
FromNeural Re-Ranking to Neural Ranking:
Learning a Sparse Representation for Inverted Indexing

Hamed Zamani
University of Massachusetts Amherst

zamani@cs.umass.edu

Mostafa Dehghani
University of Amsterdam

dehghani@uva.nl

W. Bruce Croft
University of Massachusetts Amherst

croft@cs.umass.edu

Erik Learned-Miller
University of Massachusetts Amherst

elm@cs.umass.edu

Jaap Kamps
University of Amsterdam

kamps@uva.nl

ABSTRACT
The availability of massive data and computing power allowing for
effective data driven neural approaches is having a major impact
on machine learning and information retrieval research, but these
models have a basic problemwith efficiency. Current neural ranking
models are implementedasmultistage rankers: for efficiency reasons,
the neural model only re-ranks the top ranked documents retrieved
by a first-stage efficient ranker in response to a given query. Neu-
ral ranking models learn dense representations causing essentially
every query term to match every document term, making it highly
inefficient or intractable to rank the whole collection. The reliance
on a first stage ranker creates a dual problem: First, the interaction
and combination effects are not well understood. Second, the first
stage ranker serves as a “gate-keeper” or filter, effectively blocking
the potential of neural models to uncover new relevant documents.

In this work, we propose a standalone neural ranking model
(SNRM)by introducing a sparsity property to learn a latent sparse rep-
resentation for each query and document. This representation cap-
tures the semantic relationship between the query and documents,
but is also sparse enough to enable constructing an inverted index for
the whole collection. We parameterize the sparsity of the model to
yield a retrievalmodel as efficient as conventional termbasedmodels.
Ourmodel gains in efficiencywithout loss of effectiveness: it not only
outperforms the existing termmatching baselines, but also performs
similarly to therecent re-rankingbasedneuralmodelswithdenserep-
resentations.Ourmodel canalso take advantageof pseudo-relevance
feedback for further improvements. More generally, our results
demonstrate the importanceof sparsity inneural IRmodels and show
that dense representations can be pruned effectively, giving new
insights about essential semantic features and their distributions.
ACMReference Format:
Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-Miller,
and Jaap Kamps. 2018. FromNeural Re-Ranking to Neural Ranking: Learn-
ing a Sparse Representation for Inverted Indexing. In The 27th ACM In-
ternational Conference on Information and Knowledge Management (CIKM
’18), October 22–26, 2018, Torino, Italy.ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3269206.3271800

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3271800

1 INTRODUCTION
Retrieving unstructured documents in response to a natural lan-
guage query is the core task in information retrieval (IR). Due to
the importance of this task, the IR community has put a significant
emphasis on designing efficient and effective retrieval models since
the early years. The recent and successful development of deep neu-
ral networks for various tasks has also impacted IR applications.
In particular, neural ranking models (NRMs) have recently shown
significant improvements in a wide range of IR applications, such
as ad-hoc retrieval [16, 20, 34, 49], question answering [51], context-
aware retrieval [55],mobile search [1], and product search [46].Most
of the existing neural ranking models have a specific property in
common: they are employed for re-ranking a small set of potentially
relevant documents for a given query, provided by an efficient first
stage ranker. In other words, since most neural ranking models rely
on semantic matching that can be achieved using distributed dense
representations, computing the retrieval score for all the documents
in a large-scale collection is generally infeasible.

A multistage ranker is a pragmatic approach that seems to com-
bine the advantages of efficiency and effectiveness from the neural
model. However, the multistage setup may be inefficient due to the
multiple, stacked rankers working at query time, and may reduce
effectiveness by limiting the set of documents continuing to the
next stage and by introducing and propagating errors. The repre-
sentations of documents and queries are what makes the traditional
term based rankingmodels fast, and the neural rankingmodels slow.
Queries are short and terms have a highly skewed Zipfian distribu-
tion making each term relatively selective, resulting in a simple join
over very few relatively short posting lists [48]. In contrast, dense
representations have an almost uniform distribution, with every
term (to some degree) matching essentially all documents—similar
to extreme stopwords that we cannot filter out.

Our approach addresses this head-on: by enforcing and rewarding
sparsity in the representation learning, we create a latent represen-
tation that aims to capture meaningful semantic relations while
still parsimoniously matching documents. This is illustrated in Fig-
ure 1, showing that the Zipfian distribution of the term space is
matching far fewer documents than the dense representation re-
turning collection-length posting lists for every term, dramatically
increasing index size and query processing time. However, the latent
sparse representation proposed in this paper mimics the posting list
length distribution of the term based model, even matching fewer
documents than term based models. That is, unlike existing neural
ranking models, we propose to learn high-dimensional sparse repre-
sentations for query and documents in order to allow for an inverted

https://doi.org/10.1145/3269206.3271800
https://doi.org/10.1145/3269206.3271800

0 200 400 600 800 1000
dimension of the representation space (sorted)

0

2000

4000

6000

8000

10000

do
cu

m
en

t f
re

qu
en

cy

term distribution
latent dense representation
latent sparse representation

Figure 1: The document frequency for the top 1000 dimen-
sions in the actual term space (blue), the latent dense space
(red), and the latent sparse space (green) for a randomsample
of 10k documents from the Robust collection.

index based standalone neural ranker. Our model does not require
a first stage ranker and can retrieve documents from a large-scale
collection as efficient as conventional termmatching models, such
as TF-IDF, BM25, or query likelihood models.

Our main goal is learning representations for documents and
queries that result in better matching compared to the original term
vectors and exact matching models, while we still inherit the ef-
ficiency rooted in the sparsity of those representations. So there
are two objectives, introducing sparsity and capturing latent se-
mantic meanings. Based on these two objectives, given a document
or a query, the proposed model first maps each ngram to a low-
dimensional dense representation to compress the information and
learn the low dimensional manifold of the data, and then learns a
function to transform it to a high-dimensional representation pursu-
ing the sparsity as a desired characteristic for these representations.
By aggregating the sparse ngram representations, we obtain a sparse
representation for a text with an arbitrary length, whose sparsity
is a function of the input length; this implies higher sparsity for
queries in comparison with documents, which is desired to have an
efficient retrieval model. We achieve a sparsity ratio in the learned
representations that is comparable to the sparsity ratio in original
term vectors of documents and queries, while we are also able to
better capture the semantic relevance of queries and documents
using simple and efficient vector space matching functions on the
learned representations.

Once our latent sparse representation is trained, we initiate an in-
verted index construction phase that looks at each dimension of the
learned representation as a “latent term” andbuilds an inverted index
from each latent term to each document of the collection. This is an
offline process and the constructed inverted index allows for efficient
retrieval. At query time, we transform a given query to the learned
latent high-dimensional space, and obtain its sparse representation.
Given the small number of non-zero elements of the query repre-
sentation and the constructed inverted index, we are able to retrieve
documents from a large collection efficiently. We also study pseudo-
relevance feedback in the learned semantic space. We train our
models using weak supervision, an unsupervised learning approach
that relies on an existing retrievalmodel, such as query likelihood, to
generate a large volume of training data with weak labels. Weak su-
pervision has been recently proven to be effective for learning neural

ranking models [16, 17] and learning relevance-based word embed-
ding vectors [52]. We conduct extensive experiments with SNRM on
newswire and large-scale web collections and demonstrate the effec-
tiveness of the proposed model. In summary, we show that SNRM
not only performs as efficiently as termmatchingmodels, e.g., query
likelihood, but alsoperformsas effectivelyas re-rankingbasedneural
ranking models. Our model can take advantage of pseudo-relevance
feedback and significantly outperform competitive baselines.

2 RELATEDWORK
In this section, we discuss related work on neural ranking models,
weak supervision, attempts on ranking instead of re-ranking, and
sparse coding for representation learning.

Neural RankingModels Several recent studies have applied deep
neural network methods to a number of IR tasks, including ques-
tion answering [51], ad-hoc retrieval [34, 49], and context-aware
ranking [55]. Neural ranking models can be partitioned into early
and late combination models [16]. They can also be categorized
based on whether they focus on lexical matching or learning text
representations for semantic matching [20, 34].

The early combination models are designed based on the inter-
actions between query and document as the networks’ input. For
instance, DRMM [20] models the interaction between query and
document contents based on histogram analysis. As another exam-
ple, DeepMatch [27] computes the matching score for a text pair by
consideringword sequences. The local component of the duetmodel
in [34] and the neural ranking models proposed in [16, 49] are the
other examples of early combination models.

The late combination models, on the other hand, first learn query
and document representations and then compute the relevance
score by applying a matching function on the learned represen-
tations. DSSM [21] is example of a late combination model that uses
a fully-connected feed-forward network for representation learn-
ing. C-DSSM [43] is an extension of this model that makes use of
convolutional neural networks to capture term dependencies. The
distributed component of the duet model [34] also uses a similar
architecture for learning document representation. Most recently,
NRM-F [58] takes advantage of convolutional networks to represent
semi-structured documents.We refer the reader to [33] that provides
an overview of neural ranking models.

Our model also belongs to the second category. The main differ-
ence between our model and the existing ones is the sparseness of
the learned representations that allows us to construct an inverted
index for efficiency purposes.

WeakSupervision Limited trainingdata has been aperennial prob-
lem in information retrieval, and many machine learning-related
domains [57]. This has motivated researchers to explore building
models using pseudo-labels. For example, pseudo-relevance feedback
(PRF) [4] assumes that the top retrieved documents in response to
a given query are relevant to the query. Although this assumption
does not necessarily hold, PRF has been proven to be effective in
many retrieval settings [24, 41, 59]. Building pseudo-collections and
simulated queries for various IR tasks could be considered as another
set of approaches that tackle this issue [3, 5].

As widely known, deep neural networks often require a large vol-
ume of training data. Recently, training neural IR models based on
pseudo-labels has been shown to produce successful results [16, 52].

This learningapproach is calledweaksupervision.Dehghanietal. [16]
proposed training a neural ranking model for the ad-hoc retrieval
taskbasedon the labelsgeneratedbyanexistingretrievalmodel, such
as BM25. Zamani and Croft [52] argued that the objective functions
of the general-purpose word embedding models, such as word2vec
[32], are not necessarily equivalent to the objective thatwe seek in in-
formation retrieval. Theyproposed training of relevance-basedword
embeddings based on the relevance models [24] as the weak label.
Following these studies, the idea of training neural IR models with
weak supervision has been further employed [14, 15, 26, 28, 37, 56].
Most recently, Zamani and Croft [53] provided a theoretical foun-
dation for explaining the successful empirical results achieved by
weakly supervised IR models. Moreover, the weak supervision idea
has been also used for improving efficiency in IR models [8]. In this
paper, we train our model with weak supervision by considering the
query likelihood model [40] as the weak labeler.

Ranking Instead of Re-Ranking Asmentioned above, most neu-
ral ranking models learn a dense latent representation for query and
documents [16, 34, 58] to be able to do semantic matching. They re-
rank a small set of documents retrieved by a first stage ranker. Since
it is not possible to score all documents in each collection for every
query, one idea to move from the re-ranking scenario to ranking is
to operate in the vector space and rely on k-nearest neighbors search
to retrieve the top k documents [47]. However, the exact brute-force
k-NN is practically infeasible and an approximation of k-NN [35] is
used to be able to make use of dense representation in the ranking
scenario [6]. Recently, a neural rankingmodel based on approximate
k-NN has been proposed in [47]. However, the proposed model is
not scalable to large-scale collections. In this paper, as an alternative
to approximate k-NNmodels, we focus on learning sparse represen-
tations for inverted indexing which is the industry standard because
of their known efficiency [10].

SparseCoding Sparsity isadesirablecharacteristic for representing
data as not only it is an efficientmodel of data representation, but also
captures the generationprocess ofmost real-world data, in particular
textual data [7, 30]. In the context of deep neural networks, sparsity
is often achieved via regularization [44] and activation functions [2].
In this paper, we also minimize the L1-norm as a regularization term
to introduce sparsity into the learned representations.

3 STANDALONENEURALRANKINGMODEL
In this section, we introduce SNRM as a standalone neural ranking
model based on learning a latent sparse representation. Section 3.1
describes the desirable properties of the model. Section 3.2 details
the neural network architecture. The general design of our model
consists of three phases: i) the training phase (Section 3.3), ii) the
offline inverted index construction phase (Section 3.4), and iii) the
retrieval phase with or without feedback (Sections 3.5 and 3.6).

3.1 Design Desiderata
Designing a standalone neural ranking model that can retrieve doc-
uments from a large-scale collection, instead of re-ranking a small
set of documents returned by a first stage ranker, could potentially
be used in various retrieval engines. Conventional termmatching
retrieval models, such as TF-IDF, BM25, or query likelihood, de-
rive query and document representations based on the atomic units
of natural languages (e.g., words); hence they carry the desirable

property of sparsity which helps efficient retrieval on large-scale
collections. They each use an inverted index built on the search
collection. Based on the idea of using an inverted index for efficient
retrieval, this paper introduces SNRM, a neural network model for
learning standalone rankers based on latent sparse representations.

Similar to representation-focused neural ranking models, e.g.,
[16, 21, 43, 58], our neural framework consists of three major com-
ponents: the query representation ϕQ , the document representation
ϕD , and the matching functionψ . The retrieval score for each query-
document pair (q,d) is then computed as follows:

retrieval score(q,d)=ψ (ϕQ (q), ϕD (d)) (1)
Ourgoal to build a responsive standalone ranker leads to anumber

of requirements on these three components:
• ϕD is a query independent component, and thus can be com-
puted offline. In contrast to previous neural ranking models that
learn low-dimensional dense representations, ϕD should output
a high-dimensional sparse vector. This will allow us to construct
an inverted index based on the learned representations.

• The components ϕQ andψ should be run at query or inference
time (i.e., when producing the ranked output). To obtain a real-
time ranking model, it is necessary to minimize the amount of
computation in these two components.

• The ith element of ϕQ and ϕD should represent the same latent
feature. In other words, the two components ϕQ and ϕD should
provide representations in the same semantic space, which also
implies |ϕQ |= |ϕD |. Considering the first property, this property
also means that the query representation should be sparse.

• The matching functionψ should return zero if there is no overlap
between the indices of non-zero elements in ϕQ and ϕD . This
property, in addition to the previous one, is necessary to build and
use an inverted index for efficient retrieval.

• FunctionsϕQ andϕD use the full capacity of the output space and
do not map queries and documents to a particular subspace. In
other words, for each dimension in the output space, there exists
at least one queryq or documentd such thatϕQ (q) orϕD (d) leads
to a non-zero value for that dimension.
We claim that if the design of a neural ranking model satisfies

the above properties, and the learned query and document repre-
sentations are sufficiently sparse, we are then able to construct an
inverted index from the learned representation by ϕD and retrieve
documents in response to a given query as a standalone ranking,
without the need for a first stage retrieval model.

3.2 Network Architecture
Since the representations learned byϕQ andϕD in SNRMshould rep-
resent the same semantic space, we design our architecture to share
parameters between these components. Furthermore, we need dif-
ferent levels of sparsity in the query and document representations.
This ismainlymotivatedbyefficiency, as akey featureof a standalone
ranker, since the matching function will compute the retrieval score
for all the documents that have anon-zero value for at least one of the
non-zero latent elements in the query representation. So the sparser
the representation of the query is, the less computation is expected.
Furthermore, queries are intuitively much shorter than documents
and contain less information, so to express queries, it makes sense
to have fewer non-zero elements in their representations compared
to the document representations. Using a simple fully-connected

Embedding LayerEmbedding Layer Embedding Layer

Le
ar

ni
ng

La

te
nt

 S
pa

rs
e

Re
pr

es
en

ta
tio

n

Hinge
Loss

Inverted Index

(built on learned sparse
latent representations)

Embedding Layer

Offline

… Sc
or

s

Embedding Layer

…
Document Collection

Sparse Latent Rep.

…

(a) Training time

Embedding LayerEmbedding Layer Embedding Layer

Le
ar

ni
ng

La

te
nt

 S
pa

rs
e

Re
pr

es
en

ta
tio

n

Hinge
Loss

Inverted Index

(built on learned latent
sparse representations)

Embedding Layer

Offline

… Sc
or

es

Embedding Layer

…
Document Collection

Sparse Latent Rep.

…

(b) Inference time

Figure 2: General schema of the proposed SNRMmodel.

feed-forward network for implementing these components is not
an appropriate solution as in this case (due to the shared parame-
ters between ϕQ and ϕD) both query and document representations
would become similar in terms of sparsity ratio, i.e., percentage of
zero elements (see Equation (4)). This results in long queries in the
learned latent space, leading to an expensive matching function.

Based on this argument, we need a representation learningmodel
in which the representation sparsity is a function of the input length.
We propose an architecture based on ngram representation learning.
The intuition behind our model is that we first learn a sparse rep-
resentation for each continuous n words in the given document or
query. The learned sparse representations are then aggregated via
average pooling. In fact, our document representation (and similarly
our query representation) is obtained as follows:

ϕD (d)=
1

|d |−n+1

|d |−n+1∑
i=1

ϕngram(wi ,wi+1,···,wi+n−1) (2)

where w1,w2, ··· ,w |d | denote the terms appearing in document d
with the same order. ϕngram learns a sparse representation for the
given ngram. The query representation is also computed using the
same function. This approach provides two important advantages:

• The number of representations averaged in Equation (2) has a
direct relationship with the input document/query length. There-
fore, the level of the sparsity in the final learned representations
depends on the length of the input text. This results inmore sparse
representations for queries in comparison to documents, which
is desired.

• Using the sliding window for encoding the input words as a set of
ngrams helps to capture the local interaction among terms, hence
the model considers term dependencies. Term dependencies have
been widely known to be useful for improving the retrieval per-
formance [31].

Wemodel our ngram representation function ϕngram by a fully-
connected feed-forward network that reads the input words using

a sliding window over the sequence of their embeddings and en-
codes their ngrams. To this end, we first collect the embedding vec-
tors for each term in the given ngram from an embedding matrix
E ∈R |V |×m whereV andm denote the vocabulary set and the embed-
ding dimensionality, respectively. As discovered in [16, 49, 52], using
relevance-based embedding vectors trained to optimize IR objectives
can lead to significant improvements, compared to those trained by
general-purpose word embedding vectors, such as word2vec [32]
or GloVe [39]. Therefore, E is part of our network parameters that is
learned in an end-to-end training setting. The collectedn embedding
vectors for the given ngram are then concatenated and fed into a
stack of fully-connected layers. These fully-connected layers have
an hourglass structure that forces the information of the input data
to be compressed and passed through a small number of units in the
middle layers that aremeant to learn the lowdimensionalmanifoldof
the data. Then the number of hidden units increases in upper layers
to give us a high-dimensional output, e.g., 20,000. Note that in terms
of the structure and the dimension of layers, the model looks like
an autoencoder. However, unlike autoencoders, we have no recon-
struction loss.Wewill discuss our training in Section 3.3.We employ
rectified linear unit (ReLU) as the activation function in our model.

Our neural architecture for query and document representation
can also be seen as a multi-layer one-dimensional convolutional
network in which the window sizes for all layers except the first one
are set to 1. The window size for the first layer is equal to n, and the
strides are all set to 1. Figure 3 illustrates how a sequence of words
is mapped to a latent sparse representation. This building block of
the model is then used in the offline process of encoding documents
to sparse latent representations to build an inverted index and also
used at inference time to encode submitted queries. The architecture
of this block is parallelizable, which supports an efficient procedure
for encoding queries at inference time.

We define thematching functionψ as the dot product of the query
and document representations. It can be simply proved that dot prod-
uct has all the properties mentioned earlier in Section 3. Making the
model as efficient as possible is our main reason behind using such
a simple function to measure the query-document relevance scores.

Figure 3: Learning a latent sparse representation for a
document.

This component plays a key role in efficiency of the model, since it
is frequently used at inference time (see Section 3.5).

3.3 Training
To train the SNRM framework we have two objectives: the retrieval
objective with the goal of improving retrieval accuracy and the spar-
sity objective with the goal of increasing sparseness in the learned
query and document representations.

LetT = {(q1,d11,d12,y1),···,(qN ,dN 1,dN 2,yN)} denote a set of N
training instances; each containing a query string qi , two document
candidates di1 and di2, and a label yi ∈ {−1,1} indicating which
document is more relevant to the query. In the following, we explain
howwe optimize our model to achieve both of the mentioned goals.

Retrieval Objective We train our model using a pairwise setting
as depicted in Figure 2a. We employ hinge loss (max-margin loss
function) that has beenwidely used in the learning to rank literature
for pairwise models [25]. Hinge loss is a linear loss function that
penalizes examples violating a margin constraint. The hinge loss for
the ith training instance is defined as follows:

L=max
{
0,ϵ−yi

[
ψ (ϕQ (qi),ϕD (di1))−ψ (ϕQ (qi),ϕD (di2))

]}
(3)

where ϵ is a hyper-parameter determining the margin of hinge loss.

SparsityObjective In addition to improving the retrieval accuracy,
our model aims at maximizing the sparsity ratio, which is defined
as follows:

sparsity ratio (®v)=
total number of zero elements in ®v

| ®v |
(4)

Defining 00 = 0, maximizing the sparsity ratio is equivalent to
minimizing the L0 norm:

L0(®v)=
| ®v |∑
i=1

| ®vi |
0 (5)

Therefore, minimizing theL0 norm for the final query and document
representations is also one of our main objectives. However, the L0
norm is non-differentiable, which makes it impossible to train our

model with the backpropagation algorithm. In fact, L0 minimization
is a non-convex optimization problem, and even finding a solution
that approximates the true minimum for L0 is NP-hard [36]. There-
fore, a tractable surrogate loss function should be considered. An
alternative would be minimizing L1 norm (i.e., L1(®v) =

∑ | ®v |

i=1 | ®vi |).
Although it is clear thatwe canminimizeL1 as a term in our loss func-
tion, it is not immediately obvious howminimizing L1 would lead to
sparsity in the query and document representations. Employing the
L1 norm to promote sparsity has a longhistory, dating back at least to
1930s for the Fourier transform extrapolation from partial observa-
tions [11]. L1 has been also employed in the information theory liter-
ature for recovering band-limited signals [19]. Later on, sparsitymin-
imization has received significant attention as a method for hyper-
parameter optimization in regression, known as the Lasso [45].

The theoretical justification for the fact that L1 minimization
would lead to sparsity in our model relies on two points: (1) the
choice of rectified linear unit (ReLU) as the activation function forces
the non-positive elements to be zero (ReLU(x)=max{0,x}), and (2)
the gradient of L1(®v) for an element of ®v is constant and thus inde-
pendent of its value. Therefore, the gradient optimization approach
used in the backpropagation algorithm [42] reduces the elements of
the query and document representation vectors independent of their
values. This moves small values toward zero and thus the desired
sparsity is obtained.

Loss Function The final loss function for the ith training instance
is defined as follows:

L(qi ,di1,di2,yi)+λ L1(ϕQ (qi)| |ϕD (di1)| |ϕD (di2)) (6)
where | | means concatenation. The hyper-parameter λ controls the
sparsity of the learned representations.

TrainingwithWeak Supervision We train our model with weak
supervision, an unsupervised learning approach that benefits from
the pseudo-labels obtained by an existing retrieval model, called
weak labeler. Training neural models with weak supervision has
been shown to be effective for a set of IR tasks, including ranking [16]
and learning relevance-based word embedding [52], as well as a set
of NLP tasks, including sentiment classification [18]. In more detail,
given a large set of queries and a collection of documents, we first
retrieve the documents for each training query qi using the query
likelihood retrieval model [40] with Dirichlet prior smoothing [60]
as our weak labeler. Each training instance (qi ,di1,di2,yi) is then
obtained by sampling two candidate documents from the result list
or one from the result list and one random negative sample from the
collection.yi is defined as:

yi =sign
(
pQL(qi |di1)−pQL(qi |di2)

)
(7)

where pQL denotes the query likelihood probability.

3.4 Inverted Index Construction
The training phase in SNRM is followed by an inverted index con-
structionphase. In thisphase, as showninFigure2b,wefirst feedeach
document in the collection into the trained document representation
component. We look at each index of the learned representation as
a “latent term”. In other words, letM denote the dimensionality of
document representation, e.g., 20,000. Thus, we assume that there
existM latent terms. Therefore, if the ith element of ϕD (d) is non-
zero, then the document d would be added to the inverted index for

Table 1: Collection statistics.

ID collection queries (title only) #docs avg doc length #qrels

Robust TREC Disks 4 & 5 minus CR TREC 2004 Robust Track, topics 301-450 & 601-700 528k 254 17,412
ClueWeb ClueWeb 09 - Category B TREC 2009-2012Web Track, topics 1-200 50m 1,506 18,771

the latent term i . The value of this element is the weight of the latent
term i in the learned high-dimensional latent vector space.

Since documents of a collection canbe assumed to be independent,
the inverted index construction phase will be memory efficient, and
we can feed documents to the document representation component
using mini-batches. Note that in case of incorporating new docu-
ments, there is no need to train the network from scratch; we can
obtain representation for every new document. In Section 4.4, we
have some experiments that support this claim. However, due to
the temporal property of natural languages and invention of new
vocabulary terms, the model can be re-trained, periodically. This
indicates that SNRM is applicable in real-world scenarios.

3.5 Retrieval (Inference)
As illustrated in Figure 2b, at inference time, we first feed the queryq
into the query representation sub-network ϕQ to obtain the learned
sparse representation ®q. Given the dot product definition of ψ at
training time, the retrieval score for each document d at inference
time is computed as:

retrieval score(q,d)=
∑
®qi |>0

®qi ®di (8)

which is a summation over the non-zero elements of ®q. With the
constructed inverted index, the documents with non-zero elements
in the ith index can be retrieved efficiently. Similar to the existing
termmatching retrieval models, such as query likelihood and BM25,
retrieval scores canbe computed via theMapReduce framework [12].

3.6 Pseudo-Relevance Feedback
Pseudo-relevance feedback (PRF) is an approach that assumes that
the top retrieved documents in response to a given query are rele-
vant, and uses those documents for query expansion. This is also
known as a local approach for query expansion [50]. PRF has been
proven to be highly effective in various retrieval tasks [10]. We can
also take advantage of PRF in our SNRM model. To do so, we use
the Rocchio’s relevance feedback algorithm [41] for vector space
models. Let {d1,d2,···,dk } be the topk documents retrieved by SNRM
in response to the queryq. The updated query vector is computed as:

®q∗= ®q+α
1
k

k∑
i=1

®di (9)

where α controls the weight of the feedback vector. Following pre-
vious work on PRF [24, 29, 54, 59], we only keep the top t terms with
the highest values in the updated query vector ®q∗. We then retrieve
documents as described in Section 3.5.

3.7 SNRM Summary
In this subsection, we look at the proposed model as a whole and
discuss what can actually be learned by themodel. From a high-level
perspective, SNRM first maps each text to a dense representation

in a low-dimensional semantic space and then transforms it to a
high-dimensional sparse representation. Based on our retrieval func-
tion (see Equation (8)), our model retrieves documents based on the
“bag of latent terms” assumption. However, query and document
representations are obtained by aggregating ngram representations
that capture local term dependencies. Therefore, what SNRM does is
mapping the input text from a natural language in which sequences
of words matter to a new “latent language” in which term sequences
should not play a significant role. Conceptually speaking, SNRM
is learning a new “language” with new “vocabulary” terms as its
atomic components, and we can benefit from the sparsity of these
atomic components in our retrieval framework.

4 EXPERIMENTS
In this section we empirically evaluate and analyze the SNRM.We
first introduce the data (Section 4.1), the experimental setup (Sec-
tion 4.2), and the evaluation (Section 4.3). We then report a range of
experimental results and analysis in Section 4.4.

4.1 Data

Collections Weevaluate ourmodels using the following twoTREC
collections:Thefirst collection,Robust, consistsof thousandsofnews
articles and is considered as a homogeneous collection. Robust was
previously used in TREC 2004 Robust Track. The second collection,
ClueWeb, is a challenging and large-scale web collection containing
heterogeneous and noisy documents. ClueWeb (i.e., ClueWeb09-
Category B) is a common web crawl that only contains English web
pages. ClueWeb was previously used in TREC 2009-2012Web Track.
The statistics of these collections as well as the corresponding TREC
topics are reported in Table 1. We use the title of topics as queries.

We cleaned the ClueWeb collection by filtering out the spam doc-
uments. The spamfiltering phasewas done using theWaterloo spam
scorer1 [9] with the threshold of 60%. Stopwordswere removed from
all collections and no stemming was performed.

Training Queries Similar to prior work on weak supervision for
information retrieval [16, 52, 53], we generate our weakly labeled
data using several million unique queries obtained from the publicly
available AOL query logs [38]. This dataset contains a sample of web
search queries submitted to the AOL search engine within a three-
month period fromMarch 1, 2006 to May 31, 2006. We only used the
query strings, and no session and click information was obtained
from the query logs.We filtered out the navigational queries contain-
ing URL substrings, i.e., “http”, “www.”, “.com”, “.net”, “.org”, “.edu”.
All non-alphanumeric characters were removed from the queries.
As a sanity check, wemade sure that no queries from the training set
appear in our evaluation query sets. Applying all of these constraints
leads to over 6 million unique queries as our training query set.

1http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/

http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/

4.2 Experimental Setup
We implemented and trained our models using TensorFlow.2 The
network parameters were optimized with Adam [23] based on the
backpropagation algorithm [42]. In our experiments, the learning
rateand thebatchsizewere selected from {5×10−5,1×10−4,5×10−4,
1×10−3, 5×10−3} and {32,64,128}, respectively. Two or three hid-
den layers were used for the ngram representation network (ϕngram)
where n is set to 5. The hidden layer sizes were selected from {100,
300, 500}. The output layer sizewas also chosen from {5k,10k,20k}.3
We select the parameter λ (see Equation (6)) from the [1×10−7,
5×10−9] interval. The dropout keep probability was selected from
{0.6,0.8,1}. We initialized the embedding matrix E by pre-trained
GloVe [39] vectors learned fromWikipedia dump 2014 plus Giga-
words 5.4 The embedding dimension was set to 300. All retrieval ex-
perimentswere carried out using theGalago search engine [10].5We
performed 2-fold cross-validation over the queries in each collection
for tuning the hyper-parameters of our models as well as baselines.

4.3 EvaluationMetrics
To study the effectiveness of SNRM, we report four standard eval-
uation metrics: mean average precision (MAP) of the top ranked
1000 documents, precision of the top 20 retrieved documents (P@20),
normalized discounted cumulative gain [22] calculated for the top
20 retrieved documents (nDCG@20), and recall in the top 1000 doc-
uments (Recall). Statistically significant differences of MAP, P@20,
nDCG@20, and Recall values were computed using the two-tailed
paired t-test with Bonferroni correction at a 95% confidence level.

4.4 Results and Discussion
In this section, we discuss several research questions that are needed
to be addressed and for each we present a set of experiments along
with their results and analysis to address the research questions.

RQ1: How effective is SNRM compared to the baselines?
To address our first research question, we compare our model

against the following baselines:
QL The query likelihood retrieval model [40] with Dirichlet prior

smoothing [60]. The smoothing parameter µ is a hyper-parameter
selected from {100,300,500,1000,1500,2000}.

SDM The sequential dependence model of Metzler and Croft [31]
that takes advantage of term dependencies usingMarkov random
fields in the language modeling framework. The weight of the un-
igram query component, the ordered window, and the unordered
windowwere selected from [0,1]with the step size of 0.05, as the
hyper-parameters of the model. We made sure that they sum to 1.

RM3 A variant of the relevance model proposed by Lavrenko and
Croft [24] that is consideredas a state-of-the-art pseudo-relevance
feedback model [29]. We selected the number of feedback doc-
uments from {5,10,15,20,30,50}, the feedback term count from
{10,20,···,100}, and the feedback coefficient from [0,1]with the
step size of 0.05.

FNRM A pairwise neural ranking model recently proposed by De-
hghani et al. [16] (i.e., Rank Model) that uses fully-connected
feed-forward networks. This model is based on the bag of words

2http://tensorflow.org/
3Due to the GPUmemory constraints, we used a maximum of 20k dimensions.
4https://nlp.stanford.edu/projects/glove/
5https://www.lemurproject.org/galago.php

assumption and uses weighted average of word embedding vec-
tors for query and document representations. As suggested in
[16], this model re-ranks the top 2000 documents retrieved by
query likelihood. Similar to SNRM, this model is trained using
the hinge loss in a pairwise setting. The hyper-parameters of this
model as listed in the original paper [16] were optimized exactly
in the same way as our model (see Section 4.2).

CNRM A neural ranking model based on convolutional networks
to take term dependencies into account. In fact, this model uses
a convolutional layer on top of the word embedding represen-
tations, and then an average pooling layer followed by multiple
fully-connected layers are employed. This model is similar to
CDSSM [43] and NRM-F [58], except in the use of word embed-
ding instead of trigram hashing. This model is also trained with
the same weak supervision data. Hyper-parameter tuning and
training setting of this model are similar to those of FNRM.

To have a fair evaluation, we do not compare our model against
supervised approaches that require labeled training data.

Table 2 reports the results for the proposed model against the
baselines. According to the results, neural ranking models trained
with query likelihood as the weak supervision signal (i.e., FNRM,
CNRM, and SNRM) significantly outperform the query likelihood
model. This indicates that the neural models can generalize their
observations from the weak labeler. This happens since the query
likelihoodmodel is restricted to termmatching and thus suffers from
thevocabularymismatchproblem, however, theseneuralmodels can
do semantic matching learned from a large set of data labeled by QL
as the weak labeler. This learning strategy makes it possible to train
generalizedneuralmodelswithno labeled trainingdata. Theycanpo-
tentially improve theirweak labelers. This has beenalso theoretically
studied in [53]. The results achieved by SNRMandRM3 are compara-
ble on the Robust collection, while SNRM significantly outperforms
RM3 on the ClueWeb collection. Our results also suggest that SNRM
performs on par with the FNRM and CNRM baselines, in terms of
MAP, P@20, and nDCG@20. It is important to keep in mind that
these two baselines are expensive (or even infeasible) to run on large
set of documents and thus, as suggested in [16], they only re-rank the
top 2000 documents retrieved by query likelihood as the first stage
ranker. Therefore, their performances are bounded by the first stage
performance, in terms of recall. However, ourmodel, which is able to
retrieve documents from its own constructed latent inverted index,
canbringup additional relevant documents, even thosewithno strict
vocabulary overlapwith the query. It is notable that the Recall@2000
for the QL model is 0.7409 and 0.3551 on Robust and ClueWeb, re-
spectively. Interestingly, the Recall@1000 achieved by SNRM on the
Robust collection is higher than the obtained recall by QL on the top
2000 documents. Since FNRMandCNRMare re-ranking the top 2000
documents, our Recall@1000 is even higher than the upper-bound
value that can be achieved by any re-ranking baselines, including
FNRM and CNRM, on the Robust collection. Note that given the
shallow-depth pooling done for assessing the ClueWeb documents,
it is not an ideal collection for studying recall-oriented metrics.

It is also worth noting that having a stack of rankers is a com-
mon practice in large-scale real-world search engines. Although
most existing neural ranking models focus on re-ranking as the
final ranker in the stack, our model can be used as an early stage
ranker, and improving recall is desirable in such a ranker. Although
our learning objective does not directly optimize recall, our model

http://tensorflow.org/
https://nlp.stanford.edu/projects/glove/
https://www.lemurproject.org/galago.php

Table2:Performanceof theproposedmodelsandbaselines.Thehighestvaluepercolumnismarked inbold,andthesuperscripts
1/2/3/4/5/6 denote statistically significant improvements compared to QL/SDM/RM3/FNRM/CNRM/SNRM, respectively.

Method Robust ClueWeb

MAP P@20 nDCG@20 Recall MAP P@20 nDCG@20 Recall

QL 0.2499 0.3556 0.4143 0.6820 0.1044 0.3139 0.2294 0.3286
SDM 0.2524 0.36791 0.42421 0.6858 0.1078 0.3141 0.2320 0.33851
RM3 0.286512 0.377312 0.429512 0.749412 0.1068 0.3157 0.2309 0.3298
FNRM 0.281512 0.375212 0.432712 0.723412 0.1329123 0.3351123 0.239213 0.3426123
CNRM 0.280112 0.376412 0.4341123 0.718312 0.1286123 0.3317123 0.23371 0.334513
SNRM 0.285612 0.376612 0.431012 0.74811245 0.1290123 0.3336123 0.235113 0.3393135
SNRMwith PRF 0.2971123456 0.3948123456 0.4391123456 0.7716123456 0.1475123456 0.3461123456 0.2482123456 0.3618123456

0 10 20 30 40 50
of latent terms in query

0.270

0.275

0.280

0.285

0.290

0.295

0.300

0.305

0.310

M
AP

Robust
ClueWeb

0.220

0.225

0.230

0.235

0.240

0.245

0.250

0.255

0.260

nD
CG

@
20

Figure 4: Sensitivity of SNRM with PRF to the number of
non-zero elements in the updated query vector.

improves the baselines in terms of this metric. This indicates that
the learned “latent terms” may carry semantic information that is
useful for information retrieval purposes.

RQ2: How does pseudo-relevance feedback affect the retrieval
performance in the learned latent space?

It is widely known that PRF is effective in many retrieval scenar-
ios [13, 24, 29, 54, 59]. In the next set of experiments, we study the
effectofPRF in thenewsemantic space learnedbySNRM.Weselected
the hyper-parameters α (the feedback weight in Equation (9)), the
number of feedback documents, and the number of feedback “terms”
(the number of non-zero elements in the updated query vector) using
the same cross-validation procedure explained in Section 4.2.

According to Table 2, PRF shows promise in the learned latent
space. The reason is that it uses local information obtained from
the top retrieved documents. In fact, the top retrieved documents
help us to find a better query representation compared to the one
obtained by the original short query. SNRMwithPRFoutperforms all
the baselines, including RM3. All the improvements are statistically
significant.

The performance of the proposed model with respect to the num-
ber of of non-zero elements in the updated query vector (i.e., pa-
rameter t) is shown in Figure 4. As suggested by TREC 2004 Robust
Track and TREC 2009-2012Web Track, we use MAP for Robust and
nDCG@20 for ClueWeb as the main evaluation metrics. According
to Figure 4, the best value for parameter t is 10 for ClueWeb and 20
for Robust, hence dependent on the collection.

0 20 40 60 80 100 120
Training Step (104)

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ar

sit
y

Ra
tio

query vectors sparsity
document vectors sparsity
L1 norm

0

2000

4000

6000

8000

10000

L 1
 n

or
m

Figure 5: Sparsity ratio for query and document representa-
tions plus the L1 normwith respect to the training steps, for
SNRM trained on the Robust collection with 10,000 output
dimensionality and λ=1×10−7.

RQ3:Doesminimizing theL1 normpromote sparsity in the rep-
resentations learned by SNRM?.

Increasing the sparsity in the leaned representations is one of the
objectives of the model and we translate this into minimizing the L1
norm. In order to study whether minimizing the L1 norm promotes
sparsity in the representations, we plot the L1 norm of the learned
representations, as well as the sparsity ratio for the input query
and documents with respect to the training steps. The definition of
sparsity ratio is given in Equation (4). In this experiment, we set the
outputdimensionality to10kandtheparameterλ (seeEquation (6)) to
1×10−7. The results for themodel trainedon theRobust collectionare
plotted in Figure 5. These curves show that decreasing in theL1 norm
increases the sparsity in both query and document representations.
Besides this observation, it is also shown in Figure 5 that the sparsity
in query representations is higher than in document representations.

RQ4: How efficient is SNRM at query time?
As mentioned earlier in Section 1, the efficiency brought by term

matching models comes from the use of inverted index, which is
made possible by the sparsity nature of natural languages. Figure 1
shows that similar to the natural languages, our learned represen-
tations also drawn from a Zipfian-like distribution.6 In addition,
Table 3 reports the number of non-zero elements (i.e., the number
6The small sample shown in Figure 1 doesn’t exhibit the Zipfian distribution exactly, but
it shows the skewed nature that makes the use of an efficient inverted index possible.

Table 3: Number of non-zero elements in the query and doc-
ument representations with 10,000 output dimensionality.

Unique Robust ClueWeb
latent terms... Mean Std. dev. Mean Std. dev.

per document 97.96 447.57 130.24 561.53
per query 3.37 3.04 3.87 4.51

Table 4: Efficiency of SNRM compared to query likelihood,
in terms of average run time (milliseconds) per query.

Method Robust ClueWeb
Mean Std. dev. Mean Std. dev.

QL 35.14 18.43 662.86 746.68
SNRM 46.12 23.11 612.73 640.98

of unique latent terms) in the representations learned for queries
and documents of Robust and ClueWeb. According to the results, the
learned query vectors are much sparser than the document vectors.
This shows that the input length affects the sparsity of the learned
vectors, which is necessary for an efficient retrieval. The sparsity
ratio in Robust is higher than that in ClueWeb. This is due to the
document length (see Table 1 for the statistics of the collections) and
also the diversity of the documents.

Although the shown properties of the learned representations
guarantee an efficient use of inverted index for retrieval, we also
study the retrieval time for the proposedmodel compared to a simple
termmatchingmodel. To do so,we construct aGalago index from the
learned representations and implement our retrieval function (see
Equation (8)) as a retrieval model in Galago. The per query running
time for SNRM is computed as the query representation time plus the
retrieval time. The query representation time is equal to the running
time for pre-processing the query text plus a forward pass through
the network from query text to the final sparse representation of the
query.Theretrieval time is therunning timefor retrievingdocuments
for theobtainedqueryrepresentation fromtheconstructedGalago in-
dex. This experiment was run on amachinewith a Core i7-4790 CPU
@3.60GHz and 32GiB RAM. The average and the standard deviation
of retrieval time per query for both Robust and ClueWeb collections
are reported in Table 4. According to the table, SNRM performs as
efficiently as QL, with clearly sub-second response time on the large
ClueWeb collection and much faster on the small Robust collection.

RQ5: How does sparsity affect the retrieval performance?
To study this research question, Figure 6 plots the retrieval perfor-

mance aswell as the sparsity ratio achieved byvarying theparameter
λ (see Equation (6)). As shown in the plot, when λ is set to 1×10−5,
the model only focuses on reducing the sparsity, meaning that the
learned vector for some queries and documents become all zero.
This results in a poor retrieval performance. On ther other hand,
when representations have enough non-zero elements, the retrieval
performance of the model is stable. For instance, in this case, the
performance achieved by 99% and 91% sparseness ratios are close.

RQ6:Howsensitive is theperformance of themodel to thenum-
ber of unseen documents?

As claimed in Section 3.4, our approach can be also used to in-
dex the documents not seen during the training time. To do so, we

1e-5 1e-6 1e-7 1e-8
λ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
tri

ev
al

 P
er

fo
rm

an
ce

 (M
AP

)

MAP
Sparsity Ratio

0.90

0.92

0.94

0.96

0.98

1.00

Sp
ar

sit
y

Ra
tio

Figure 6: Retrieval performance and sparsity ratio on theRo-
bust collection with respect to different values of parameter
λ. The output dimensionality was set to 10,000.

Table 5: Performance of SNRMon theRobust collectionwith
respect to different amount of random document removal
at training time. The superscript ▽ denotes significant
performance loss in comparison with the setting where no
document is removed (i.e., no removal).

% removal MAP P@20 nDCG@20 Recall

no removal 0.2971 0.3948 0.4391 0.7716
1% removal 0.2953 0.3953 0.4401 0.7691
5% removal 0.2776▽ 0.3807▽ 0.4227▽ 0.7349▽

randomly removed 1% (over 5k documents) and 5% (over 26k doc-
uments) from the Robust collection in two different settings. We
then trained SNRMusing the obtained collections. Once the training
was done, we indexed the whole Robust collection with the trained
models. The results are reported in Table 5. According to the results,
we do not observe a performance loss when 1% of the documents
were omitted from the collection. This indicates the robustness of
SNRM in indexing unseen documents, which is a practical point
in real-world scenarios where the collections frequently change or
new documents are added to the collection (e.g., web). However,
5% document removal leads to significant performance drop. Due
to the size of the collection, removing 5% of the documents may
result in removing a set of vocabulary terms from the collection, and
thus the model cannot learn proper latent representations for the
documents containing unseen vocabulary terms. This suggests that
in real-world scenarios with dynamic collections, the model should
be trained periodically, which is already a common practice.

5 CONCLUSIONS AND FUTUREWORK
In this paper,weproposed a standaloneneural rankingmodel (SNRM),
with an inverted index that results in a small number of short post-
ing lists per query, allowing to retrieve documents from large-scale
collections as efficiently as conventional termmatchingmodels. Our
model learns a high-dimensional sparse representation for queries
and documents, optimized for information retrieval. We then con-
struct an inverted index based on the learned sparse representations.
At inference or query time, we can efficiently retrieve documents
from the entire collection using this inverted index.

We evaluate our models in the context of ad-hoc retrieval using
newswire and web collections, and show that our model performs
comparably with state-of-the-art neural models that re-rank docu-
ments based on the learned dense representations. In addition, we
showed that pseudo-relevance feedback is effective in the learned
latent space and significantly outperforms competitive baselines.

As futurework, we are exploring different ideas to introduce spar-
sity in the learned representation, beyond minimizing the L1-norm,
andways to adapt the loss function to increase the sparsity factor dur-
ing training. More generally, further analysis of the learned sparse
representations is useful to understand which aspects of documents
and queries are captured by the “latent terms” in the sparse represen-
tation space and to investigate to which extent these aspects capture
the notion of relevance for different IR tasks.

Code. An open-source implementation of SNRM is available at
https://github.com/hamed-zamani/snrm/.

Acknowledgements. This workwas supported in part by the Cen-
ter for Intelligent Information Retrieval, in part by NSF #IIS-1715095,
and in part by NWO #314.99.108. Any opinions, findings and con-
clusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect those of the sponsors.

REFERENCES
[1] M. Aliannejadi, H. Zamani, F. Crestani, and W. B. Croft. Target apps selection:

Towards a unified search framework for mobile devices. In SIGIR ’18, pages
215–224, 2018.

[2] D. Arpit, Y. Zhou, H. Ngo, and V. Govindaraju. Why regularized auto-encoders
learn sparse representation? In ICML’16, pages 136–144, 2016.

[3] N. Asadi, D. Metzler, T. Elsayed, and J. Lin. Pseudo test collections for learning
web search ranking functions. In SIGIR’11, pages 1073–1082, 2011.

[4] R. Attar and A. S. Fraenkel. Local feedback in full-text retrieval systems. J. ACM,
24(3):397–417, 1977.

[5] L. Azzopardi,M. de Rijke, andK. Balog. Building simulated queries for known-item
topics: An analysis using six european languages. In SIGIR’07, pages 455–462, 2007.

[6] L. Boytsov, D. Novak, Y. Malkov, and E. Nyberg. Off the beaten path: Let’s replace
term-based retrieval with k-nn search. In CIKM’16, pages 1099–1108, 2016.

[7] Y. Chen and M. J. Zaki. Kate: K-competitive autoencoder for text. In KDD’17,
pages 85–94, 2017.

[8] D. Cohen, J. Foley, H. Zamani, J. Allan, andW. B. Croft. Universal approximation
functions for fast learning to rank: Replacing expensive regression forests with
simple feed-forward networks. In SIGIR ’18, pages 1017–1020, 2018.

[9] G. V. Cormack, M. D. Smucker, and C. L. Clarke. Efficient and effective spam
filtering and re-ranking for large web datasets. Inf. Retr., 14(5):441–465, 2011.

[10] W. B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Retrieval
in Practice. 1st edition, 2009.

[11] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok. Introduction to com-
pressed sensing. In Compressed Sensing: Theory and Applications, pages 1–64. 2012.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

[13] M. Dehghani, H. Azarbonyad, J. Kamps, D. Hiemstra, andM.Marx. Luhn revisited:
Significant words language models. In CIKM ’16, 2016.

[14] M. Dehghani, A. Severyn, S. Rothe, and J. Kamps. Avoiding your teacher’s
mistakes: Training neural networks with controlled weak supervision. CoRR,
abs/1711.00313, 2017.

[15] M. Dehghani, A. Severyn, S. Rothe, and J. Kamps. Learning to learn from weak
supervision by full supervision. InMeta-LearningWorkshop @ NIPS ’17, 2017.

[16] M. Dehghani, H. Zamani, A. Severyn, J. Kamps, andW. B. Croft. Neural ranking
models with weak supervision. In SIGIR’17, pages 65–74, 2017.

[17] M.Dehghani, A.Mehrjou, S. Gouws, J. Kamps, and B. Schölkopf. Fidelity-weighted
learning. In ICLR’18, 2018.

[18] J. Deriu, A. Lucchi, V. De Luca, A. Severyn, S.Müller,M. Cieliebak, T.Hofmann, and
M. Jaggi. Leveraging large amounts of weakly supervised data for multi-language
sentiment classification. InWWW’17, pages 1045–1052, 2017.

[19] D. L. Donoho and B. F. Logan. Signal recovery and the large sieve. SIAM J. Appl.
Math., 52(2):577–591, 1992.

[20] J. Guo, Y. Fan, Q. Ai, andW. B. Croft. A deep relevance matching model for ad-hoc
retrieval. In CIKM’16, pages 55–64, 2016.

[21] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep
structured semantic models for web search using clickthrough data. In CIKM’13,
pages 2333–2338, 2013.

[22] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques.
ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[23] D. P. Kingma and J. Ba. Adam: Amethod for stochastic optimization. In ICLR’15,
2015.

[24] V. Lavrenko andW. B. Croft. Relevance based language models. In SIGIR’01, pages
120–127, 2001.

[25] H. Li. Learning to Rank for Information Retrieval and Natural Language Processing.
2011.

[26] Z. Liao, X. Song, Y. Shen, S. Lee, J. Gao, and C. Liao. Deep context modeling for
web query entity disambiguation. In CIKM’17, pages 1757–1765, 2017.

[27] Z. Lu and H. Li. A deep architecture for matching short texts. InNIPS’13, pages
1367–1375, 2013.

[28] C. Luo, Y. Zheng, J. Mao, Y. Liu, M. Zhang, and S. Ma. Training deep ranking
model with weak relevance labels. InADC’17, pages 205–216, 2017.

[29] Y. Lv and C. Zhai. A comparative study of methods for estimating query language
models with pseudo feedback. In CIKM’09, pages 1895–1898, 2009.

[30] A. Makhzani and B. Frey. K-sparse autoencoders. In ICLR’14, 2014.
[31] D. Metzler andW. B. Croft. A markov random field model for term dependencies.

In SIGIR’05, pages 472–479, 2005.
[32] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed

Representations of Words and Phrases and their Compositionality. In NIPS’13,
pages 3111–3119, 2013.

[33] B. Mitra and N. Craswell. An introduction to neural information retrieval. Found.
Trends Inf. Retr., 2018.

[34] B. Mitra, F. Diaz, and N. Craswell. Learning to match using local and distributed
representations of text for web search. InWWW’17, pages 1291–1299, 2017.

[35] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high
dimensional data. IEEE Trans. Pattern Anal. Mach. Intell., 36(11):2227–2240, 2014.

[36] S. Muthukrishnan. Data streams: Algorithms and applications. Found. Trends
Theor. Comput. Sci., 1(2):117–236, 2005.

[37] Y. Nie, A. Sordoni, and J.-Y. Nie. Multi-level abstraction convolutional model with
weak supervision for information retrieval. In SIGIR ’18, pages 985–988, 2018.

[38] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In InfoScale’06, 2006.
[39] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word

representation. In EMNLP’14, pages 1532–1543, 2014.
[40] J. M. Ponte and W. B. Croft. A language modeling approach to information

retrieval. In SIGIR’98, pages 275–281, 1998.
[41] J. J. Rocchio. Relevance Feedback in Information Retrieval. In The SMARTRetrieval

System: Experiments in Automatic Document Processing, pages 313–323. 1971.
[42] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323:533–536, 1986.
[43] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. Learning semantic representations

using convolutional neural networks for web search. InWWW ’14, pages 373–374,
2014.

[44] F. Sun, J. Guo, Y. Lan, J. Xu, and X. Cheng. Sparse word embeddings using l1
regularized online learning. In IJCAI’16, pages 2915–2921, 2016.

[45] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Series B, 58:267–288, 1994.

[46] C. Van Gysel, M. de Rijke, and E. Kanoulas. Learning latent vector spaces for
product search. In CIKM’16, pages 165–174, 2016.

[47] C. Van Gysel, M. de Rijke, and E. Kanoulas. Neural vector spaces for unsupervised
information retrieval. ACM Trans. Inf. Syst., 2018.

[48] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images, Second Edition. 1999.

[49] C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power. End-to-end neural ad-hoc ranking
with kernel pooling. In SIGIR ’17, pages 55–64, 2017.

[50] J. Xu andW. B. Croft. Query expansion using local and global document analysis.
In SIGIR’96, pages 4–11, 1996.

[51] L. Yu, K. M. Hermann, P. Blunsom, and S. Pulman. Deep learning for answer
sentence selection. InDeep LearningWorkshop @ NIPS ’14, 2014.

[52] H. Zamani andW. B. Croft. Relevance-based word embedding. In SIGIR’17, pages
505–514, 2017.

[53] H. Zamani andW. B. Croft. On the theory of weak supervision for information
retrieval. In ICTIR’18, 2018.

[54] H. Zamani, J. Dadashkarimi, A. Shakery, and W. B. Croft. Pseudo-relevance
feedback based on matrix factorization. In CIKM’16, pages 1483–1492, 2016.

[55] H. Zamani, M. Bendersky, X.Wang, andM. Zhang. Situational context for ranking
in personal search. InWWW’17, pages 1531–1540, 2017.

[56] H. Zamani, W. B. Croft, and J. S. Culpepper. Neural query performance prediction
using weak supervision frommultiple signals. In SIGIR’18, pages 105–114, 2018.

[57] H. Zamani, M. Dehghani, F. Diaz, H. Li, and N. Craswell. SIGIR 2018 workshop on
learning from limited or noisy data for information retrieval. In SIGIR’18, pages
1439–1440, 2018.

[58] H. Zamani, B. Mitra, X. Song, N. Craswell, and S. Tiwary. Neural ranking models
with multiple document fields. InWSDM’18, pages 700–708, 2018.

[59] C. Zhai and J. Lafferty. Model-based feedback in the language modeling approach
to information retrieval. In CIKM’01, pages 403–410, 2001.

[60] C. Zhai and J. Lafferty. A study of smoothing methods for language models
applied to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

https://github.com/hamed-zamani/snrm/

	Abstract
	1 Introduction
	2 Related Work
	3 Standalone Neural Ranking Model
	3.1 Design Desiderata
	3.2 Network Architecture
	3.3 Training
	3.4 Inverted Index Construction
	3.5 Retrieval (Inference)
	3.6 Pseudo-Relevance Feedback
	3.7 SNRM Summary

	4 Experiments
	4.1 Data
	4.2 Experimental Setup
	4.3 Evaluation Metrics
	4.4 Results and Discussion

	5 Conclusions and Future Work
	References

