
INEX 2006 Evaluation Measures

Mounia Lalmas1, Gabriella Kazai2, Jaap Kamps3, Jovan Pehcevski4, Benjamin
Piwowarski5, and Stephen Robertson2

1 Queen Mary, University of London
2 Microsoft Research Cambridge

3 University of Amsterdam
4 AxIS Project group, INRIA Rocquencourt, France

5 Yahoo! Research

Abstract. This paper describes the official measures of retrieval effec-
tiveness employed at the ad-hoc track of INEX 2006.

1 Introduction

Since its launch in 2002, INEX has been challenged by the issue of how to
measure an XML retrieval system’s effectiveness. The main complication comes
from the necessity to consider the dependency between elements when evaluating
effectiveness. Unlike traditional IR, users in XML retrieval have access to other,
structurally related elements from returned result elements. They may hence
locate additional relevant information by browsing or scrolling. This motivates
the need to consider so-called near-misses, which are elements from where users
can access relevant content, within the evaluation. The alternative, to ignore
near-misses, would lead to a strict evaluation scenario, especially when dealing
with fine-grained XML documents.

As discussed in Section 2, the ad hoc track at INEX 2006 has four retrieval
tasks, namely focused task, thorough task, relevant in context task, and best in
context task. INEX 2006 uses three sets of metrics to evaluate these tasks:

– The XCG metrics introduced at INEX 2005 [3] are used to evaluate the
thorough and the focused retrieval tasks (Section 4 and 5, respectively).

– The HiXEval metrics originally proposed in [7] were adapted to evaluate the
relevant in context retrieval task (Section 6).

– The BPRUM metrics originally defined in [8] were adapted to evaluate the
best in context retrieval task. A set-based measure was also defined to eval-
uate this task (Section 7).

This paper is organized as follows. In 2, we describe the INEX 2006 ad
hoc retrieval tasks, including their motivations. In Section 3, we describe how
relevance is defined in INEX 2006. The evaluations of each task are described
in the next four subsequent sections (Sections 4 to 7). We finish the paper with
conclusions and our plans for INEX 2007.

2 Ad-hoc retrieval tasks

The main INEX activity is the ad-hoc retrieval task, where the collection consists
of XML documents (Wikipedia articles), composed of different granularity of
nested XML elements, each of which represents a possible unit of retrieval. A
major departure from traditional IR is that XML retrieval systems need not only
score elements with respect to their relevance to a query, but also determine
the appropriate level of element granularity to return to users, thus allowing
focussed access to XML documents. The user’s query may also contain structural
constraints or hints in addition to the content conditions. In addition, the output
of an XML retrieval system may follow the traditional ranked list presentation,
or may extend to non-linear forms, such as grouping of elements per document.

Up to 2004, ad-hoc retrieval was defined as the general task of returning,
instead of whole documents, those XML elements that are most relevant to the
user’s query. In other words, systems should return components that contain as
much relevant information and as little irrelevant information as possible. Within
this general task, several sub-tasks were defined, where the main difference was
the treatment of the structural constraints.

However, within this general task, the actual relationship between retrieved
elements was not considered, and many systems returned overlapping elements
(e.g. nested elements). This had very strong implications with respect to measur-
ing effectiveness, where approaches that attempted to implement a more focussed
approach performed poorly. As a result, the focussed task was defined in 2005,
intended for approaches concerned with the focussed retrieval of XML elements,
i.e. aiming at targeting the appropriate level of granularity of relevant content
that should be returned to the user for a given topic. The aim was for systems
to find the most relevant element on a path within a given document containing
relevant information and return to the user only this most appropriate unit of
retrieval. Returning overlapping elements was not permitted. The INEX ad-hoc
general task, as carried out by most systems up to 2004, was renamed in 2005
as the thorough sub-task.

Within all the focused and thorough tasks, the output of XML retrieval
systems was assumed to be a ranked list of XML elements, ordered by their
presumed relevance to the query. User studies [10] suggested that users were
expecting to be returned elements grouped per document, and to have access to
the overall context of an element. The fetch & browse task was introduced in
2005 for this reason. The aim was to first identify relevant documents (the fetch-
ing phase), and then to identify the most relevant elements within the fetched
documents (the browsing phase).

In 2005, no explicit constraints were given regarding whether returning over-
lapping elements within a document was allowed. The rationale was that there
should be a combination of how many documents to return, and within each doc-
ument, how many relevant elements to return. In 2006, the same task, renamed
the relevant in context task, required systems to return for each document an
unranked set of non-overlapping elements, covering the relevant material in the
document. In addition, a new task was introduced in 2006, the best in context

task, where the aim was to find the best-entry-point, here a single element, for
starting to read documents with relevant information. This new task can be
viewed as the extreme case of the fetch & browse approach, where only one
element is returned per document.

To summarize, INEX 2006 investigated the following four ad-hoc retrieval
tasks defined as follows [1]:

– Thorough: This task asks systems to estimate the relevance of all XML
elements in the searched collection and return a ranked list of the top 1500
elements.

– Focused: This task asks systems to return a ranked list of the most focused
XML elements, where result elements should not overlap (e.g. a paragraph
and its container section should not both be returned). Here systems are
forced to choose from overlapping relevant elements those that represent the
most appropriate unit of retrieval.

– Relevant in Context6: This task asks systems to return to the user the most
focused, relevant XML elements clustered by the unit of the document that
they are contained within. An alternative way to phrase the task is to return
documents with the most focused, relevant elements indicated (e.g. high-
lighted) within.

– Best in Context: This task asks systems to return a single best entry point
to the user per relevant document.

3 Relevance Assessments

In INEX 2006, relevance assessments were obtained by assessors highlighting rel-
evant text fragments in the documents, which correspond wikipedia articles in
2006 (see the overview paper in this proceedings). XML elements that contained
some highlighted text were then considered as relevant (to varying degree). A
default assumption here is that if an XML element is relevant (to some de-
gree), then its ascendant elements will all be relevant (to varying degrees) due
to the subsumption of the descendant elements’ content. For each relevant XML
element, the size of the contained highlighted text fragment (in number of char-
acters) is recorded as well as the total size of the element (again, in number of
characters). These two statistics form the basis of calculating an XML element’s
relevance score, which in 2006 corresponds to its specificity score.

The specificity score, spec(ci) ∈ [0, 1] of a component ci is calculated as the
ratio of the number of highlighted characters contained within the XML element
hl(ci) to the length of the element len(ci).

spec(ci) :=
hl(ci)
len(ci)

(1)

6 The run submission DTD refers to this task as “AllInContext”.

4 Evaluation of the Thorough task

4.1 Assumptions

This task is based on the assumption that all XML elements of a searched
collection can be ranked by their relevance to a given user query. The task of a
system here is then to return a ranked list of the top 1500 relevant XML elements,
in descreasing order of relevance. The goal of this task is to test a system’s
ability to produce the correct ranking. No assumptions are made regarding the
presentation of the results to the user: the output of a system here can simply be
considered as an intermediate stage, which may then be processed for displaying
to the user (e.g. filtered, clustered, etc.). Therefore, issues, like overlap (e.g. when
a paragraph and its container section are both returned) are ignored during the
evaluation of this task.

4.2 Evaluation measures

Two indicators of system performance were employed in the evaluation of the
Thorough task: Effort-precision/gain-recall (ep/gr) graph and Mean Average
effort-precision (MAep). These are both members of the eXtended Cumulated
Gain (XCG) measures [3], which were chosen as they are extensions of the Cu-
mulated Gain based metrics of [2]. These were developed specifically for graded
(non-binary) relevance values and with the aim to allow IR systems to be cred-
ited according to the retrieved documents’ degree of relevance.

From the family of XCG measures, ep/gr and MAep were selected as they
provide an overall picture of retrieval effectiveness across the complete range of
recall. The motivation for this choice is the recall-oriented nature of the task,
e.g. rank all elements of the collection and return the top 1500 results. MAep
summarises retrieval effectiveness into a single number, while an ep/gr graph
allows for a more detailed view, ploting ep at 100 recall points 0.01, 0.02, ..., 1.

These measures are implemented within the XCGEval package of the EvalJ
java project - please refer to Appendix 9.

Gain value. The definition of all XCG measures is based on the underlying
concept of the value of gain, xG[i], that a user obtains when examining the
i-th result in the ranked output of an XML IR system. Given a ranked list
of document components, where the XML element IDs are replaced with their
relevance scores, the cumulated gain at rank i, denoted as xCG[i], is computed
as the sum of the relevance scores up to that rank:

xCG[i] :=
i∑

j=1

xG[j] (2)

Assuming that users prefer to be returned more relevant elements first, an
ideal gain vector, xI, can be derived for each query by filling the rank positions

with the relevance scores of the relevant elements in decreasing order of their
relevance scores. The corresponding cumulated ideal gain vector is denoted as
xCI and is calculated analogue to xCG[i].

Effort-precision/gain-recall. Effort-precision at a given cumulated gain value,
r, measures the amount of relative effort (where effort is measured in terms of
number of visited ranks) that the user is required to spend when scanning a
system’s result ranking compared to the effort an ideal ranking would take in
order to reach the given level of gain (illustrated by the horizontal line drawn at
the cumulated gain value of r in Figure 1):

ep[r] :=
iideal

irun
(3)

where iideal is the rank position at which the cumulated gain of r is reached by
the ideal curve and irun is the rank position at which the cumulated gain of r is
reached by the system run.

Fig. 1. Calculation of nxCG and effort-precision (ep)

By scaling the recall axis to [0, 1] (i.e. dividing by the total gain), effort-
precision can be measured at arbitrary recall points, gr[i] [4]:

gr[i] :=
xCG[i]
xCI[n]

=

∑i
j=1 xG[j]∑n
j=1 xI[j]

(4)

where n is the total number of relevant elements.
As with standard precision/recall, for averaging across queries, interpolation

techniques are necessary to estimate effort-precision values at non-natural gain-
recall points, e.g. at standard recall points 0.1, .., 1.

The non-interpolated mean average effort-precision, denoted as MAep, is
calculated by averaging the effort-precision values obtained for each rank where

a relevant document is returned7. For not retrieved relevant elements a precision
score of 0 is used.

4.3 Evaluation parameters

For the evaluation of the Thorough task, the XCG measures require four main
parameters: 1) the gain value of the i-th element in a system’s ranking, xG[i], 2)
the range for i, 3) the gain value of the j-th element in the ideal ranking, xI[j],
and 4) the range for j.

For the Thorough task, both xG[i] and xI[j] are calculated using the ele-
ment’s specificity value:

xG[i] = spec(ci) (5)

xI[j] = spec(cj) (6)

where ci and cj denote elements, the specificity score is given in Equation 1.
The range for i is [0, 1500], where 1500 is the maximum length of a result

list that participants could submit. The range for j is [0, n], where n is the total
number of relevant XML elements for the given query.

5 Evaluation of the Focused task

5.1 Assumptions

In this task, systems are asked to return the ranked list of the top 1500 “most
focused” XML elements that satisfy an information need, without returning
overlapping elements. This task is motivated by user study findings [10], which
show that users get frustrated when overlapping results are presented to them
in a ranked list. The task is similar to the Thorough task in that it requires a
ranking of XML elements, but here systems are required not only to estimate
the relevance of elements, but also to decide which element(s), from a tree of
relevant nodes, are the most focused non-overlapping result(s).

5.2 Evaluation measures

The normalised cumulated gain nxCG[RCV] measure, from the XCG family of
measures, was used in the evaluation of the Focused task. System performance
was reported at several rank cutoff values (RCV). Low RCV values were used,
reflecting that users are typically only expected to scan the top part of a result
list.

The nxCG measures are also implemented within the XCGEval package of
the EvalJ java project - please refer to Appendix 9.

7 Note that, unlike with precision/recall, it is necessary to use interpolation on the
ideal curve to obtain MAep.

Normalised cumulated gain. For a given query, the normalised cumulated
gain (nxCG) measure is obtained by dividing a retrieval run’s xCG vector by
the corresponding ideal xCI vector:

nxCG[i] :=
xCG[i]
xCI[i]

(7)

For a given rank i, the value of nxCG[i] reflects the relative gain the user
accumulated up to that rank, compared to the gain he/she could have attained if
the system would have produced the optimum ranking. As illustrated in Figure 1,
nxCG is calculated by taking measurements on both the system and the ideal
rankings’ cumulated gain curves along the vertical line drawn at rank i. Here,
rank position is used as the control variable and cumulated gain as the dependent
variable.

5.3 Evaluation parameters

As with the Thorough task, the evaluation of the Focused task requires four
main parameters: 1) the gain value of the i-th component in a system’s ranking
xG[i], 2) the range for i, 3) the gain value of the j-th component in the ideal
ranking xI[j], and 4) the range for j.

First, we define two different recall bases. The full recall-base is the list of
all components that contain any relevant matter (which therefore includes all
parents of any such element), already used in the Thorough task. The ideal
recall-base is a subset of the full recall-base, where overlap between relevant
reference elements is removed so that the identified subset represents the set
of ideal answers, i.e. the most focused elements that should be returned to the
user. xG[i] is based on the full recall-base; xI[j] is based on the ideal recall-base
(see below for its definition and the specification of the selection of the ideal
recall-base). The actual gain values, are identical to that used for the Thorough
task (Section 4.3, see Equations 5 and 6, respectively).

The selection of ideal elements into the ideal recall-base is done by traversing
an article’s XML tree and selecting from the set of overlapping relevant elements,
those with the highest gain value. The methodology to traverse an XML tree
and select the ideal elements is as follows [9]: Given any two elements on a
relevant path8, the element with the higher score is selected. In case two elements’
scores are equal, the one higher in the tree is chosen (i.e. parent/ascendant).
The procedure is applied recursively to all overlapping pairs of elements along a
relevant path until one element remains. After all relevant paths in a document’s
tree have been processed, a final filtering is applied to eliminate any possible
overlap among ideal elements, keeping from two overlapping ideal paths the
shortest one.

The range for i is [0, 1500], where 1500 is the maximum length of a result
list that participants could submit. The range for j is [0, n], where n is the total
number of relevant XML elements in the ideal recall-base.
8 A relevant path is a path in an article file’s XML tree, whose root element is the

article element and whose leaf element is a relevant element.

6 Evaluation of the Relevant in Context task

6.1 Assumptions

The Relevant in Context task is document (here Wikipedia article) with a twist,
where not only the relevant articles should be retrieved but also a set of XML
elements repre- senting the relevant information within each article. Phrased
differ- ently, the system should return the relevant information (captured by a
set of XML elements) within the context of the full article. The task corresponds
to an end-user task where focused retrieval results are grouped per article, in
their original document order, providing access through further navigational
means. This assumes that users consider the article as the most natural unit
of retrieval, and prefer an overview of relevance in their context. Interactive
ex- periments at INEX provided support for this task [10]. Moreover, the task
directly corresponds with the assessors task at INEX, where assessors are asked
to highlight the relevant information in a pooled set of articles.

In this task, there is a fixed result presentation format defined. Systems are
expected to return the user sets of most focused elements within a relevant
XML Wikipedia article that the elements are contained within. The Wikipedia
articles are to ranked in decreasing order of relevance. The assumption is that
users would view the complete articles, where the most focused elements would
appear highlighted. There is no ranking of the contained XML elements within
a document (users may simply follow reading order).

The task is based on the INEX 2005 Fetch-And-Browse retrieval strategy [6].
The aim of the Relevant In Context task is to first identify relevant articles (the
fetching phase), and then to identify the most focused, relevant elements within
the fetched articles (the browsing phase). The output of the fetching phase is a
ranked list of articles, ranked according to their relevance to the query. In the
browsing phase, we have a set of elements that cover the relevant information
in the article. Note that the //article[1] element itself need not be returned,
but is implied by any result element from it that is included in the result list.
The set of result elements should not contain overlapping elements.

6.2 Evaluation measures

The evaluation of this task is based on a ranked list of articles, where per article-
rank we obtain a score reflecting how well the retrieved set of elements corre-
sponds to the relevant information in the article.

Score per article-rank For a retrieved article, the text retrieved by the se-
lected set of elements is compared to the text highlighted by the assessor [7]. We
calculate the following:

– Precision, as the fraction of retrieved text (in bytes) that is highlighted;
– Recall, as the fraction of highlighted text (in bytes) that is retrieved; and

– F-Score, as the combination of Precision and Recall using their harmonic
mean, resulting is a score in [0,1] per article.

More formally, let ar be an article assigned to a rank r in a ranked list of
articles, and let e be an element that belongs to the set of retrieved elements
Ear

. Let rsize(e) be the amount of highlighted (relevant) text contained by e
(if there is no highlighted text in the element, rsize(e) = 0). Let size(e) be the
total number of characters (bytes) contained by e, and let Trel(ar) be the total
amount of (highlighted) relevant text for the article ar.

We measure the fraction of retrieved text that is highlighted for article ar as:

P(ar) =

∑
e∈Ear

rsize(e)∑
e∈Ear

size(e)

The P(ar) measure ensures that, to achieve a high precision value for the
article ar, the set of retrieved elements for that article needs to contain as little
non-relevant information as possible.

We measure the fraction of highlighted text that is retrieved for article ar as:

R(ar) =

∑
e∈Ear

rsize(e)

Trel(ar)

The R(ar) measure ensures that, to achieve a high recall value for the article
ar, the set of retrieved elements for that article needs to contain as much relevant
information as possible.

The final score per article is calculated by combining the two precision and
recall scores in the standard F-score (the harmonic mean) as follows:

F(ar) =
2 · P(ar) · R(ar)
P(ar) + R(ar)

The resulting F-score varies between 0 (article without relevance, or none of
the relevance is retrieved) and 1 (all relevant text is retrieved and nothing more).
For retrieved non-relevant articles, P(ar) = R(ar) = F(ar) = 0.

Scores for ranked list of articles We have a ranked list of articles, and for
each article we have an F-score F(ar) ∈ [0, 1]. Hence, we need a generalized
measure, and we utilise the most straightforward generalization of precision and
recall as defined by Kekäläinen and Järvelin [5, p.1122-1123].

Over the ranked list of articles, we calculate the following:

– generalized Precision (gP[r]), as the sum of F-scores up to an article-rank,
divided by the article-rank; and

– generalized Recall (gR[r]), as the number of articles with relevance retrieved
up to an article-rank, divided by the total number of articles with relevance.

More formally, let us assume that for an INEX 2006 topic there are in to-
tal Numrel articles with relevance, and let us also assume that the function
rel(ar) = 1 if article ar contains relevant information, and rel(ar) = 0 other-
wise. At each rank r of the list of ranked articles, generalized Precision is defined
as:

gP(r) =

r∑
i=1

F(ai)

r

At each rank r of the list of ranked articles, generalized Recall is defined as:

gR(r) =

r∑
i=1

rel(ai)

Numrel

These generalized measures are completely compatible with the standard
precision/recall measures used in traditional information retrieval. Specifically,
the Average generalized Precision (AgP) for an INEX 2006 topic can be calculated
by averaging the generalized Precision at natural recall points where generalized
Recall increases. That is, averaging the generalized Precision at ranks where
an article with relevance is retrieved (the generalized Precision of non-retrieved
articles with relevance is 0).

More formally, if R represents the ranked list of articles returned by an XML
retrieval system, the Average generalized Precision is defined as:

AgP =

|R|P
i=1

rel(ai) · gP(i)

Numrel
=

|R|P
i=1

rel(ai) · gP(i)

|R|P
i=1

rel(ai)

·

|R|P
i=1

rel(ai)

Numrel
=

|R|P
i=1

rel(ai) · gP(i)

|R|P
i=1

rel(ai)

·gR(|R|)

When looking at a set of topics, the Mean Average generalized Precision
(MAgP) is simply the mean of the average generalized Precision scores per topic.

6.3 Results reported at INEX 2006

For the AllinContext task we report the following measures over all topics:

– Mean Average Generalized Precision (MAgP)
– generalized Precision at early ranks (gP[5, 10, 25, 50])

The official Relevant in Context evaluation is based on the overall MAgP mea-
sure. All results are accessible on the INEX 2006 website, where evaluation
scripts that are used for this task can also be found.

7 Evaluation of the Best in Context task

7.1 Assumptions

In this task, systems are required to return a ranked list of best entry points
(one per article) to the user, representing the point in the article where they
should start reading. The aim of the task is to first identify relevant articles
(the fetching phase), and then to identify the element corresponding to the best
entry points for the fetched articles (the browsing phase). In the fetching phase,
articles should be ranked according to their relevance. In the browsing phase, we
have a single element whose opening tag corresponds to the best entry point for
starting to read the relevant information in the article.

7.2 Evaluation measures

Runs for the Best In Context (BEC) task were evaluated with two metrics:

1. A set based measure, BEPD (For BEP-Distance).
2. An extension of precision recall (EPRUM).

Both metrics use a base score for an element x, which is defined as 0 if
x does not appear in a relevant document, i.e. a document containing a Best
Entry Point (BEP). Otherwise, there exists a BEP b in the x’s document and
the measure, between 0 and 1, is defined as

s(x, b) = A× L

A× L + d(x, b)

where

– d(x, b) is the distance (in number of characters) between the beginning of
element x and the beginning of element b;

– L is the average document length (in characters)
– A > 0 is a parameter

Note that high values of A (e.g. 10) tend to give a score of 1 to any answer
in a relevant document, hence the score does not discriminate whether x is near
to or far from the BEP b. Whereas low values of A (e.g. 0.1) favour runs that
return elements very close to a BEP.

BEPD The BEPD metric is the sum of all the single scores s(x, b) over elements
x of the run divided by the total number of best entry points. The measure is
then averaged over runs (i.e. queries).

EPRUM-BEP-Exh-BEPDistance The EPRUM metric is an extension of
precision recall suited for structured corpora and fine-grained user models. This
metric is described in [8]. While standard precision-recall assumes a simple user
model, where the user consults retrieved elements (elements returned by the re-
trieval system) independently, with EPRUM, we can capture the scenario where
the user consults the context of retrieved elements. This is modelled with a pa-
rameter, which is the probability that a user goes from a returned element x to
a BEP b.

EPRUM metric is defined by three parameters:

Targets (BEP) What are the targets, i.e. the (here the Best Entry Points).
Target relevance (Exh) What is the relevance of the target (here, fixed to

the exhaustivity of the document which is always the maximum since we
have only 1 exhaustivity level)

User behaviour (BEPDistance) How to compute the probability that the
user goes from one element in the list to a BEP. In the context of the BEC
task, this probability is simply defined as s(x, b) for any BEP b. This be-
haviour is defined stochastically, that is we only know that the user has seen
the BEP with probability s(x, b).

Precision at recall r is defined as the ratio, for the user to achieve a recall r,
of the minimum expected search length for the ideal run to the run’s minimum
expected search length.

Precision at rank k is defined as the expected search length (for the ideal
run) for a user to achieve the same recall as the one achieved by the evaluated
run divided by k.

In both cases the ideal run is the list of BEP. Both definitions reduce to the
classical precision and recall when the standard user model is assumed, where
the parameters (i.e. the probabilities) are either 0 or 1.

7.3 Results

Runs were evaluated with a parameter A equal to 0.01, 0.1, 1, 10, 100. Reported
measures were:

– BEPD
– EPRUM precision recall graph
– EPRUM precision averaged over all recall values

8 Conclusions

9 Acknowledgments

References

1. C. Clarke, J. Kamps, and M. Lalmas. INEX 2006 retrieval task and result submis-
sion specification. In N. Fuhr, M. Lalmas, and A. Trotman, editors, INEX 2006
Workshop Pre-Proceedings, pages 381–388, 2006.

2. K. Järvelin and J. Kekäläinen. Cumulated Gain-based evaluation of IR techniques.
ACM Transactions on Information Systems (ACM TOIS), 20(4):422–446, 2002.

3. G. Kazai and M. Lalmas. eXtended Cumulated Gain Measures for the Evaluation
of Content-oriented XML Retrieval. ACM Transactions on Information Systems
(ACM TOIS), 24(4):503 – 542, October 2006.

4. J. Kekäläinen and K. Järvelin. Using graded relevance assessments in IR evalu-
ation. Journal of the American Society for Information Science and Technology,
53(13):1120–1129, 2002.

5. J. Kekäläinen and K. Järvelin. Using graded relevance assessments in IR evalu-
ation. Journal of the American Society for Information Science and Technology,
53:1120–1129, 2002.

6. M. Lalmas. INEX 2005 retrieval task and result submission specification. In
N. Fuhr, M. Lalmas, S. Malik, and G. Kazai, editors, INEX 2005 Workshop Pre-
Proceedings, pages 385–390, 2005.

7. J. Pehcevski and J. A. Thom. HiXEval: Highlighting XML retrieval evaluation.
In Advances in XML Information Retrieval and Evaluation: Fourth Workshop of
the INitiative for the Evaluation of XML Retrieval, INEX 2005, Dagstuhl Castle,
Germany, November 28-30, 2005, Revised Selected Papers, volume 3977 of Lecture
Notes in Computer Science, pages 43–57, 2006.

8. B. Piwowarski and G. Dupret. Evaluation in (xml) information retrieval: Expected
precision-recall with user modelling (eprum). In SIGIR 2006: Proceedings of the
29th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2006.

9. B. Piwowarski, P. Gallinari, and G. Dupret. Precision Recall with User Modelling:
Application to XML retrieval. Submitted for publication, 2005.

10. T. Tombros, B. Larsen, and S. Malik. The interactive track at INEX 2004. In
N. Fuhr, M. Lalmas, S. Malik, and Z. Szlavik, editors, Proceedings of the 3rd
Workshop of the INitiative for the Evaluation of XML retrieval (INEX), Dagstuhl,
Germany, December 2004, 2005.

Appendix A: EvalJ

EvalJ is a java project9, which implements the XCG metrics (in the XCGEval
package), which were used to evaluate the Thorough and Focused tasks, and the
PRUM metrics, which were used to evaluate the Best in Context task.

Running XCG

To run the XCG metrics (XCGEval package in EvalJ) from the command line
use:

java -Dorg.xml.sax.driver=gnu.xml.aelfred2.XmlReader

-jar jars/EvalJ.jar [-e] [-q] [-gnu/jfree]

-config yourconfigfile.prop

In addition use -Xmx$SIZEm to increase memory allocation to $SIZE Mb.
The options are as follows:

9 https://sourceforge.net/projects/evalj/

– Use -q to print evaluation results for each query. If not specified, only scores
averaged over the query set are output.

– Use -e to score empty result topics as 0, i.e. topics that occur in the recall-
base but for which no results were returned by a run. If not specified, only
topics that occur in the run are scored.

– Use -gnu to produce gnuplot dat and gp files, or use -jfree to use the jfree
graphics modules to output graphs as png files. If not specified, no graph
data is output (this reduces run time and memory requirements).

To run XCG requires several parameters, which define how e.g. the measures
to be used, the runs to evaluate, etc. These parameters are read at run time from
the config file. The official parameter settings for the Thorough and Focused tasks
at INEX 2006 are given below.

Thorough task. The official parameter settings in the config file for the eval-
uation of the Thorough task are:

TASK: Thorough

METRICS: ep/gr

OVERLAP: off

QUANT FUNCTIONS: gen

ASSESSMENTS DIR: $aPath/2006 assessmentsv4/

SUBMISSIONRUNS DIR: $aPath/2006 runsv1/*

RESULTS_DIR: $aPath/2006 results

where $aPath is a placeholder for a folder name.

Focused task. The official parameter settings for the Focused task at INEX
2006 are as follows:

TASK: Focused

METRICS: nxCG

ALPHA: 1.0

DCV: 5, 10, 25, 50

OVERLAP: on, off

QUANT FUNCTIONS: gen

ASSESSMENTS DIR: $aPath/2006 assessmentsv4/

SUBMISSIONRUNS DIR: $aPath/2006 runsv1/*

RESULTS_DIR: $aPath/2006 results

where $aPath is a placeholder for a folder name.

EPRUM and BEPD

In order to construct evaluate BEC runs, a database containing the assessments
must be constructed. This is done following these three steps:

1. Create a database directory

2. Add the wikipedia collection
3. Add the assessments

The documentation (README file) contained in the EvalJ package contains
further information on how to perform these steps.

The configuration file that should be used for Best In Context is the following.

<metrics>

<EPRUM id="eprum-bep-100" only="BestInContext">
<binary value="false"/>
<generator value="BEPTargetGenerator"/>
<quantisation value="Exh"/>
<behaviour value="BEPDistance"></behaviour>

</EPRUM>

<EPRUM id="eprum-bep-10" only="BestInContext">
<binary value="false"/>
<generator value="BEPTargetGenerator"/>
<quantisation value="Exh"/>
<behaviour value="BEPDistance"></behaviour>

</EPRUM>

<EPRUM id="eprum-bep-1" only="BestInContext">
<binary value="false"/>
<generator value="BEPTargetGenerator"/>
<quantisation value="Exh"/>
<behaviour value="BEPDistance"></behaviour>

</EPRUM>

<EPRUM id="eprum-bep-0.1" only="BestInContext">
<binary value="false"/>
<generator value="BEPTargetGenerator"/>
<quantisation value="Exh"/>
<behaviour value="BEPDistance"></behaviour>

</EPRUM>

<EPRUM id="eprum-bep-0.01" only="BestInContext">
<binary value="false"/>
<generator value="BEPTargetGenerator"/>
<quantisation value="Exh"/>
<behaviour value="BEPDistance"></behaviour>

</EPRUM>

<BEPD only="BestInContext" id="bepd-100"></BEPD>
<BEPD only="BestInContext" id="bepd-10"></BEPD>
<BEPD only="BestInContext" id="bepd-1"></BEPD>

<BEPD only="BestInContext" id="bepd-0.1"></BEPD>
<BEPD only="BestInContext" id="bepd-0.01"></BEPD>

</metrics>

