiments with filtering and
clustering XML element retrieval results. Our basic retrieval engine retrieves
arbitrary elements from the collection (corresponding to the Thorough Task).
These runs are filtered to remove textual overlap between elements (correspond-
ing to the Focused Task). The resulting runs can be clustered per article (corre-
sponding to the All in Context Task). Finally, we select the “best” element for
each article (corresponding to the Best in Context Task).

The rest of the paper is organized as follows. First, Section 2 describes the
Wikipedia collection. Next, Section 3 documents the XML retrieval system used
in the experiment. Then, in Section 4, we detail the topics and assessments of the
INEX 2006 Adhoc Track. In four separate sections, we report our experiments



Table 1. Wikipedia collection statistics
Description Statistics

# of articles 659,388
# of elements 52,555,826
# of unique tags 1,241
Avg. # of elements per article 79.69
Average depth 4.82

for the Thorough Task (§5); the Focused Task (§6); the All in Context Task (§7);
and the Best in Context Task (§8). Experiments with a mixture language model
are discussed in Section 9. Finally, in Section 10, we discuss our findings and
draw some conclusions.

2 Wikipedia collection

In previous years, the IEEE collection was used in INEX. This year sees the
introduction of a new collection, based on the English Wikipedia collection [2].
The collection has been converted from the wiki-syntax to an XML format [1].
Whereas the IEEE collection has somewhat over 12,000 documents, the Wikipedia
collection has more than 650,000 documents. To get some idea of the charac-
teristics of this new collection, we have gathered some statistics. Table 1 shows
a few basic collection statistics. There are over 50,000,000 elements using 1,241
different tag names. However, of these, 779 tags occur only once, and only 120 of
them occur more than 10 times in the entire collection. On average, documents
have almost 80 elements, with an average depth of 4.82.

Next, we gathered tag statistics like collection frequency, document frequency
and element length. Table 2 shows the 10 longest elements and their collec-
tion frequency. The length is the average number of words in the element. The
<article> element is the longest element of course, since it always encompasses
all other elements. However, after the <body> element, the other long elements
occur only rarely in the entire collection, and contain only a few hundred words.
Clearly, most of the elements are rather short. Even the average article length
is short, containing no more than 415 words.

In Table 3 the most frequent tag names are listed. Column 2 shows the
average document frequency of the tag name, column 3 shows the collection
frequency. There are many links to other Wiki pages (<collectionlink>s), and
many <unknownlink>s that are not really links (yet). Wiki pages have more
than 4 paragraphs (indicated by <p> tags) and more than 2 sections on average.

As shown in Table 4, the elements <article>, <conversionwarning>, <body>
and <name> occur in every single document. Almost all documents have links to
other Wiki pages (99.4%), and more than 70% have text tagged as <unknownlink>
(indicating a topic that could have its own page). Together with the average fre-
quency of the <collectionlink>s, this indicates a very dense link structure.
Apart from that, the textual unit indicating elements <section> and <p> (para-
graph) occur in 69.6% and 82.1% of the documents respectively.



Table 2. Longest elements in Wikipedia collection
Element Mean length Collection freq.

<article> 414.79 659,388
<body> 411.20 659,388
<noinclude> 380.83 14
<h5> 253.18 72
<td align> 249.20 4
<h4> 237.13 307
<ol> 198.20 163
<timeline> 186.49 48
<number> 168.72 27
<h3> 163.80 231

Table 3. Most frequent tags in Wikipedia collection
Tag name Document freq. Collection freq.

<collectionlink> 25.80 17,014,573
<item> 8.61 5,682,358
<unknownlink> 5.98 3,947,513
<cell> 5.71 3,770,196
<p> 4.17 2,752,171
<emph2> 4.12 2,721,840
<template> 3.68 2,427,099
<section> 2.44 1,609,725
<title> 2.41 1,592,215
<emph3> 2.24 1,480,877

Table 4. Elements with the highest document frequency in Wikipedia collection
Tag name Document freq. %

<article> 659,388 100.0
<conversionwarning> 659,388 100.0
<body> 659,388 100.0
<name> 659,388 100.0
<collectionlink> 655,561 99.4
<emph3> 587,999 89.2
<p> 541,389 82.1
<unknownlink> 479,830 72.8
<title> 459,253 69.6
<section> 459,252 69.6

The main observation is that elements are small on average. One important
reason for this is the Wikipedia policy of splitting long articles into multiple new
pages.4 The idea is that encyclopedia entries should be focused. If the article

4 As http://en.wikipedia.org/wiki/Wikipedia:Summary_style reads: “The length
of a given Wikipedia entry tends to grow as people add information to it. This cannot
go on forever: very long entries would cause problems. So we must move information

http://en.wikipedia.org/wiki/Wikipedia:Summary_style


grows too long, it should be split into articles discussing the sub-topics. This is
a policy that closely resembles the main purpose of element retrieval: a relevant
results must be specific. The dense structure of the collection links should make
it easy to navigate to other relevant pages.

3 XML Retrieval System

3.1 Indexing

Our indexing approach is based on our earlier work [3,4,5].

– Element index : Our main index contains all retrievable elements, where we
index all textual content of the element including the textual content of their
descendants. This results in the “traditional” overlapping element index in
the same way as we have done in the previous years [3].

– Section index : We built an index containing only the most frequently re-
trieved elements. Studying the distribution of retrieved elements, we found
that the <article>, <body>, <section> and <p> elements are retrieved far
more often than other elements, and we build an index containing just these
elements. The frequent element left out is <collectionlink>. Since collec-
tion links contain only a few terms at most, and say more about the relevance
of another page, we didn’t add them to the index.

– Article index : We also build an index containing all full-text articles (i.e., all
wikipages) as is standard in IR.

For all indexes, stop-words were removed, but no morphological normalization
such as stemming was applied. Queries are processed similar to the documents,
we use either the CO query or the CAS query, and remove query operators (if
present) from the CO query and the about-functions in the CAS query.

3.2 Retrieval

For all our runs we used a multinomial language model [6]. We use the same
mixture model implementation as we used in earlier years [4]. We assume query
terms to be independent, and rank elements e according to:

P (e|q) ∝ P (e) ·
k∏

i=1

P (ti|e), (1)

where q is a query made out of the terms t1, . . . , tk. We estimate the element
language model by taking a linear interpolation of three language models:

P (ti|e) = λe · Pmle(ti|e) + λd · Pmle(ti|d) + (1 − λe − λd) · Pmle(ti), (2)

out of entries periodically. This information should not be removed from Wikipedia:
that would defeat the purpose of the contributions. So we must create new entries
to hold the excised information.” (November 2006).



Table 5. Relevant passage statistics
Description Statistics

# articles with relevance 5,483
# relevant passages 8,737
avg. rel. pass. length 1,098
median rel. pass. length 289

Table 6. Relevant element statistics
Tag name Frequency Avg. length

<p> 15,315 450
<item> 14,375 91
<emph2> 14,322 20
<cell> 13,898 19
<section> 9,291 2,375
<emph3> 5,782 16
<article> 5,481 9342
<body> 5,479 9322
<title> 5,197 21
<template> 4,107 87

where Pmle(·|e) is a language model for element e in document d; Pmle(·|d) is a
language model for document d; and Pmle(·) is a language model of the collection.
The parameters λe and λd are interpolation factors (smoothing parameters).
None of our official submissions used the three layered mixture model proper,
i.e., we use λd = 0 unless indicated otherwise. The default value of λe is 0.15.

Finally, we assign a prior probability to an element e relative to its length in
the following manner:

P (e) =
|e|β∑
e |e|β

, (3)

where |e| is the size of an element e. The β parameter introduces a length bias
which is proportional to the element length with β = 1 (the default setting).
For a more thorough description of our retrieval approach we refer to [4]. For
comprehensive experiments on the earlier INEX data, see [7].

4 Topics and Judgments

Assessments are available for 111 topics (numbered 289–298, 300–306, 308–369,
371–376, 378–388, 390–392, 395, 399–407, 409–411, and 413). There is a total
8,737 relevant passages for these 111 topics in 5,483 different articles. Table 5
shows some statistics of the relevant passages (i.e., the text highlighted as rel-
evant by the assessors). It is interesting to see that most relevant passages are
short. The lengths of the elements are measured in characters (text offset).

Table 6 looks at the judgments from the vista point of elements containing
only relevant text. After the workshop it was decided that the links in the col-
lection are too small to be relevant. This affects the elements <collectionlink>,



Table 7. Elements containing entire relevant passages
Tag name Frequency

<p> 2,585
<body> 1,639
<section> 1,326
<item> 937
<article> 724
<normallist> 301
<name> 267
<collectionlink> 208
<row> 180
<caption> 174

<outsidelink>, <redirectlink>, <unknownlink>, <weblink>, <wikipedialink>.
This has quite some effect on the set of relevant elements, for example, in the
original qrels there were no less than 78,792 <collectionlink> elements high-
lighted by the assessors. Although the links are no longer considered exhaustive,
there are still quite a number of small elements left, like <emph2>, <cell> and
<emph3> (see Table 3). The lengths mentioned are the average lengths of the rel-
evant elements of that type. Longer elements containing relevant text are mostly
<p>, <item> and <section> elements.

The shorter elements often contain only a few words, and often are only a
small part of the entire passage. However, there are still a fair number of elements
that encompass an entire relevant passage. Table 7 shows the frequency of ele-
ments that are the shortest element to contain an entire relevant passage. There
are 208 passages that are fully contained within a <collectionlink> element,
and 43 more passages contained by other link elements that are considered too
small to be relevant. The passages are not considered too small, so retrieving a
larger element containing the passage still gives some score. Relevance is often
found at the paragraph level. This gives support to our Section index as a vi-
able indexing strategy. The focus of this year’s relevance metrics is in specificity,
though, so these results might point us in the wrong direction.

5 Experiments for the Thorough Task

For the Thorough Task, we submitted two runs using the CO query (from the
topic’s <title> field) and two runs using the CAS query (from the topic’s
<castitle> field). We regard the Thorough Task as underlying all other tasks,
and all other runs are based on postprocessing them in various ways.

The two Thorough CO runs are:

thorough element lm Language model (λe = 0.15) on the element index.
thorough section lm Language model (λe = 0.15) on the section index.

Our two CAS query runs are also based on postprocessing the CO run based
on the element index. We extract all path-restrictions on the element of request



Table 8. Results for the Thorough Task (generalized, off)

Run MAep nxCG@5 nxCG@10 nxCG@25 nxCG@50

thorough element lm 0.0471 0.4120 0.3789 0.3262 0.2790
thorough section lm 0.0431 0.3948 0.3721 0.2977 0.2503

thorough element lm cas.seperate 0.0265 0.2124 0.1761 0.1511 0.1208
thorough element lm cas.joined 0.0222 0.1872 0.1642 0.1410 0.1100

in the CAS query, and filter the results for elements conforming on all or some
of the location steps.

The two Thorough CAS query runs are:

thorough element lm cas.joined Language model (λe = 0.15) on the element
index, retaining elements that satisfy the complete path expression.

thorough element lm cas.seperate Language model (λe = 0.15) on the ele-
ment index, retaining element that satisfy at least the tagname of the element
of request.

For all submitted runs we used the default length prior parameter β = 1, al-
though XML retrieval may require special length normalization [8]. Since we’re
dealing with a new collection, it is interesting to see whether the different pa-
rameter settings of the length prior show the same effect on this new collection.
We also experimented with different λe and β setting to see what works, and
what doesn’t.

5.1 Results

We will now discuss the results for the four Adhoc tasks, starting with the
Thorough Task. The Thorough Task puts no restriction on XML elements to
return. Table 8 shows the results for the Thorough Task. We first discuss the
top two runs using the keyword or CO query. We make a few observations:
First, we see that the index containing all XML elements in the collection is
more effective on all measures. Second, we see that difference with the section
index (containing only article, body, section, and paragraph nodes) is relatively
small, especially in terms of precision. This is in line with earlier results on the
IEEE collection, and shows the potential of the much smaller section index. We
now zoom in on the bottom two runs using the structured or CAS query. We
see that the joined run (using the element of request’s full path as a Boolean
filter) performs less good than the separate run (filtering only for the tagname
of the element of request). When comparing the results for the CO and CAS
queries, we see that the CO query runs are more effective for both mean average
precision, and for early precision. While the loss of mean average precision can
be expected, the structural hints hold the potential to improve precision. We
should note, however, that the CAS processing was done naively, resulting in
many topics with very few or no results left.

Table 9 shows the results for non-official runs for the Thorough Task, using
different values for the language model parameters. With a higher value of λe



Table 9. Results for the Thorough Task (generalized, off) for different parameter
settings

Run MAep nxCG@5 nxCG@10 nxCG@25 nxCG@50

element β = 0.8, λe = 0.15 0.0460 0.3739 0.3383 0.2901 0.2500
element β = 0.9, λe = 0.15 0.0465 0.3820 0.3473 0.2940 0.2502
element β = 1.0, λe = 0.15 0.0471 0.3868 0.3519 0.2982 0.2508
element β = 1.1, λe = 0.15 0.0462 0.3727 0.3317 0.2973 0.2464

element β = 0.8, λe = 0.30 0.0462 0.3884 0.3479 0.2966 0.2525
element β = 0.9, λe = 0.30 0.0465 0.3897 0.3494 0.3004 0.2533
element β = 1.0, λe = 0.30 0.0469 0.3878 0.3512 0.3005 0.2518
element β = 1.1, λe = 0.30 0.0465 0.3867 0.3471 0.2995 0.2501

Fig. 1. Effect of the length prior for the Thorough Task using the element index
with standard smoothing

we see the expected gain of precision and loss of recall (or MAep). Also, with
a higher λe value, the length prior parameter β has less effect. The scores for
the λe = 0.30 runs are very similar. With the standard λe = 0.15 the standard
β = 1.0 gives the best results.

Figure 1 show the effect of different length prior settings on performance in
terms of MAep. We clearly see that the default value β = 1.0 gives optimal
performance with the new assessments. If we compare the new assessments with
the old assessments (where the links are considered exhaustive), we see that a
lower value of β gives better performance. This can be explained by the huge
number of relevant <collectionlink> elements in the old assessments. Lower
β values retrieve more smaller elements, many of which are <collectionlink>
elements.



Table 10. Results for the Focused Task (generalized, off)

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

focused element lm 0.3337 0.2948 0.2252 0.1781 0.0140
focused section lm 0.3386 0.2868 0.2212 0.1834 0.0152

focused element lm cas.seperate 0.2845 0.2288 0.1634 0.1159 0.0080
focused element lm cas.joined 0.2400 0.1981 0.1409 0.1010 0.0069

6 Experiments for the Focused Task

For the Focused Task we submitted two runs using the CO query and two runs
using the CAS query. All our Focused Task submissions correspond to a Thor-
ough Task submission, and are post-processed by a straightforward list-based
removal strategy. We traverse the list top-down, and simply remove any element
that is an ancestor or descendant of an element seen earlier in the list. For ex-
ample, if the first result from an article is the article itself, we will not include
any further element from this article.

The resulting two Focused CO runs are:

focused element lm Language model (λe = 0.15) on the element index, with
list-based removal of ancestor or descendant elements.

focused section lm Language model (λe = 0.15) on the section index, with
list-based removal of ancestor or descendant elements.

The resulting two Focused CAS runs are:

focused element lm cas.joined Language model (λe = 0.15) on the element
index, retaining elements that satisfy the complete path expression, and with
list-based removal of ancestor or descendant elements.

focused element lm cas.seperate Language model (λe = 0.15) on the ele-
ment index, retaining element that satisfy at least the tagname of the element
of request, and with list-based removal of ancestor or descendant elements.

We also look at the impact of different levels of smoothing and of length
normalization.

6.1 Results

For the Focused Task, none of the retrieved elements was allowed to contain
text that overlaps with another retrieved element. Table 10 shows the results
for the Focused Task. The results for the official measure (nxCG) are listed first
(columns 2 through 5). The runs based on the section and element index show
almost the same performance for this task. At ranks 5 and 50, the section index
run performs better than the element index run. For the two runs using the
structured query, we see again that the run using only the tagname of the target
element (“separate”) scores better. The CAS query runs are less effective than
the CO query runs, although the difference in performance is much smaller than
for the Thorough Task before.



Table 11. Results for the Focused Task (generalized, off) for different parameter
settings

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

element β = 0.8, λe = 0.15 0.3315 0.2923 0.2305 0.1843 0.0144
element β = 1.0, λe = 0.15 0.3337 0.2948 0.2252 0.1781 0.0140
element β = 1.1, λe = 0.15 0.3256 0.2913 0.2208 0.1737 0.0135

element β = 0.5, λe = 0.30 0.3353 0.3025 0.2354 0.1885 0.0144
element β = 1.0, λe = 0.30 0.3410 0.2920 0.2296 0.1790 0.0139
element β = 1.1, λe = 0.30 0.3438 0.2913 0.2264 0.1763 0.0139

We evaluate runs here using the same measures as the Thorough Task above,
but since the elements judged relevant in recall base may overlap, performance
can never obtain perfect scores. The Thorough measure MAep is listed in column
6 of Table 10 for comparison. Interestingly, the section index run is outperforming
the element index run for the Focused Task. When comparing the Focused Task
results to the Thorough Task results, we note that, as expected, the scores are
substantially lower. There is a moderate decline for the precision scores, but the
recall (and mean average precision) drops dramatically.

Table 11 shows the results for non-official runs for the Focused Task, using
different values for the language model parameters. As may be expected, a higher
value of λe leads to a minor increase in precision. However, a lower value of β
leads to a small increase at higher ranks and in MAep. This is unexpected
since the corresponding Thorough run is actually inferior to the standard length
normalization (β = 1.0). A possible explanation is the non-overlapping nature
of the Focused runs: in case a long element is selected, this immediate outlaws
a wide range of other elements. A case in point is when the <article> element
is selected, which effectively exhausts the whole article.

7 Experiments for the All in Context Task
For the All in Context Task, we only submitted runs using CO query. Here, we
base our runs on the Thorough Task runs using the section index. We cluster all
elements belonging to the same article together, and order the article clusters
either by the highest scoring element, or by the combined scores of all elements
belonging to the article.

The two All in Context CO runs are:

all section lm.highest Language model (λe = 0.15) on the section index,
clustered by article and ranked according to the highest scoring element in
an article, and with list-based removal of ancestor or descendant elements.

all section lm.sum Language model (λe = 0.15) on the section index, clus-
tered by article and ranked according to the sum of element scores in an
article, with list-based removal of ancestor or descendant elements.

7.1 Results
For the All in Context Task, there is the further restriction that retrieved ele-
ments must be grouped per article (and still may not overlap). Table 12 shows



Table 12. Results for the All in Context Task (generalized precision)

Run MAgP gP@5 gP@10 gP@25 gP@50

all section lm.highest 0.1633 0.3014 0.2633 0.1966 0.1579
all section lm.sum 0.1062 0.1592 0.1351 0.1283 0.1136

Table 13. Results for the All in Context Task (generalized, off)

Run MAep nxCG@5 nxCG@10 nxCG@25 nxCG@50

all section lm.highest 0.0157 0.3357 0.3082 0.2291 0.1898
all section lm.sum 0.0112 0.2454 0.2135 0.1805 0.1477

Table 14. Results for the All In Context Task (generalized, off) for different
parameter settings

Run MAgP gP@5 gP@10 gP@25 gP@50

element β = 1.0, λe = 0.15 0.1509 0.2743 0.2450 0.1858 0.1449
element β = 1.2, λe = 0.15 0.1552 0.2895 0.2611 0.1940 0.1468
element β = 1.4, λe = 0.15 0.1556 0.3031 0.2628 0.1947 0.1472
element β = 1.5, λe = 0.15 0.1532 0.3046 0.2566 0.1934 0.1452

element β = 1.0, λe = 0.30 0.1535 0.2881 0.2489 0.1920 0.1486
element β = 1.2, λe = 0.30 0.1564 0.3054 0.2590 0.1997 0.1518
element β = 1.4, λe = 0.30 0.1579 0.3065 0.2669 0.1993 0.1515
element β = 1.5, λe = 0.30 0.1567 0.3088 0.2650 0.1961 0.1508

the results for the All in Context Task. The official measure is the mean average
generalized precision in column 2. We see that for ranking the groups of elements
from the same article, the best scoring element is a more useful criterion than
the sum of all element scores.

Table 13 also evaluates the runs using the same measures as the Thorough
and Focused Task above. When comparing the All in Context Task results to the
Focused Task results, we see that the clustering by article improves performance
for all measures. That is, clustering the elements per article is more effective
than ranking them on their own similarity score. This is an unexpected result
that may be related to the organization of information in an encyclopedia like
Wikipedia.

Table 14 shows the results for non-official runs for the All in Context Task,
using different values for the language model parameters. The runs on the el-
ement index are all inferior to the official run on the section index. Again, as
may be expected, a higher value of λe leads to a small increase in precision. In
fact, it also results in an increase of MAep. Moreover, a higher value of β also
leads to an increase of both precision and MAep. A possible explanation is the
generalized precision measure that treats “retrieved articles” as ranks, and the
fact that there is usually only a small number of articles with relevance in the
Wikipedia collection. This leads to an incentive to ensure that at least those
articles are retrieved.



Table 15. Results for the Best in Context Task (generalized, off)

Run A=0.01 A=0.1 A=1 A=10 A=100

best section lm.highest score 0.1237 0.2103 0.3437 0.5365 0.7369
best section lm.first 0.1237 0.2103 0.3437 0.5365 0.7369
best section lm.article 0.0754 0.1761 0.3027 0.4853 0.7021

Table 16. Results for the Best in Context Task (generalized, off)

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

best section lm.highest score 0.3290 0.2796 0.2083 0.1678 0.0131
best section lm.first 0.3290 0.2796 0.2083 0.1678 0.0131
best section lm.article 0.2451 0.1983 0.1424 0.1109 0.0085

8 Experiments for the Best in Context Task

Finally, for the Best in Context Task we submitted three runs, all based on
the CO query. We use, again, the runs made against the section index, and
post-process them such that only a single result per article is kept in the result
file.

best section lm.highest score Language model (λe = 0.15) on the section
index, selecting only the highest scoring element per article.

best section lm.article Language model (λe = 0.15) on the section index,
selecting the article node of each element from an unseen article.

best section lm.first Language model (λe = 0.15) on the section index, se-
lecting only the first element (in reading order) that is retrieved per article.

8.1 Results

For the Best in Context Task, we may only retrieve a single result per article.
For this task, a best-entry-point was obtained from the human judge during the
assessment procedure. With high A values the position of the Best-Entry-Point
in the article has very little impact, leading to scores of 1 for a Best-Entry-Point
anywhere in the document. Table 15 shows the results for the Best in Context
Task. It is comforting to note that the element selection strategies outperform
the strategy that simply backs off to the whole article. As mentioned above, with
higher A values the position of the BEP has less effect, which can be seen by
the convergence of scores for the different methods. Our Best in Context runs
where based on postprocessing the All in Context run, resulting in the same
performance for selecting the first or highest scoring element. This may be due
to the layered processing of the runs, where the Thorough Task’s section index
run is processed by removing overlap, then clustered by article, and then, finally,
we selecting our final element to retrieve.

In Table 16, we also evaluate runs here using the same measures as the Thor-
ough Task above, so optimal performance will result in still grossly imperfect
scores. When comparing the Best in Context Task results to the All in Context



Fig. 2. Distance between BEP and first highlighted character

Table 17. Mixture model results for the Thorough Task (generalized, off)

Run MAep nxCG@5 nxCG@10 nxCG@25 nxCG@50

element λe = 0.05, λd = 0.10 0.0433 0.3429 0.3176 0.2776 0.2324
element λe = 0.10, λd = 0.05 0.0447 0.3640 0.3358 0.2918 0.2457
element λe = 0.10, λd = 0.10 0.0447 0.3693 0.3361 0.2939 0.2464
element λe = 0.20, λd = 0.10 0.0452 0.3895 0.3477 0.2976 0.2506
element λe = 0.30, λd = 0.10 0.0452 0.3900 0.3481 0.3041 0.2513

Task results, we note that there is only a moderate loss of precision for the Best
in Context Task.

This result can be explained if we look at the position of the Best-Entry-Point
relative to the first highlighted character in relevant articles. Figure 2 shows the
distribution of absolute distance in bytes between the Best-Entry-Point and the
position of the first highlighted character (i.e., the position at which the first
passage starts) over articles with relevance. Clearly, assessors predominantly
judge the first highlighted character to be the best point to start reading.

9 Mixture model runs

In this section we look at the performance of the multinomial language model
that takes the context of an element into account. We experimented with various
λe and λd values of the mixture language model and compare performance with
the runs mentioned above.

Table 17 shows that less smoothing on the element model improves perfor-
mance, not only for the official MAep measure, but also for precision at all levels.
The difference between λe = 0.20 and λe = 0.30 is very small. If we compare



Table 18. Mixture model results for the Focused Task (generalized, off)

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

element λe = 0.05, λd = 0.10 0.2987 0.2662 0.1997 0.1542 0.0116
element λe = 0.10, λd = 0.05 0.3219 0.2786 0.2134 0.1639 0.0125
element λe = 0.10, λd = 0.10 0.3220 0.2817 0.2136 0.1639 0.0124
element λe = 0.20, λd = 0.10 0.3334 0.2847 0.2174 0.1688 0.0127
element λe = 0.30, λd = 0.10 0.3335 0.2833 0.2214 0.1696 0.0130

Table 19. Mixture model results for the All In Context Task (generalized, off,
highest scoring element)

Run MAgP gP@5 gP@10 gP@25 gP@50

element λe = 0.05, λd = 0.10 0.1403 0.2603 0.2254 0.1719 0.1319
element λe = 0.10, λd = 0.05 0.1486 0.2786 0.2389 0.1840 0.1397
element λe = 0.10, λd = 0.10 0.1489 0.2804 0.2416 0.1847 0.1405
element λe = 0.20, λd = 0.10 0.1530 0.2957 0.2517 0.1924 0.1472
element λe = 0.30, λd = 0.10 0.1538 0.2969 0.2540 0.1943 0.1480

the results with runs based on the element index and the section index (see Ta-
ble 8), performance of the mixture model is comparable to that of the section
index run. Also, setting the article model smoothing parameter λd higher also
slightly improves precision scores. In sum, the mixture language model has a
slight positive effect on precision, but does not improve overall performance.

Table 18 shows the results for the Focused Task. Here, the effects of the two
smoothing parameters are very similar to the Thorough Task. When compared
to the official element and section based runs (Table 10), we see no gain in
performance.

Table 19 shows the results for the All In Context Task, where we restrict
our attention to the article ordering based on the highest scoring element. The
results show the same effect of the smoothing parameters as for the other tasks.
A higher λe leads to better performance. The difference between λe = 0.20 and
λe = 0.30 is very small again. The mixture model can lead to improvement
of precision and MAgP, however the gain is inferior to the increase of length
normalization (see Table 14).

The mixture language model proved far less effective for the Wikipedia col-
lection, than earlier research on the IEEE collection [4]. An obvious source of
explanation is in the relative length of Wikipedia articles: recall that the average
article contains only 415 words. This makes the article context a less powerful
indicator of relevance, and perhaps the model should be extended to incorpo-
rate the broader of the particular wikipedia page (for example by considering
the rich, semantic link structure).

10 Discussion and Conclusions

This paper documents the University of Amsterdam’s participation in the INEX
2006 Adhoc Track. We participated in all four Adhoc Track tasks, and conducted



a range of experiments with filtering and clustering XML element retrieval re-
sults. Our basic retrieval engine retrieves arbitrary elements from the collection
(corresponding to the Thorough Task). These runs are filtered to remove textual
overlap between elements (corresponding to the Focused Task). The resulting
runs can be clustered per article (corresponding to the All in Context Task).
Finally, we select the “best” element for each article (corresponding to the Best
in Context Task).

Our main findings so far are the following. First, for the Thorough Task, we
see that a complete element index was more effective than a restricted index
based on the sectioning structure, although the difference is not large. We also
see that the keyword or CO query was more effective than the structured or
CAS query. Second, for the Focused Task, we observe a very similar pattern as
for the Thorough Task. This is a reassuring result, because it signals that the
superior performance of the element index is not due to the fact that it contains
many overlapping elements. Third, for the All in Context Task, we find that the
clustering per article is in fact improving the performance when compared to the
corresponding overlap-free Focused Task runs. Fourth, for the Best in Context
Task, we see that element selection outperforms backing off to the whole article,
and obtain—perhaps surprisingly—still agreeable precision scores in terms of
perceived relevance.
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