
A Signal-to-Noise Approach to Score Normalization

Avi Arampatzis Jaap Kamps
Archives and Information Studies, Media Studies

University of Amsterdam, The Netherlands
avi.arampatzis@gmail.com kamps@uva.nl

ABSTRACT
Score normalization is indispensable in distributed retrieval and fu-
sion or meta-search where merging of result-lists is required. Dis-
tributional approaches to score normalization with reference to rel-
evance, such as binary mixture models like the normal-exponential,
suffer from lack of universality and troublesome parameter estima-
tion especially under sparse relevance. We develop a new approach
which tackles both problems by using aggregate score distributions
without reference to relevance, and is suitable for uncooperative
engines. The method is based on the assumption that scores pro-
duced by engines consist of a signal and a noise component which
can both be approximated by submitting well-defined sets of arti-
ficial queries to each engine. We evaluate in a standard distributed
retrieval testbed and show that the signal-to-noise approach yields
better results than other distributional methods. As a significant
by-product, we investigate query-length distributions.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.2.4 [Database Management]: Systems—query
processing

General Terms
Experimentation, Performance, Theory

Keywords
Distributed retrieval, resource selection, meta-search, fusion, score
normalization, score distribution, filtering, query length distribu-
tion, query model, Zipf’s law, power-law.

1. INTRODUCTION
Modern best-match retrieval models calculate some kind of score

per collection item which serves as a measure of the degree of rel-
evance to an input request. Scores are used in ranking retrieved
items. Their range and distribution varies wildly across different
models making them incomparable across different engines [25],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM 2009, Hong Kong, China, November 2–6, 2009.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$5.00.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 0 .2 0 .4 0 .6 0 .8 1

no
rm

al
iz

ed
 fr

eq
ue

nc
y

m inmax-normalized score

score distributions of different systems [topic 301 , TR E C R obust 2004, top-1000 results]

apl04rsD w
fub04D e

humR 04d4e5
icl04pos2d

JuruD esAggr
pircR B04d2

N LP R 04clus10

Figure 1: Min-max normalized score distributions (top-1,000 results)
of different systems for TREC topic 301 in Robust Track 2004. Score
outputs would be even more diverse for disjoint collections, especially
across different data-types beyond text.

even across different requests on the same engine if they are in-
fluenced by non-semantic query characteristics, e.g. length. Even
most probabilistic models do not calculate the probability of rel-
evance of items directly, but some order-preserving (monotone or
isotone) function of it [21].

For single-collection ad-hoc retrieval, the variety of score types
is not an issue; scores do not have to be comparable across mod-
els and requests, since they are only used to rank items per request
per system. However, in advanced applications, such as distributed
retrieval, fusion, or applications requiring thresholding such as fil-
tering or recall-oriented search, some form of score normalization
is imperative. In the first two applications, several rankings (with
non-overlapping and overlapping sets of items respectively) have to
be merged or fused to a single ranking. Here, score normalization is
an important step [9]. In practice, while many users never use meta-
search engines directly, most conventional search engines are faced
with the problem of combining results from many sub-engines. For
example, blending images, text, inline answers, stock quotes, and
so on, has become common.

In filtering, bare scores give no indication on whether to retrieve
an incoming document or not. Usually, a user model is captured
into some evaluation measure. Some of these measures can be opti-
mized by thresholding the probability of relevance at some specific
level [19], thus a method of normalizing scores into probabilities
is needed. Moreover, thresholding has turned out to be important
in recall-oriented retrieval setups, such as legal or patent search,

where ranked retrieval has a particular disadvantage in comparison
with traditional Boolean retrieval: there is no clear cut-off point
where to stop consulting results [22]. Again, normalizing scores to
expected values of a given effectiveness measure allows for optimal
rank thresholding [5].

Popular methods, e.g. range normalization based on minimum
and maximum scores, are rather naive, considering the wild va-
riety of score outputs across search engines, because they do not
take into account the shape of score distributions (SDs). Figure 1
demonstrates the variety of outputs across different systems for
constant query and collection. Although these methods have worked
reasonably well for merging or fusing results [18], more advanced
approaches have been seen which try to improve normalization by
investigating SDs. Such methods have been found to work at least
as well (or in some cases better) than the simple ones in the context
of fusion [20, 13]. They have also been found effective for thresh-
olding in filtering [7, 29, 11] or thresholding ranked lists [5]. We
are not aware of any empirical evidence in the context of distributed
retrieval.

The main aim of this paper is to analyse and further develop
score distributional approaches to score normalization. Our under-
lying assumption is that normalization methods that take the shape
of the SD into account will be more effective than methods that
ignore it. We want to make no assumptions on the search engines
generating the scores to be normalized other than that they produce
ranked lists sorted by decreasing score. Thus, we treat each engine
as a ‘black-box’ and are interested in approaches based only on ob-
serving their input-output characteristics: the queries and resulting
score distributions.

In Section 2 we examine the state of affairs in using mixture-
model normalization methods to map scores to probabilities of rel-
evance. We note theoretical as well as practical problems and limi-
tations in the applicability of such methods. In Section 3 we inves-
tigate the single SD model of [12], arguing that some of its com-
plexity is unnecessary. In Section 4 we take a novel approach and
introduce three new methods. Two single SDs are used, represent-
ing score signal and noise, and input scores are normalized accord-
ing to their signal to noise ratios. The two SDs are generated as
score aggregates of two different types of artificial queries, human-
like and noise respectively. For query generation, we develop two
query models in Section 5. As a significant by-product, we investi-
gate the length distributions of such input queries; theoretically for
noise, and using real data for humans. In Section 6 we evaluate the
methods in a standard distributed retrieval testbed. This is also the
first evaluation of the currently most-popular mixture model in a
distributed retrieval setup. Conclusions are drawn in Section 7.

2. MIXTURE MODELS
Under the assumption of binary relevance, classic attempts model

SDs, on a per-request basis, as a mixture of two distributions: one
for relevant and the other for non-relevant documents. Given the
two component distributions and their mix weight, the probabil-
ity of relevance of a document given its score can be calculated
straightforwardly [7, 20], essentially allowing to normalize scores
into probabilities of relevance. Furthermore, the expected numbers
of relevant and non-relevant documents above and below any rank
or score can be estimated, allowing to calculate precision, recall,
or any other traditional measure at any given threshold enabling its
optimization [5]. Assuming proper component choices, such meth-
ods are theoretically ‘clean’ and non-parametric.

Various combinations of distributions have been proposed since
the early years of IR; for a recent extended review and theoretical
analysis of the choices, we refer the reader to [25]. The currently

most popular model being that of using a normal for relevant and
an exponential for non-relevant, introduced in [3] and [7, 20] and
followed up by [29, 11] and others. The latest improvements of the
normal-exponential model use truncated versions of the component
densities, trying to deal with some of its shortcomings [5]. In this
study, we do not set out to investigate alternative mixtures, but just
use the standard normal-exponential.

2.1 The Normal-Exponential Model
In this section, we investigate the theoretical as well as the em-

pirical evidence for using a mixture of normal-exponential for mod-
eling SDs in IR. We note theoretical as well as practical problems.

2.1.1 Normal for Relevant
A theorem claims that the distribution of relevant document sco-

res converges to a Gaussian central limit (GCL) quickly, with “cor-
rections” diminishing as O(1/k) where k is the query length [7].
Roughly, three assumptions were made: a) terms occurring inde-
pendently, b) scores are calculated via some linear combination of
document term weights, and c) relevant documents cluster around
some point in the document space with some hyper-ellipsoidal den-
sity with fast-falling tails. Based on those assumptions, the proof is
more likely to hold in setups with vector space or geometric models
with dot-product or cosine similarity scoring and long queries. This
does not mean that the Gaussian does not get along well with other
retrieval models or setups, but we have not found any supportive
theory in the literature.

Although the GCL is approached theoretically quickly as query
length increases, practically, queries of length above a dozen terms
are only possible through relevance feedback and other learning
methods. For short queries, the Gaussian may simply not be there
to be estimated. Empirically, using a vector space model with
scores which were unbounded above on TREC data, [7] found us-
able Gaussian shapes to form at around k = 250. k also seemed to
depend on the quality of a query; the better the query, the fewer the
terms necessary for a normal approximation of the observed dis-
tribution. Along similar lines, [20] noticed that better systems (in
terms of average precision) produce better Gaussian shapes.

2.1.2 Exponential for Non-relevant
Under a similar set of assumptions and approximations to the

ones mentioned above, [7] investigate also the distribution of non-
relevant document scores and conclude that a GCL is unlikely and
if it appears it does only at a very slow rate with k—practically
never seen even for massive query expansion. Nevertheless, such
a theorem does not help much in determining a usable distribu-
tion. In absence of a related theory or a simpler method, the use of
the exponential distribution has been so far justified empirically: it
generally fits well to the high-end of non-relevant item scores, but
not to all.

Different cutoffs have been used for fitting purposes: [7, 11] fit
on the top 50–100, [20] fit on almost the top-1,000 (1,000 minus the
number of relevant documents). [2] fits even on a non-uniform sam-
ple of the whole score range, but the approach is rather system/task-
specific. In general, it is difficult to get a good exponential fit on
the whole score range. Figure 2 shows the total score densities pro-
duced by a combination of two queries and two sub-collections of
TREC-4 using KL-DIVERGENCE as a retrieval model. Obviously,
none of these SDs can be fitted in totality with the mixture. Candi-
date ranges are usually [speak, +∞) where speak is set at the mode
(or higher) of the total SD.

 0

 1

 2

 3

 4

 5

 6

 7

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3

no
rm

al
ize

d
fre

qu
en

cy

KL-divergence score

KL-DIVERGENCE SCORE DENSITIES FOR ALL RETRIEVED DOCUMENTS

TREC query 207 on all-97
TREC query 207 on all-23
TREC query 242 on all-23
TREC query 242 on all-97

Figure 2: KL-divergence score densities; 2 queries on 2 collections.

2.1.3 Non-convexity
The normal-exponential model has a serious theoretical problem:

the estimated probability of relevance as a function of the score is
non-monotonic. This behavior is a direct result of the Gaussian
falling more rapidly than the exponential and hence the two density
functions intersect twice. In most cases, this non-monotonicity ap-
pears inside the effective score range making the probability of rel-
evance decline as the score increases above some point. Robertson
[25] formulates the problem as non-convexity of the recall-fallout
curve as seen from recall=1, fallout=0.

In adaptive filtering, [3, 7] deal with the problem by selecting as
threshold the lower solution of the 2nd degree equation resulting
from optimizing linear utility measures, while [29, 11] do not seem
to notice or deal with it. In meta-search, [20] noted the problem
and forced the probability to be monotonic by drawing a straight
line from the point where the probability is maximum to the point
[1, 1]. Both procedures, although they may have been suitable for
the above tasks, are theoretically unjustified.

In [5], the two component SDs were set to uniform within the
offending score range; this is equivalent to randomization of the
corresponding sub-ranking and it is justified as enforcing recall-
fallout convexity. Nevertheless, this implies that the normal-expo-
nential mixture is theoretically valid and that scoring formulas pro-
duce suboptimal rankings which can be improved by randomiz-
ing; evidence of such scoring schemes within modern text retrieval
systems has not been found [6]. Consequently, we choose not to
use any fixes in the experiments in this paper; we just assign the
maximum-reached output probability to input scores affected by
the non-monotonicity.1

2.1.4 Normal-Exponential in Practice
Despite the above-mentioned theoretical problems, the model

was applied successfully in fusion, with short queries and even
with a scoring system which produces scores between 0 and 1 with-
out worrying about the implied truncation at both ends for the nor-
mal and at the high end for the exponential [20]. In the context of
thresholding for document filtering, with the generally unbounded
scoring function BM25 and a maximum of 60 query terms per pro-
file, the method performed well (2nd best, after Maximum Likeli-

1In practice, however, since trec_evalwould sort on docid all
documents with the same score, for the only purpose of preserving
the order in evaluation we break the ties by multiplying each of the
affected scores with 1 + ε, where ε is a very small number whose
magnitude depends on the original score.

hood Estimation) on 3 out of 4 TREC data sets [11]. We are not
aware of any work related to the use of normal-exponential in dis-
tributed setups.

A recent study on the applicability of the mixture on a wide vari-
ety of modern text retrieval systems shows support for vector space
or geometric models, as well as BM25, as being amenable to the
normal-exponential. While longer queries tend to lead to smoother
SDs and improved fits, the end-result in thresholding is better for
the short title queries with high quality keywords [6].

2.2 Estimation and other Problems
All mixture models, irrespective of component choices, present

some practical problems. Estimating the component densities is
best done when many relevance judgements are available. In prac-
tice, relevance judgements are not available at all, or they are sparse,
incomplete, or biased, making difficult the parameter estimation of
a mixture.

In the contexts of meta-search [20] and adaptive filtering [2], the
mixing parameter and the parameters of the component normal and
exponential densities have been estimated without using any rele-
vance judgements. The standard iterative expectation maximization
(EM) method [24] was used with some success. The method can be
modified to take into account relevance judgements, if any, never-
theless, it was found to be ‘messy’ and difficult to tune. It was very
sensitive to the choice of the initial parameter values in converging
to a global optimum rather than a local one.

When normalizing scores, especially of non-cooperative engines,
one should keep in mind that systems produce scores in order to
rank documents and do not care about the scale or shape of the
scoring function. Therefore, system components which do not af-
fect the ranking may be added or removed arbitrarily, in order to,
e.g., simplify calculations. Components which affect only the scale
are not a problem for mixture models. However, many transforma-
tions affect the shape as well, e.g. using a logistic function to map
(−∞, +∞) to [0, 1]; in such cases, the initial choice of the density
components may not apply any longer.

3. SINGLE DISTRIBUTION METHODS
The analysis of Section 2 suggests that the normal-exponential

mixture is not universal in modeling SDs in IR; some retrieval mod-
els perhaps could better be fitted with different mixtures, as in the
case of KL-DIVERGENCE (Figure 2). Furthermore, the model has a
serious theoretical problem: it does not satisfy the convexity con-
dition, i.e. the output score does not monotonically increase with
the input score. The problem shows always at the top of rankings,
and it does not seem to be severe for thresholding tasks where an
optimal threshold may often be lower than the non-convex ‘blind’
range, depending on the measure under optimization [5]. The prob-
lem is more acute in environments favoring initial precision such as
in meta-search and distributed retrieval.

To make things worse, there are practical problems in estimat-
ing the parameters of mixture models, usually due to insufficient
numbers of relevance judgements or quality of them (biases, in-
completeness). Approaches which do not use relevance judgements
seem difficult to tune, especially when relevance is sparse. Test col-
lections are usually made in such ways that there is some minimum
number of relevant items per request. In reality, given a collec-
tion, there can be no relevance for some queries. The same can
happen when test collections are split further in order to facili-
tate distributed retrieval setups. As a result, score distributional
approaches to score normalization without reference to relevance
may have some merit.

3.1 Z-score
A standard method for score normalization that takes the SD into

account is the Z-SCORE. Scores are normalized, per topic and en-
gine, to the number of standard deviations that they are higher (or
lower) than the mean score:

Z-SCORE: s′ =
s− µ

δ
(1)

where µ is the mean score and δ the standard deviation. The mean
and standard deviation depend on the length of the ranking. Z-
SCORE seems to assume a normal distribution of scores, where the
mean would be a meaningful ‘neutral’ score. As it is well-known,
actual SDs are highly skewed and clearly violating the assump-
tion underlying the Z-SCORE. Although not very popular in IR,
Z-SCORE was used with reasonable success in [26, 16].

3.2 Aggregate Historical CDF
A recent attempt models aggregate SDs of many requests, on

per-engine basis, with single distributions [12, 13]; this enables
normalization of scores to probabilities—albeit not of relevance—
comparable across different engines. Nevertheless, it is not clear—
if it is even possible—how using a single distribution can be applied
to thresholding, where for optimizing most common measures a
reference to (or probabilities of) relevance are needed. Per engine,
the proposed normalization is

s′ = F−1(P (S ≤ s)) (2)

where P (S ≤ s) is the cumulative density function (CDF) of the
probability distribution of all scores aggregated by submitting a
number of queries to the engine, and F is the CDF of “the score
distribution of an ideal scoring function that matches the ranking
by actual relevance.” The F−1 transformation is called “standard-
ization step,” it is common across all engines participating in a fu-
sion or distributed setup, and considered critical to the method for
compensating for potential individual system biases.

In a large fusion experiment using TREC Web Track data, [13]
found that the method performs better than CombSUM (with stan-
dard or rank-sim normalization) and CombMNZ [18]. For score
aggregation, historical queries were used, and only 25-50 seemed
enough for good end-results. The method seems very promising,
however, unnecessary complicated as we explain next.

3.3 Aggregate Historical CDF Simplified
By definition, F is monotonically increasing since it is a CDF. Its

quantile function F−1 is also monotonically increasing, and since
it is applied as a constant transformation to all engines it has no
effect on rankings or the comparability of normalized scores across
engines. Thus, at least in distributed retrieval setups where normal-
ized ranked lists are simply merged, F−1 has no impact and it can
safely be removed from the calculation. Nevertheless, it has an un-
clear impact and interpretation when scores are combined, e.g. in
meta-search/fusion setups. The distribution in question is roughly
approximated by the “average distribution of several good scoring
systems”, not a very well-defined concept.

Consequently, we find it hard to see why the combination of
functions in Equation 2 returns the probability of relevance or any
other meaningful number, and since F−1 is constant across engines
we settle for the simpler method

HIS: s′ = P (SHIS ≤ s) (3)

where HIS refers to the fact that historical queries are used for ag-
gregating the SD that the random variable SHIS follows. HIS nor-
malizes input scores s to the probability of a historical query scor-

ing at or below s. The aggregate historical SD is an average which
can be seen as produced by an ‘average’ historical query. In this
respect, HIS normalizes the SD of the ‘average’ query to uniform
in [0, 1]. This is equivalent to the Cormack model [15], assuming
such an ‘average’ query is sensible and exists.

4. SIGNAL-TO-NOISE METHODS
In this section we introduce a novel approach based on dual ag-

gregate SDs but without reference to relevance. Assuming that
scores produced by an engine consist of two components, signal
and noise, the score random variable S can be decomposed as:

S = SSIGNAL + SNOISE

The probability densities of the components are given respectively
by pSIGNAL and pNOISE defined across the engine’s output score range.
As we will discuss in detail in the next section, the probability den-
sities will be estimated, per engine, by submitting appropriate sets
of queries to an engine and observing the output scores.

Furthermore, we assume ‘stable’ system characteristics for the
engine in the sense that the signal and noise levels at a score depend
only on the score. We can define a function which normalizes input
scores s into the fraction of the signal at s:

S/N: s′ =
pSIGNAL(s)

pSIGNAL(s) + pNOISE(s)
(4)

Since engines are expected to produce increasing signal-to-noise
ratios as score increases, this may be an interesting normalization.
Nevertheless, the magnitude of the original score is not taken into
account.

An obvious improvement would be to multiply S/N with s, a pro-
cedure which would reduce s to its fraction of the signal it contains.
But bare scores are usually not directly comparable across engines.
As a form of calibration, we could instead use the HIS normaliza-
tion of scores:

S/N∗HIS: s′ =
pSIGNAL(s)

pSIGNAL(s) + pNOISE(s)
P (SHIS ≤ s) (5)

The resulting scores would be comparable across engines, however,
the distribution of the variable SHIS depends on some ill-defined and
maybe problematic set of historical queries.

Using historical queries, although very feasible and no coopera-
tion is required, may lead to instabilities and biases:

• Any drastic deviation of new queries from the past would
imply that score transfer functions have to be re-estimated.
Thus, SHIS is a ‘moving target’.

• If past queries hit different engines with different generality,
engines with low average generality will produce thin SHIS

tails and HIS will calibrate their scores higher than other en-
gines. This introduces a non-desirable bias; we do not see
why a relevant item from a low generality engine is more
relevant than others.

To deal with this, we can instead use the variable SSIGNAL:

S/N∗SIG: s′ =
pSIGNAL(s)

pSIGNAL(s) + pNOISE(s)
P (SSIGNAL ≤ s) (6)

The last factor calibrates s to the probability of having signal at or
below s.

None of the three proposed normalizations (Equations 4-6) guar-
antees to preserve ranking order, while the original historical CDF
and HIS (Equations 2 and 3) do. In theory, the S/N component does
not have to be monotonically increasing with the score. This may

be a desirable effect—improving rankings—or not. In practice, S/N
is more or less found to be monotonically increasing, at least in the
current experimental setup (Section 6). Trying to enforce mono-
tonicity in the S/N transfer functions with interpolation led to prac-
tically the same end-results, so we report without interpolation.

The question is how to approximate pSIGNAL and pNOISE per en-
gine. Seeing engines as black-boxes similarly to the original his-
torical CDF approach and HIS, we can feed each one with queries
of appropriate types and generate the needed functions based on
the statistical properties of the observed output scores. Next, we de-
velop two models for generating artificial queries given a document
collection. The resulting query sets may be suitable for producing
aggregate SDs approximating SNOISE and SSIGNAL.

5. QUERY MODELS
The SDs that modern retrieval systems produce may be affected

by several query characteristics. We consider three statistical fea-
tures of queries:

1. Frequencies of term occurrences (e.g., Zipf, uniform).

2. Term dependencies (e.g., serial, long-range, independent).

3. Length (e.g., power-law, Poisson, etc.).

In this section, we examine these features for two query types sit-
ting at the two extreme sides of the query spectrum: a) garbage
(monkey/random) queries, and b) natural language queries.

While current query-logs show real queries consisting of bags of
keywords, in any order, maybe mixed with natural language frag-
ments (a result of the realization by users of how current systems
treat their queries), this behavior is most likely to change once users
realize that some system is ‘understanding’ natural language. The
rationale for considering the two extreme types of queries is that
those bounds are not going to change as systems or user behavior
changes, so they provide a well-defined framework for our meth-
ods.

5.1 Monkeys on Modified Typewriters
In parallel to the popular thought experiment of a monkey hitting

keys at random on a typewriter, let us imagine a keyboard with
the terms of a query language on its keys plus “enter”. The keys
are considered equally accessible and of equal size, except “enter”
which has a different size and thus different probability to be hit if
keys are hit at random.

The monkey, not understanding the grammar and semantics of
the query language, will select terms uniformly. Moreover, terms
will be independent. Next we will examine the query length. Prob-
abilistic foundations for the following analysis can be found in [23].

If p is the probability of hitting “enter”, then the probability that
the monkey will type k terms before hitting “enter” is given by
(the discrete analogue of the exponential distribution called) the
geometric distribution:

P (K1 = k) = (1− p)kp, k = 0, 1, 2, . . .

Note that a p fraction of the total queries will be of zero-length.
The mean query length will be 1/p.

Assuming r monkeys using identical keyboards (characterized
by the same p) are typing independently, the random variable K =Pr

m=1 Km, where Km is the geometrically distributed variable
associated with the mth monkey, follows a negative binomial dis-
tribution:

g(k; r, p) =

k + r − 1

k

!
pr(1− p)k, k = 0, 1, 2, . . .

Under an alternative parameterization, limr→∞ g(k; r, p) converges
to the Poisson distribution

Poisson(k; λ) =
λke−λ

k!

with a rate λ = r(1/p− 1).
Alternatively, one may model a single monkey’s query length

as a Poisson distribution, i.e. as the number of terms the mon-
key will issue in a fixed time period t if it provides terms with a
known average rate λ1 and independently of the time passed since
the last issued term. This setup may also be plausible and it in-
volves the speed of typing and a fixed-time restriction. Neverthe-
less, for r monkeys producing independently Poisson distributed
query lengths K1, K2, . . . Kr with λ1, λ2 . . . λr , the sum K is also
Poisson distributed with λ =

Pr
m=1 λm.

Consequently, the Poisson distribution is a good approximation
of query lengths generated by a large number of monkeys. This
query model is not dependent on the query language and it may
apply to non-text retrieval as well.

5.2 Humans on Search Engines
Restricting the problem to textual data and natural language que-

ries, it is well-known and many times confirmed that the distri-
bution of word frequencies follows the (generalized) Zipf’s law
(Equation 7 in Section 5.2.1) with s slightly more than 1 for most
types of texts. Exceptions include legal texts which have s ≈ 0.9,
showing that lawyers use more unique words than other people
[14]. In any case, it seems that across natural languages and text
types, s is varying a little around 1.

Query terms occur, in general, in a dependent way (i.e. the occur-
rence of one makes the chances of occurrence of some others better
than random) due to all of them pointing at the same topic. For nat-
ural language queries, there exists also serial dependence, imposed
by grammar and semantics. When incorporating dependencies, re-
trieval models are becoming practically intractable, which led in
the past to the infamous term independence assumption.

Instead of trying to model term probabilities of occurrence and
dependencies, we can rather tackle both features at once by picking
real text fragments out of a corpus. The remaining question is how
long those fragments should be.

5.2.1 A Model for Human Query Length
From analyzing query-logs, previous research has found that the

distribution of query lengths can be approximated with the (gen-
eralized) Zipf’s law2 [27, 30]. However, the law appears to fit
well to the largest query-length observations, k ≥ k0, but not for
the whole sample, where k0 depends on the domain. For exam-
ple, empirical observations show that the length frequency for web
queries peaks at 2 rather than at single keyword queries, suggesting
a k0 > 2. Others, without empirical justification, modeled query
lengths with a Poisson distribution by setting its mean to the aver-
age query length [8].

Using a Zipf distribution, in a population of N queries the num-
ber of queries with length k is given by

f(k; s, N) =
N

HN,s
k−s (7)

rounded to the nearest integer, where s is a positive real num-
ber and HN,s is the N th generalized harmonic number, HN,s =

2Or, in general, a power-law. Zipf’s law can also be shown equiv-
alent to Pareto’s distribution by variable exchange. Essentially, the
Zipf and Pareto distributions are both power-laws [1].

10-4

10-3

10-2

10-1

100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

P(
X

>=
 q

ue
ry

 le
ng

th
)

query length

COMPLEMENTARY CUMULATIVE DISTR. FUNCTION (CCDF) OF QUERY LENGTHS

104 queries from TREC’07 - Million Query Track
Pareto CCDF fit for k>=5: 0.3371*(k/5)**(-4.51)

Figure 3: Pareto fit on the CCDF of query lengths.

100

101

102

103

104

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

nu
m

be
r o

f q
ue

rie
s

query length

DISTRIBUTION OF QUERY LENGTHS

104 queries from TREC’07 - Million Query Track
Zipf fit for k>=5: (3371/1.025)*(k/5)**(-5.51)

Poisson fit: 10000*Poisson(k; 4.11)

Figure 4: Zipf and Poisson fits on query lengths.PN
n=1 n−s. Although s is varying a little around 1 for word fre-

quencies, it may be naive to extend this to query lengths.
We analyzed the query lengths of the 10k queries of TREC Mil-

lion Query Track 2007. This set contains queries with lengths be-
tween 1 and 30 with a mean length of 4.11 and the peak of the dis-
tribution at length 3. We set k0 = 5 (just above the mean) and esti-
mated s for k ≥ k0. Rather than (logarithmically) binning the data,
we instead looked at the Pareto CCDF P (X ≥ x) = (x/k0)

−a to
obtain a good fit (Figure 3). The tail naturally smoothes out in the
cumulative distribution and no data is ‘obscured’ as in a binning
procedure. This procedure is described in [1]. Fitting the Pareto
CCDF, we found a = 4.51, consequently s = a + 1 = 5.51.
Since this is a very good fit, we have no doubts that for k ≥ k0

the distribution can be modeled with a generalized Zipf-law with
s = 5.51.

We tried the same procedure on the union of query sets (<Re-
questText> fields) of the TREC Legal Track 2006 and 2007
and estimated an s′ = 4.9. Although this number is not to be
trusted due to the small size of the query set (only 96 queries) which
gave a very rough fit, it strengthens the evidence that the Zipf shape
parameter is closer to 5 for query lengths rather than 1 (as for word
frequencies). This gives a much steeper slope on log-log plots. In a
further study, using 3 extra data-sets and a different—more widely-
accepted—method for fitting, we have reached similar results [4].

Figure 4 shows the resulting Zipf fit on the data for s = 5.51
and H104,5.51 = 1.025. We also show (with impulses) the Poisson
distribution used by [8], by setting the mean to the average query
length.3 We can see that while it matches well the data from 1 to
10, it lacks the tail for k > 10. The Zipf model matches better in a
wider range of lengths, from 5 to longer than 20.

In summary, the bulk of queries concentrates at short lengths
where a power-law does not fit at all given the current query lan-
guages, therefore it makes practical sense to use a truncated mix of
Poisson-Zipf to generate query lengths. In such a practical model,
the lengths are Poisson-distributed for k < k0 while they are Zipf-
distributed for k ≥ k0. The choice of k0 depends on the specific
domain (i.e., a combination of features of the document collection,
query/indexing language, and pattern of use of the system). As a
rule of thumb, k0 seems to be just above the mean observed query
length.

5.3 Application to the Signal-to-Noise
We expect the garbage input to generate aggregate SDs which

approximate SNOISE. Furthermore, generating queries by picking
natural language fragments out of collection documents, some rel-
evance is guaranteed; so we expect to approximate SSIGNAL by ag-
gregating the resulting SDs. Of course, those two aggregate SDs
are bound to contain spillovers, i.e. noise contains some signal and
the other way around, but they may be good enough for the signal-
to-noise score normalization methods.

A disadvantage of the proposed query models in the current con-
text is that they use the collection indexed in each engine. There-
fore, they can only be applied by vendors themselves (co-operation
with other engines is not needed), if there is interest to provide nor-
malized output for further use. If there is no such interest, signal-
to-noise characteristics of non-cooperative engines can still be de-
duced by others using alternative ways. Garbage queries could be
generated in a more generic way without looking into individual
collections. For approximating signal, using the internal collec-
tion seems more suitable; nevertheless, query-based sampling tech-
niques [10] of non-cooperative engines’ collections may come to
rescue.

6. EVALUATION
In this section, we will experiment with the new signal-to-noise

approach to score normalization. Earlier work has so far concen-
trated on fusion, but we will focus on distributed retrieval where the
engines have no documents in common. In fusion experiments with
TREC-3 and TREC-6 data, [20] found that the normal-exponential
mixture performs as good as CombSUM and CombMNZ. In a large
fusion experiment using TREC Web Track data [13], the histori-
cal CDF method performed better than CombSUM (with standard
or rank-sim normalization) and CombMNZ [18]. Consequently,
both methods perform at least as well or better than CombSUM and
CombMNZ in fusion, but they have never been compared against
each other. Furthermore, none of these methods has been evalu-
ated before in distributed retrieval which is more challenging than
fusing systems retrieving the same sets of documents.

6.1 Testbed
The LEMUR Toolkit4 v4.6 was employed in three different ‘fla-

vors’: i) TF.IDF with scores in (0, +∞), ii) the KL-DIVERGENCE
language model with scores in (−∞, 0], and iii) the OKAPI proba-

3According to the analysis in Section 5.1, [8] used query lengths
generated by r monkeys rather than humans.
4www.lemurproject.org

Table 1: Relative performance of 3 retrieval models on TREC-123
(topics 51-150) and TREC-4 (topics 201-250).

TREC-123
run P5 P10 P15 P20 P30 MAP

TF.IDF 0.5160 0.4800 0.4727 0.4505 0.4323 0.1816
KL-DIV 0.4980 0.4590 0.4347 0.4345 0.4157 0.1646
OKAPI 0.4820 0.4730 0.4493 0.4405 0.4217 0.1602

TREC-4
run P5 P10 P15 P20 P30 MAP

TF.IDF 0.4760 0.4220 0.3827 0.3660 0.3247 0.2125
KL-DIV 0.4680 0.4260 0.4000 0.3700 0.3407 0.2036
OKAPI 0.5280 0.4420 0.4053 0.3730 0.3420 0.2070

bilistic model with scores in (−∞, +∞). 5 The default parameters
that come with this version of the toolkit were used; we just enabled
Porter stemming and the SMART stop-word list in indexing. To test
the setup, we did runs on a standard index with all the documents,
using each of the three ‘flavors.’ Table 1 presents the results of
the three retrieval models, and may serve as a performance ceiling
for the distributed retrieval experiment. All three models perform
reasonably at MAP and early precision, making our experimental
results representative for a large group of systems.

We used two collections, the TREC-123 and TREC-4 data, each
one partitioned in 100 non-overlapping sub-collections according
to the CMU split [10]. The TREC-123 split is by document source
and relevant documents appear scattered throughout all the sub-
collections. The TREC-4 split is topically clustered and relevant
documents appear in relatively few sub-collections. To build the
test engines, we applied the three retrieval models to the sub-col-
lections in a round-robin fashion, i.e., TF.IDF / KL-DIV / OKAPI /
TF.IDF / . . .

As queries, we used the TREC topics corresponding to the col-
lections, i.e. 51-150 for TREC-123 and 201-250 for TREC-4. We
only processed the <desc> field; this is the only field that the ex-
tended set of topics 51-250 have in common. We evaluate on 100
and 50 queries respectively but we use topics 151-200 as historical
data as we will see below.

Most of the normalization methods we compared are based on
observed SDs for which data are sparse at the top scores/ranks.
Thus, following common practice in distributed retrieval, we found
most appropriate to evaluate with average precision at ranks 5, 10,
15, 20, and 30.

We were also interested in how the methods interact with re-
source selection. We employed the standard resource selection
method of LEMUR, CORI [9], to select only the top-10 sub-col-
lections per query.

6.2 Setting the Baseline
Our approach is based on the assumption that effective score nor-

malization needs to take the SD into account. Before trying the new
normalization methods, we will investigate whether our assumption
indeed holds.

Standard score normalization methods like the MinMax ignore
the score distribution: s′ = s−min

max−min
, with min (max) the mini-

mal (maximal) score per query and engine [17]. That is, MinMax
forces all scores in [0,1], resulting in a maximal score per topic
and engine of 1. In our distributed retrieval set-up, as a result, the
5We also intended to use INQUERY in order to have as diverse
models as possible, but we discovered a bug in its implementation
in the current LEMUR version. The bug most likely does not af-
fect ad-hoc retrieval performance, but it affects tasks where score
normalization is needed.

Table 2: Distributed retrieval results for TREC-123 and TREC-4 over
all 100 engines using earlier score normalization methods. Significant-
tested with a bootstrap test, one-tailed, at significance levels 0.05 (◦),
0.01 (•◦), 0.001 (•).

TREC-123
run P5 P10 P15 P20 P30

ROUNDROBIN 0.1835 0.1835 0.1835 0.1835 0.1835
Z-SCORE 250 0.2340•◦ 0.2150◦ 0.2220•◦ 0.2260•◦ 0.2207•

Z-SCORE 1K 0.2180 - 0.2320•◦ 0.2320•◦ 0.2285•◦ 0.2167•◦

HIS 0.2480•◦ 0.2340◦ 0.2193◦ 0.2120 - 0.2017 -

TREC-4
run P5 P10 P15 P20 P30

ROUNDROBIN 0.0584 0.0584 0.0584 0.0584 0.0584
Z-SCORE 250 0.1360• 0.1360• 0.1320• 0.1200• 0.1053•

Z-SCORE 1K 0.1480• 0.1300• 0.1253• 0.1130• 0.0940•◦

HIS 0.2280• 0.1920• 0.1627• 0.1540• 0.1487•

first 100 results per topic will have the maximal score of 1, and
we will be doing effectively a round-robin picking the top result of
each engine. Hence, we will look at ROUNDROBIN to represent the
familiar score normalization methods that ignore the shape of the
SD.

The effectiveness of ROUNDROBIN is strongly dependent on the
order of the engines, and given their disjoint collections, the pre-
cision up to rank 100 depends only on their order. To avoid this
arbitrariness, we calculated the average precision over all possible
orderings of the engines; this turns out to be equal to P100 for all
ranks down to 100.6 The results of ROUNDROBIN are shown in Ta-
ble 2. It performs poorly on the topically clustered TREC-4, and
somewhat better on TREC-123. Although MinMax is one of the
most obvious baseline methods for score normalization, it is clear
that it is a weak baseline with flat precision up to rank 100 in our
set-up.

We calculate also the Z-SCORE over the top 1,000 results, and
over the top 250 results per query. The results of Z-SCORE are
also shown in Table 2, and it performs significantly better than
ROUNDROBIN. This is a strong argument in favor of taking the
SD into account. Even more so given that Z-SCORE seems to as-
sume a normal distribution of scores, where the mean would be a
meaningful ‘neutral’ score. As we have seen before, actual SDs are
highly skewed and clearly violating the assumptions underlying the
Z-SCORE. Hence, we would expect even better performance from
a method that is tailored to the sort of SDs we deal with in IR.

As we will see below, the normal-exponential model gave poor
fits on sub-collections assigned the KL-DIVERGENCE model and
on some with few relevant documents; thus, it would have made a
weak baseline. The historical CDF approach [13] we discussed in
Section 3 is one of the latest well-performing distributional meth-
ods in the literature. It derives a transfer function from historical
data (hence we call its simplified version without the extraneous

6The average precision over n engines with disjoint content, when
averaged over all possible orderings, is equal to Pn for all ranks
down to n. We omit the full proof but only calculate the Pn and
P1: Suppose that m (0 ≤ m ≤ n) engines have a relevant top re-
sult. No matter how the engines are ordered, at rank n we will have
selected precisely the top result of all n engines, and hence Pn will
be m/n. What will the P1 be? In exactly m of the choices of the
first engine, P1 will be 1, and in the remaining n − m choices of
the first engine, P1 will be 0. Hence, averaging over all possible
orderings, average P1 will also be m/n. The proof for the interme-
diate ranks is more elaborate, but follows similar arguments, and is
omitted.

standardization step—as we argued in Section 3.3—HIS), and its
effectiveness is shown in Table 2. As it turns out, HIS is also signif-
icantly better than ROUNDROBIN. On TREC-123, HIS is similarly
effective to Z-SCORE, and on the topically clustered TREC-4 it is
clearly better than Z-SCORE. HIS achieves roughly 50% of the pre-
cision obtained on the full index in Table 1. Hence, we will use HIS
as a strong baseline for the experiments with the signal-to-noise
approach.

6.3 Runs
We compared HIS against the older normal-exponential normal-

ization NORMEXP, and the new signal-to-noise methods S/N, S/N-
∗HIS, and S/N∗SIG.

As historical queries we used the <desc> fields of the remain-
ing TREC topics 151-200 in order to a) construct the transfer func-
tions for the HIS runs, and b) set the average query length parame-
ter of both artificial query models to λ = 23.3 and k0 = 24. [13]
reported good end-results even with only 25-50 historical queries,
and since we only have 50 historical, we use 50 artificial ones for
the signal-to-noise runs per query type (i.e. 50 for signal and 50 for
noise).

Figure 5 shows the high-ends of some typical transfer functions.
For illustration we randomly selected 3 engines, one for each re-
trieval model, and depict the log-odds of the output scores since
they are very close to 1. The calculations are limited by the ma-
chine and software arithmetic precision at around 36.74 log-odds,
where the transfer functions flatten out. The extend of the non-flat
areas were deemed sufficient for the distributed retrieval setup for
three out of the four methods; only S/N moves to too large num-
bers sometimes a bit too early, i.e. before the top score of a run is
reached. We employed kernel density estimation techniques [28]
for estimating the required probability densities from data.

Concerning the NORMEXP run, using EM for parameter estima-
tion without relevance judgements or any indication of where the
component densities may lie, is a very difficult task. We tried fit-
ting all scores in [speak, +∞] but the reasonable fits did not cap-
italize in end-results; fitting, e.g., on a fixed top-1,000 gave better
retrieval precision. We tried numerous initial settings in EM, but no
settings seemed universal. While some settings helped a lot some
queries, they had a negative impact on others. After a few cycles
of optimizing-evaluating, we obtained the best end-results for the
following settings: fit on the top-100 scores with initial parameter
values for the densities (i.e. the means of the normal and exponen-
tial, and standard deviation of the normal) bootstrapped randomly
in the interval (s100, s1) and a mixing parameter in (0, 1). The ran-
dom initial parameters approach worked better than looking into
specific ranges, because we run EM ten times and selected the fit
with the least square error with the score data.

We did two batches of runs: with and without resource selection.
Without resource selection, retrieval was performed on all sub-
collections. All document scores per engine were passed through
the engine’s transfer function, and the resulting ranked lists from all
engines were simply merged. For the runs with resource selection,
we merged only the results of the top-10 sub-collections as selected
by CORI.

6.4 Results and Discussion
Table 3 presents the distributed retrieval results without resource

selection. Compared to the most similar—but not directly compara-
ble—setup in the literature, namely that of [21] on TREC-123 only,
our precision seems to be lower. Our setup is more challenging than
the last-cited study due to the use of 3 different retrieval models as-
signed in a round-robin fashion over the 100 sub-collections rather

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

ou
tp

ut
 s

co
re

input score

TR AN S FE R FU N C TIO N S - AP 88_1 with TF .ID F

H IS
S /N

S /N *H IS
S /N *S IG

 0

 5

 10

 15

 20

 25

 30

 35

-5 -4 .5 -4 -3 .5 -3 -2 .5 -2

ou
tp

ut
 s

co
re

input score

TR AN S FE R FU N C TIO N S - S JM 91_2 with KL-D IV E R G E N C E

H IS
S /N

S /N *H IS
S /N *S IG

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100 110 120

ou
tp

ut
 s

co
re

input score

TR AN S FE R FU N C TIO N S - Z IFF2_3 with O KAP I

H IS
S /N

S /N *H IS
S /N *S IG

Figure 5: Score transfer functions for a) TF.IDF, b) KL-DIVERGENCE,
and c) OKAPI. The ‘hidden’ function is the S/N∗HIS curve, which over-
laps with S/N and S/N∗SIG at low input scores and with HIS elsewhere.

than just a single model. Furthermore, we did not tune anything on
the collection but used the default LEMUR settings.

Overall, the S/N∗HIS and S/N∗SIG runs show significant improve-
ments over the strong baseline of HIS, while the consistent improve-
ments in S/N are mostly non-significant. S/N∗SIG obtains roughly
70% of the scores on the full index in Table 1. NORMEXP is dis-
appointing across the board, especially for the topically clustered
TREC-4, and it does even worse than ROUNDROBIN shown in Ta-
ble 2.

Table 3: Distributed retrieval results for TREC-123 and TREC-4 over
all 100 engines. Significant-tested with a bootstrap test, one-tailed, at
significance levels 0.05 (◦), 0.01 (•◦), 0.001 (•).

TREC-123
run P5 P10 P15 P20 P30
HIS 0.2500 0.2400 0.2240 0.2165 0.2047

NORMEXP 0.1700•◦ 0.1590•◦ 0.1440• 0.1375• 0.1323•

S/N 0.2620 - 0.2630 - 0.2533 - 0.2495◦ 0.2290 -

S/N∗HIS 0.3200• 0.3020• 0.2860• 0.2770• 0.2537•

S/N∗SIG 0.3680• 0.3380• 0.3180• 0.3095• 0.2790•

TREC-4
run P5 P10 P15 P20 P30
HIS 0.2280 0.1920 0.1627 0.1540 0.1487

NORMEXP 0.0840• 0.0780• 0.0693• 0.0600• 0.0487•

S/N 0.2080 - 0.1980 - 0.1800 - 0.1740 - 0.1560 -

S/N∗HIS 0.2720◦ 0.2380•◦ 0.2067•◦ 0.1920•◦ 0.1740◦

S/N∗SIG 0.2600 - 0.2400◦ 0.2173•◦ 0.2090• 0.1793◦

Table 4: Distributed retrieval results for TREC-123 and TREC-4 over
the 10 engines selected by CORI resource selection. Significant-tested
with a bootstrap test, one-tailed, at significance levels 0.05 (◦), 0.01 (•◦),
0.001 (•).

TREC-123
run P5 P10 P15 P20 P30
HIS 0.3280 0.3030 0.2827 0.2630 0.2283

NORMEXP 0.3220 - 0.2920 - 0.2747 - 0.2595 - 0.2280 -

S/N 0.3060 - 0.2830 - 0.2553◦ 0.2460 - 0.2160 -

S/N∗HIS 0.3420 - 0.3060 - 0.2773 - 0.2590 - 0.2223 -

S/N∗SIG 0.3540 - 0.3120 - 0.2740 - 0.2580 - 0.2217 -

TREC-4
run P5 P10 P15 P20 P30
HIS 0.2840 0.2560 0.2320 0.2040 0.1800

NORMEXP 0.2400 - 0.1980◦ 0.1720◦ 0.1540◦ 0.1353◦

S/N 0.2440 - 0.2320 - 0.2160 - 0.1950 - 0.1747 -

S/N∗HIS 0.2960 - 0.2680 - 0.2320 - 0.2060 - 0.1793 -

S/N∗SIG 0.3000 - 0.2760 - 0.2480 - 0.2170 - 0.1827 -

Table 4 presents the distributed retrieval results with resource
selection. Here, HIS performs substantially better than in Table 3
above. Also NORMEXP now performs very close to the baseline
of HIS in TREC-123, but it still loses in TREC-4. Overall, S/N
tends to be less effective than HIS, but the differences are mostly
insignificant. S/N∗HIS and S/N∗SIG are most of the time better than
HIS but also here the differences are insignificant.

While NORMEXP is disappointing in the distributed experiment,
it works well in fusion, as other studies have found in the past.
Further examination revealed two main reasons for not performing
well in this particular distributed retrieval experiment. First, some
sub-collections have very few or no relevant documents. In these
cases, Gaussian fittings became spurious, hurting end-performance.
Resource selection effectively eliminates most of this problem. Sec-
ond, the KL-DIVERGENCE, as shown in Figure 2, was a problem-
atic model fitting-wise. In the current setup, we obtained reason-
able normal-exponential fits on the SDs produced by OKAPI and
TF.IDF, with the latter giving the best fits.

Remarkably, while S/N and S/N∗HIS are also profiting from CORI,
S/N∗SIG tends to perform worse on the 10 selected engines than on
all engines in Table 3. Apparently, this normalization does not need
resource selection, or in other words it takes care of resource selec-
tion by assigning the higher scores to the engines containing the

relevant documents. Of course, resource selection may be needed
in practice for efficiency reasons.

7. CONCLUSIONS
We investigated new methods for score normalization, a funda-

mental IR problem affecting all settings where results from differ-
ent search engines have to be compared or merged. The approach
taken deduces normalization functions from the observed aggregate
SDs for statistically well-defined query inputs. For this purpose,
we have developed two concrete input query models, one for natu-
ral language fragments and the other for garbage/noise, dealing not
only with the choice of keywords but also with query length. These
query models produce SDs which are supposed to approximate the
score signal and noise of each engine, but—despite the positive
end-results—they may not be the best for the purpose. Further re-
search into more suitable input query models may lead to improved
performance.

The proposed normalization methods characterize each engine
with a single score transfer function. The implicit assumption made
is that engines provide ‘stable’ outputs, in the sense that scores pro-
duced by a given engine for different queries are at least compara-
ble with each other. In this respect, we generated SDs for ‘average’
queries. Nevertheless, if the SDs of a retrieval model are affected
greatly by some specific query feature, e.g. the sum of IDFs, query
length, etc., then profiling could be done in ranges of values of
such a feature. The methods may be computationally expensive
but practically feasible and efficient, since transfer functions can
be pre-calculated offline and may only have to change with signifi-
cant collection updates.

We conducted a series of experiments trying to establish the
practical utility of the resulting normalization methods for merging
rankings in a distributed retrieval setup. In a first set of experiments
we compared existing methods of score normalization: i) round-
robin corresponding to score normalizations that maps the highest
score to 1, ii) z-score as an non-IR normalization method that takes
the distribution into account, and iii) a cumulative density function
(CDF) derived from aggregating scores resulted from a set of his-
torical queries. The results clearly showed that taking the shape of
the SD into account leads to significantly better performance. We
decided to take the historical CDF approach, performing at roughly
50% of the non-distributed runs, as a strong baseline for further
experiments.

The second set of experiments investigated the effectiveness of
the signal-to-noise approaches, in relation to the earlier normal-
exponential model and to the historical CDF method. The signal-
to-noise methods led to significantly better performance than the
historical CDF method, performing as high as 70% of the non-
distributed runs. We also compared against the normal-exponential
mixture model for score normalization—its first evaluation in a dis-
tributed setup as far as we are concerned—whose performance did
not live up to its underlying theory. The review of the normal-
exponential should serve as a starting point for improving mixture
SD models.

Any mixture model would be bound by sparse, incomplete, or
biased relevance, making the estimation of the component densi-
ties difficult. The sparsity weakness showed up in our distributed
retrieval experiments where some sub-collections had few or no rel-
evant documents. Where enough relevant documents exist, or when
some relevance judgements are given, the model has performed
well as shown in previous studies. In addition, its lack of universal-
ity affected greatly our results: the mixture did not fit well in one
of the three retrieval models we used, namely, the KL-divergence.
How we dealt with the non-convexity may have also played a role;

effectiveness may vary across different ways of fixing the problem,
especially in tasks favoring initial precision.

The third set of experiments looked at the effectiveness of the
above methods in combination with resource selection (RS). With
RS, the signal-to-noise methods still improve over the historical
CDF method, but the improvement is no longer significant. Where
the RS leads to substantial better scores for the historical CDF
method, it fails to improve for the signal-to-noise approach. This
can be interpreted as a positive sign. In an ideal normalization,
e.g. where scores are normalized to probabilities of relevance, any
kind of RS will hurt effectiveness. In such an ideal situation, the
more systems one combines, the better the effectiveness. The fact
that RS no longer improves the effectiveness of distributed retrieval
suggests that we are breaking a ‘theoretical ceiling’ in normaliza-
tion methods. The ultimate goal is to perform as well as the non-
distributed index.

8. ACKNOWLEDGMENTS
This research was supported by the Netherlands Organization

for Scientific Research (NWO), CATCH programme, under project
number 640.001.501. We thank Nir Nussbaum (University of Am-
sterdam) for the programming support, George Paltoglou (Univer-
sity of Macedonia) for the technical advice, and Marijn Koolen
(University of Amsterdam) for participating in the initial valuable
discussions.

9. REFERENCES
[1] L. Adamic and B. Huberman. Zipf’s law and the internet.

Glottometrics, 3(1):143–150, 2002.
[2] A. Arampatzis. Unbiased s-d threshold optimization, initial

query degradation, decay, and incrementality, for adaptive
document filtering. In TREC, 2001.

[3] A. Arampatzis, J. Beney, C. H. A. Koster, and T. P. van der
Weide. Incrementality, half-life, and threshold optimization
for adaptive document filtering. In TREC, 2000.

[4] A. Arampatzis and J. Kamps. A study of query length. In
Proceedings SIGIR’08, pages 811–812. ACM, 2008.

[5] A. Arampatzis, J. Kamps, and S. Robertson. Where to stop
reading a ranked list? Threshold optimization using
truncated score distributions. In Proceedings SIGIR’09,
pages 524–531. ACM, 2009.

[6] A. Arampatzis, S. Robertson, and J. Kamps. Score
distributions in information retrieval. In Proceedings of the
2nd International Conference on Theory of Information
Retrieval (ICTIR’09), pages 139–151, Microsoft Research,
Cambridge, UK, September 2009.

[7] A. Arampatzis and A. van Hameren. The score-distributional
threshold optimization for adaptive binary classification
tasks. In Proceedings SIGIR’01, pages 285–293. ACM, 2001.

[8] L. Azzopardi, M. de Rijke, and K. Balog. Building simulated
queries for known-item topics: an analysis using six
european languages. In Proceedings SIGIR’07, pages
455–462. ACM, 2007.

[9] J. P. Callan. Distributed Information Retrieval, chapter 5,
pages 127–150. Kluwer Academic Publishers, 2000.

[10] J. P. Callan and M. E. Connell. Query-based sampling of text
databases. ACM Transactions on Information Systems,
19(2):97–130, 2001.

[11] K. Collins-Thompson, P. Ogilvie, Y. Zhang, and J. Callan.
Information filtering, novelty detection, and named-page
finding. In TREC, 2002.

[12] M. Fernández, D. Vallet, and P. Castells. Probabilistic score
normalization for rank aggregation. In ECIR’06, volume
3936 of Lecture Notes in Computer Science, pages 553–556.
Springer, 2006.

[13] M. Fernández, D. Vallet, and P. Castells. Using historical
data to enhance rank aggregation. In Proceedings SIGIR’06,
pages 643–644. ACM, 2006.

[14] Le Q. Ha, E. I. Sicilia-Garcia, J. Ming, and F. J. Smith.
Extension of Zipf’s law to words and phrases. In
Proceedings of the 19th International Conference on
Computational Linguistics, pages 1–6. ACL, 2002.

[15] D. Hawking and S. Robertson. On collection size and
retrieval effectiveness. Inf. Retr., 6(1):99–105, 2003.

[16] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Combination
methods for crosslingual web retrieval. In CLEF’05, volume
4022 of Lecture Notes in Computer Science, pages 856–864.
Springer, 2006.

[17] J. H. Lee. Combining multiple evidence from different
properties of weighting schemes. In Proceedings SIGIR’95,
pages 180–188. ACM, 1995.

[18] J. H. Lee. Analyses of multiple evidence combination. In
Proceedings SIGIR’97, pages 267–276. ACM, 1997.

[19] D. D. Lewis. Evaluating and optimizing autonomous text
classification systems. In Proceedings SIGIR’95, pages
246–254. ACM, 1995.

[20] R. Manmatha, T. M. Rath, and F. Feng. Modeling score
distributions for combining the outputs of search engines. In
Proceedings SIGIR’01, pages 267–275. ACM, 2001.

[21] H. Nottelmann and N. Fuhr. From uncertain inference to
probability of relevance for advanced IR applications. In
Proceedings of the 25th European Conference on
Information Retrieval Research (ECIR’03), LNCS 2633,
pages 235–250, 2003.

[22] D. W. Oard, B. Hedin, S. Tomlinson, and J. R. Baron.
Overview of the TREC 2008 legal track. In TREC, 2008.

[23] A. Papoulis. Probability, Random Variables, and Stochastic
Processes. McGraw-Hill, 2nd edition, 1984.

[24] B. D. Ripley and N. L. Hjort. Pattern Recognition and
Neural Networks. Cambridge University Press, New York,
NY, USA, 1995.

[25] S. Robertson. On score distributions and relevance. In
Proceedings of 29th European Conference on IR Research
(ECIR’07), pages 40–51. Springer, 2007.

[26] J. Savoy. Report on CLEF-2003 multilingual tracks. In
CLEF’03, volume 3237 of Lecture Notes in Computer
Science, pages 64–73. Springer, 2004.

[27] S. Sharma, L. T. Nguyen, and D. Jia. Ir-wire: A research tool
for p2p information retrieval. In SIGIR Open Source
Workshop, Seattle, 2006. ACM.

[28] L. Wasserman. All of Statistics: A Concise Course in
Statistical Inference (Springer Texts in Statistics). Springer,
September 2004.

[29] Y. Zhang and J. Callan. Maximum likelihood estimation for
filtering thresholds. In Proceedings SIGIR’01, pages
294–302. ACM, 2001.

[30] I. Zukerman and E. Horvitz. Using machine learning
techniques to interpret wh-questions. In ACL’01:
Proceedings of the 39th Annual Meeting on Association for
Computational Linguistics, pages 547–554. ACL, 2001.

