
Focused Search in Digital Archives

Junte Zhang1 and Jaap Kamps1,2

1 Archives and Information Studies, Faculty of Humanities, University of Amsterdam
2 ISLA, Faculty of Science, University of Amsterdam

Abstract. We present a system description for an archival information
system with three different approaches to gain online access to digital
archives created in the metadata standard Encoded Archival Description
(EAD). We show that an aggregation-based system can be developed on
archival data using XML Information Retrieval (XML IR). We describe
the different stages and components, such as the indexing of the digital
finding aids in an XML database, the subsequent querying and retrieval
of information from that database, and the eventual delivery of that
information to the users in a contextual interface.

1 Introduction

Cultural heritage (CH) information from libraries, museums and archives can
be increasingly found online. In the past, the physical CH artifacts, like books,
paintings or a personal letter, were described and catalogued in paper finding
aids by curators. For example, a user who was looking for a personal letter in
a collection created by a historical person, had to go to an archive to find that
letter by consulting paper finding aids and the archivist. Nowadays, with the
advent of digital finding aids to provide online access to these (unique) physical
artifacts, that is no longer needed. A major benefit for users is that CH materials
are disclosed more effectively and efficiently both in terms of time and effort.

Several metadata schemas are used to create the digital finding aids, such
as Dublin Core, MARC, and increasingly, the international standard Encoded
Archival Description (EAD). The archives, but also manuscript libraries and
museums, are expanding their digital resources by adopting EAD in XML and
putting them online as digital archives, which means that structural CH infor-
mation can be exploited on the Web for web services. The state-of-the-art online
archival finding aids in EAD are a nearly one-to-one mapping of paper finding
aids. A distinct property of the old paper finding aids and hence also the new
ones in EAD, is that these files are long in content and complex in structure
with very deep nesting of the elements in the XML tree hierarchy.

This paper outlines a system description for README1—an online archival
information system that is able to retrieve information within the archives using
three approaches that exploit the granularity and structure of archival finding
aids in EAD using XML Retrieval in order to provide focused access (see Sec-
tion 2). Section 3 continues by explaining the different components of the system
1 Acronym for “Retrieving Encoded Archival Descriptions More Effectively.”

more in detail. We point to the evaluations of the three system approaches in
Section 4, and conclude the paper in Section 5.

2 Related Work

2.1 Encoded Archival Description

An increasing number of archives and manuscript libraries, and also museums,
use the international standard Encoded Archival Description (EAD) to encode
data that describe unique primary resources in the form of archival materials,
such as corporate records and personal (hand-written) papers [5]. These collec-
tions may have millions of unique items, which can be in any form or medium.2

The archives are organized hierarchically. EAD consists of a set of descrip-
tive elements to describe the archives. The three highest level elements are
<EADHEADER>, the optional <FRONTMATTER>, and the archival descriptions in
<ARCHDESC>. The components <Cn> of the whole are nested in <ARCHDESC>,
where n ∈ {01, ..., 12}, see Fig. 4. For example, <C02> is the sub-component of
<C01>, and so on. A component can also be unnumbered. The EAD files can be
deeply nested and lengthy in content with thousands of pages (or more) [5].

There is no shortage of metadata in archival finding aids [4], but is “just a
matter of finding the right hook to make them more accessible.” XML Informa-
tion Retrieval techniques can be employed to deal with this problem and be used
to maximally and most effectively exploit these ‘hooks.’ Using this markup, we
can zoom into any of them—at the same time index and retrieve them.

2.2 XML Information Retrieval

The indexing and retrieving of these ‘hooks’ (elements) is done using XML In-
formation Retrieval (XML IR), which is a branch of Information Retrieval that
deals with the retrieval of arbitrary parts of XML files given the XML structure,
and attempts to use the XML markup of documents to the fullest for ‘focused’
information access by not only providing direct access to a whole document, but
also to a part of the document. The structure is exploited to expose information.

As illustrated in [8], structured text retrieval supports the representation and
retrieval of the individual document components defined by the logical structure
as represented in a hierarchical document, such as an EAD file. This structure
can be distinguished in two types of units [8]: (a) atomic units (or ‘text content
elements’) that only contain text and no XML elements, and (b) composite units
(or ‘nested elements’) that contain other units and can be further ‘decomposed’.
The same is true for EAD, see Fig. 4, where atomic units such as <UNITID>,
<UNITTITLE> or <UNITDATE> are represented as leafs and composite units like
<DID> are non-leaf nodes. However, we extend this representation with mixed
content nodes, i.e. elements that contain both text and other elements. An in-
stance of a mixed node could be the composite unit <UNITTITLE> that may have
been annotated with a semantic tag like <PERSNAME> (which is allowed in EAD).
2 For example, plans, drawings, charts, maps, photographs, audio, and video [5].

1 <EAD>

2 <EADHEADER>

3 [..]

4 </EADHEADER>

5 <ARCHDESC>

6 [..]

7 <C01>

8 [..]

9 <C02>

10 [..]

11 <C03>

12 <DID>

13 <UNITID>

14 [..]

15 </UNITID>

16 <UNITTITLE>

17 [..]

18 </UNITTITLE>

19 <UNITDATE>

20 [..]

21 </UNITDATE>

22 </DID>

23 [..]

24 </C03>

25 </C02>

26 </C01>

27 </ARCHDESC>

28 </EAD>

(a) EAD in XML. (b) EAD as mono-hierarchical schema.

Fig. 1. Representation of Encoded Archival Description as mono-hierarchical
schema using XML elements as nodes for Information Retrieval.

Table 1. Statistics of the archival finding aids, where ** is significant at 0.01
level (2-tailed) using Spearman’s rho and Kendall’s tau.

Source N Content (bytes) Structure (count) Correlation
Mean Median Mean Median Spearman’s ρ Kendall’s τ

NA 2,174 53,571.65 12,974 2,891.46 481 0.9596** 0.8280**
IISH 2,866 11,187.19 1,736 481.93 57 0.7678** 0.5916**
AH 3,119 3,886.96 2,054 117.94 65 0.6958** 0.5310**

3 README System Description

3.1 Digital Finding Aids in XML

We obtained in total 8,159 finding aids from 3 sources: the National Archives
of the Netherlands (NA), the International Institute of Social History (IISH),
and the Archives Hub (AH). The statistics are shown in Table 1, which shows
the number of files from each source, the distribution of the length of content in
bytes (without XML markup) and of the structure in terms of XML tags.

We show that there is strong positive and significant correlation on a 95%
confidence interval between content length and XML markup (Spearman’s ρ and
Kendall’s τ , p < 0.01, 2-tailed). The correlation in the NA data is very strong,
likely due to the length which results in more tags. This correlation is less strong
for the finding aids from the AH or IISH, because their finding aids were shorter,
and sometimes copy-pasted from legacy data, where the conversion to EAD has
not been complete, and hence large chunks of text without XML markup occurs.

3.2 Indexing and Storage

Before the indexing and storage, we preprocess the files to make them strictly
well-formed and valid XML—which was a prequisite for indexing in an XML
database. Many of the files were not well-formed XML (missing closing tags,
wrong nesting), and the ones from the Archives Hub were in SGML. In order to
map them to well-formed XML, we bootstrap the files using the SGML to XML
converter OSX in OpenJade3, then process them again in XML Lint4, and then
cleaning them up (like making all tags uppercase) in HTML Tidy5. Since we deal
with mostly Dutch language data, but for example also French and German, we
used the ISO/IEC 8859-1 character encoding.

The system is based on MonetDB with the XQuery front-end Pathfinder [1]
and the information retrieval module PF/Tijah [3]. All of our 8,159 finding aids
in EAD are indexed into a single main memory XML database that completely
preserves the XML structure and allows powerful XQuery querying. We indexed
the collection without stopword removal, and used the Dutch snowball stemmer.

3.3 Retrieval Model

For the retrieval of individual and any arbritary elements, we employ statis-
tical language models (LM) [6], i.e. the probability distribution of all possible
term sequences is estimated by applying statistical estimation techniques. The
probability of each individual term is calculated using the maximum likelihood
estimate (mle), which corresponds to the relative frequency of a term ti in an
element e, Pmle(ti|e) = tfi,eP

t tft,e
where tfi,e is the term frequency ti normalized

by the sum of all frequencies in an element e.
We estimate the probability that the element model can generate the given

query q. By applying Bayes’ theorem, this can be obtained by

P (e|q) =
P (q|e) · P (e)

P (q)
∝ P (q|e) · P (e) (1)

where P (q) can be ignored for ranking, and the prior P (e) is assumed to be
uniform. The query likelyhood (or conditional probability) is based on a model
that represents an element using a multinomial probability distribution over a
vocabulary of terms. For each element, a model on an element E is inferred,
such that the probability of a term given that model is p(t|e). The model is
then used to predict the likelihood that an element could match a particular
query q. We make the assumption that each query term can be assumed to be
sampled identically and independently from the element model. Applying this
assumption, the query likelyhood is obtained by multiplying the likelihoods of
the individual terms contained in the query:

P (q|e) =
∏
t∈q

P (t|e)n(t,q) (2)

3 http://openjade.sourceforge.net/
4 http://www.xmlsoft.org/xmllint.html
5 http://tidy.sourceforge.net/

http://openjade.sourceforge.net/
http://www.xmlsoft.org/xmllint.html
http://tidy.sourceforge.net/

where n(t, q) is the number of times term t is present in query q.
To deal with zero probabilities because of non-existing terms in case there is

sparse data, smoothing techniques are applied. The retrieval model uses Jelinek-
Mercer smoothing, which is a mixture model between the element model and
the collection as background model, so

P (t|e) = (1− λ) · Pmle(t|e) + λ · Pmle(t|C) (3)

where Pmle(t|C) = eftP
t eft

, eft is the element frequency of query term t in the
collection C, and the λ is set to 0.15.

3.4 Querying and User Interfaces

We discuss now the three approaches deployed in the README system, which
is written in Perl using XHTML, CSS, and JavaScript. The connection with the
database server is made in Perl using a socket and XML RPC. We can search
between different sources and within a source—the provenance is made clear
by showing an icon in front of a result that corresponds to a source. For each
retrieval approach, we also present a user interface (see Fig. 4).

Approach 1: Document Ranking The XML database is queried using XQuery
extended with Narrowed Extended XPath I (NEXI) [7]. For document ranking,
we provide the root element (the whole document) as target element. The fol-
lowing piece of XQuery code in Fig. 2 illustrates the procedure in PF/Tijah for
document ranking that retrieves M number of documents stored in $nodes. The
corresponding interface is depicted in Fig. 4(a).

Approach 2: Element Relevance Ranking For element relevance ranking
(see Fig. 4(b)), we do not provide a structural hint in the form of a target
element, hence any EAD element can be retrieved, including the absolute XPath
of an element, such as /EAD[1]/ARCHDESC[1]/DSC[2]/C01[4]/C02[8]/DID[1].
It describes the position of an element in the XML tree hierarchy. The rest of
the procedure is the same as the document ranking as described above.

Approach 3: Aggregation-based Ranking The approach goes a step further
than the standard element relevance ranking as Fig. 3 and Fig. 4(c) show. It takes
relevance <rel> into account. Any and arbritrary elements can be retrieved. The
retrieved elements are returned in original order as in the XML file, by computing
the distance of the retrieved element to the root node in <num>. We group the
retrieved elements by its creator <file>. Eventually, all retrieved elements are
ordered by these variables with the top N number of elements per archive. In
our system we set this to 8, but it can be made dynamic by allowing users to
move beyond that threshold. As explained in [9], the aggregation-based approach
optimally utilizes the context of the archives.

XQuery snippet
1 let $options := <TijahOptions ir-model="LMS" collection-lambda="0.15" returnNumber="M" />
2 let $query_text := tijah:tokenize("query terms")
3 let $query_nexi := concat("//EAD[about(., ", $query_text, ")]")
4 let $qid := tijah:queryall-id($query_nexi, $options)
5 let $nodes := tijah:nodes($qid)

Fig. 2. XQuery code that illustrates the initialization of system parameters and
the use of NEXI for querying. Here, we search in root nodes only, which corre-
sponds to the full text of the document.

XQuery snippet
6 let $result := for $node at $relevance in $nodes
7 return
8 <result>
9 <rel>{ $relevance }</rel>

10 <num>{ (count($node/preceding::*) + 1) }</num>
11 <file>{ data($node/ancestor-or-self::EAD/@FILE) }</file>
12 [more xpath selections...]
13 </result>
14 let $total := count($result)
15 return <results total="{$total}"> {
16 for $res in distinct-values($result/file)
17 let $cs-group := $result[file = $res]
18 for $cs-group2 at $rank in $cs-group
19 where $rank <= N
20 order by string($cs-group2/file), number($cs-group2/num), number($cs-group2/rel)
21 return
22 <out id="{$res}">{ $cs-group2 }</out>
23 } </results>

Fig. 3. XQuery code that illustrates the retrieval of elements according to rel-
evance, grouping of results by file name, and subsequent re-ordering of the re-
trieved results given the original document hierarchy.

3.5 Result Delivery

The hitlist is connected to the result display with HTTP parameters using CGI:
the query, XPath, source, and file name are always stored in the URL for persis-
tency and to facilitate the analysis of the search logs. The system can deep-link
(with the element and aggregation approaches) by rendering HTML anchors for
each element using its (unique) XPath as anchor identifier. We deliver a result
by physically linking a result to its file, and render its result display with the Ta-
ble of Contents (ToC) using the SAXON XSLT processor6—this is faster than
retrieving everything again from the index. There is minimal transformation
from the original XML file, because EAD is as much document-centric (directly
view-able by users in a browser) as it is data-centric. We use the Yahoo! User
Interface Library (YUI)7 to make the ToC dynamic and enable enhanced inter-
action, see Fig. 5. The ToC can be dragged and collapsed—making it an extra
non-obtrusive tool to locate information within the retrieved file.
6 http://saxon.sourceforge.net/
7 http://developer.yahoo.com/yui/

http://saxon.sourceforge.net/
http://developer.yahoo.com/yui/

(a) Document retrieval.

(b) Element retrieval.

(c) Aggregation-based retrieval.

Fig. 4. An overview of the three approaches in the README system with the
query “koude oorlog spionage” (in English: cold war spying).

4 Evaluation

On the one hand, the system has been (preliminary) evaluated with 9 users,
and more details on this study can be found in [2]. On the other hand, we have
evaluated the system from a system-focused point of view [10]. The user study
showed that the element ranking approach was least appreciated out of the 3. The
aggregation-based approach was appreciated the most. However, the retrieval ex-
periment showed that the element ranking approach has far better retrieval per-
formance than the aggregation-based approach, though the aggregation-based
approach seems to find more relevant results in the beginning due to the orga-
nization of the archives—showing support for the aggregation-based approach.

Fig. 5. Deeplinking to the result display with dynamic Table of Contents.

5 Conclusion

We have formally introduced and described the Retrieving Encoded Archival
Descriptions More Effectively (README) system that provides enhanced access
to cultural heritage information. The system employs the XML IR method as
an alternative, more focused means to gain access to online digital archives,
effectively exploiting the structure to search and find valuable information.

Acknowledgments This research is supported by the Netherlands Organisation for

Scientific Research (NWO) under project #639.072.601.

Bibliography

[1] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational Engine. In
SIGMOD ’06, pages 479–490. ACM, 2006.

[2] K. N. Fachry, J. Kamps, and J. Zhang. Access to archival material in context. In
IIiX ’08, pages 102–109, New York, NY, USA, 2008. ACM.

[3] D. Hiemstra, H. Rode, R. van Os, and J. Flokstra. PF/Tijah: text search in an
XML database system. In OSIR ’06, pages 12–17, 2006.

[4] K. Kiesling. Metadata, metadata, everywhere - but where is the hook? OCLC
Systems & Services, 17:84–88, 2001.

[5] D. V. Pitti. Encoded Archival Description: An Introduction and Overview. D-Lib
Magazine, 5(11), 1999.

[6] J. M. Ponte and W. B. Croft. A language modeling approach to information
retrieval. In SIGIR ’98, pages 275–281, New York, NY, USA, 1998. ACM.

[7] A. Trotman and B. Sigurbjörnsson. Narrowed Extended XPath I (NEXI). In
INEX ’04, pages 16–40, Berlin, Heidelberg, 2004. Springer-Verlag.

[8] T. Tsikrika. Aggregation-based Semi-Structured Text Retrieval. In Encyclopedia
of Database Systems. Springer, Berlin, Heidelberg, 2009.

[9] J. Zhang, K. N. Fachry, and J. Kamps. Access to Archival Finding Aids: Context
Matters. In ECDL ’08, volume 5173 of LNCS, pages 455–457. Springer, 2008.

[10] J. Zhang and J. Kamps. Searching Archival Finding Aids: Retrieval in Original
Order? In ECDL ’09, volume 5714 of LNCS. Springer, 2009.

