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1 Extended Abstract?

Retrieving unstructured documents in response to a natural language query is the
core task in information retrieval (IR). Due to the importance of this task, the IR com-
munity has put a significant emphasis on designing efficient and effective retrieval
models since the early years. The recent and successful development of deep neural
networks for various tasks has also impacted IR applications. In particular, neural rank-
ing models (NRMs) have recently shown significant improvements in a wide range of
IR applications, such as ad-hoc retrieval, question answering, context-aware retrieval,
mobile search, and product search. The existing neural ranking models have a specific
property in common: they are employed for re-ranking a small set of potentially relevant
documents for a given query, provided by an efficient first stage ranker. In other words,
since most neural ranking models rely on semantic matching that can be achieved using
distributed dense representations, computing the retrieval score for all the documents
in a large-scale collection is generally unfeasible. Queries are short and terms have a
highly skewed Zipfian distribution making each term relatively selective, resulting in
a simple join over very few relatively short posting lists. In contrast, dense representa-
tions have an almost uniform distribution, with every term (to some degree) matching
essentially all documents—similar to extreme stopwords that we cannot filter out. Our
approach addresses this head-on: by enforcing and rewarding sparsity in the representa-
tion learning, we create a latent representation that aims to capture meaningful semantic
relations while still parsimoniously matching documents. That is, unlike existing neu-
ral ranking models, we propose to learn high-dimensional sparse representations for
query and documents in order to allow for an inverted index based standalone neural
ranker. Our model does not require a first stage ranker and can retrieve documents from
a large-scale collection as efficient as conventional term matching models.

Our main goal is learning representations for documents and queries that result
in better matching compared to the original term vectors and exact matching models,
while we still inherit the efficiency rooted in the sparsity of those representations. So
there are two objectives, introducing sparsity and capturing latent semantic meanings.
Our model aims at maximizing the sparsity ratio, which is defined as the fraction of zero
elements in each latent vector. Defining 00 = 0, maximizing the sparsity ratio is equiv-
alent to minimizing the L0 norm. However, the L0 norm is non-differentiable, which
makes it impossible to train our model with the backpropagation algorithm. Therefore,
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Fig. 1: General schema of the proposed SNRM model.
a tractable surrogate loss function should be considered. An alternative would be mini-
mizing L1 norm.

Figure 1 shows the approach. Based on the two objectives, given a document or a
query, the proposed model first maps each ngram to a low-dimensional dense represen-
tation to compress the information and learn the low dimensional manifold of the data,
and then learns a function to transform it to a high-dimensional representation pursu-
ing the sparsity as a desired characteristic for these representations. By aggregating the
sparse ngram representations, we obtain a sparse representation for a text with an arbi-
trary length, whose sparsity is a function of the input length; this implies higher sparsity
for queries in comparison with documents, which is desired to have an efficient retrieval
model. We achieve a sparsity ratio in the learned representations that is comparable to
the sparsity ratio in original term vectors of documents and queries, while we are also
able to better capture the semantic relevance of queries and documents using simple
and efficient vector space matching functions on the learned representations.

Once our latent sparse representation is trained, we initiate an inverted index con-
struction phase that looks at each dimension of the learned representation as a “latent
term” and builds an inverted index from each latent term to each document of the col-
lection. This is an offline process and the constructed inverted index allows for effi-
cient retrieval. At query time, we transform a given query to the learned latent high-
dimensional space, and obtain its sparse representation. Given the small number of
non-zero elements of the query representation and the constructed inverted index, we
are able to retrieve documents from a large collection efficiently. We also study pseudo-
relevance feedback in the learned semantic space. We conduct extensive experiments
with SNRM on newswire and large-scale web collections and demonstrate the effec-
tiveness of the proposed model. In summary, we show that SNRM not only performs
as efficiently as term matching models, e.g., query likelihood, but also performs as ef-
fectively as re-ranking based neural ranking models. Our model can take advantage of
pseudo-relevance feedback and significantly outperforms competitive baselines.
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