
Learning to Transform, Combine, and Reason
in Open-DomainQuestion Answering

Mostafa Dehghani
University of Amsterdam

dehghani@uva.nl

Hosein Azarbonyad
University of Amsterdam
h.azarbonyad@uva.nl

Jaap Kamps
University of Amsterdam

kamps@uva.nl

Maarten de Rijke
University of Amsterdam

derijke@uva.nl

ABSTRACT
Users seek direct answers to complex questions from large open-
domain knowledge sources like the Web. Open-domain question
answering has become a critical task to be solved for building sys-
tems that help address users’ complex information needs. Most
open-domain question answering systems use a search engine to
retrieve a set of candidate documents, select one or a few of them
as context, and then apply reading comprehension models to ex-
tract answers. Some questions, however, require taking a broader
context into account, e.g., by considering low-ranked documents
that are not immediately relevant, combining information from
multiple documents, and reasoning over multiple facts from these
documents to infer the answer. In this paper, we propose a model
based on the Transformer architecture that is able to efficiently
operate over a larger set of candidate documents by effectively com-
bining the evidence from these documents during multiple steps
of reasoning, while it is robust against noise from low-ranked non-
relevant documents included in the set. We use our proposed model,
called TraCRNet, on two public open-domain question answering
datasets, SearchQA and Quasar-T, and achieve results that meet or
exceed the state-of-the-art.

CCS CONCEPTS
• Information systems→ Question answering; Retrieval mod-
els and ranking; • Computing methodologies → Neural net-
works;

KEYWORDS
Question answering; Multihop reasoning; Transformer; Universal
transformer.

ACM Reference Format:
Mostafa Dehghani, Hosein Azarbonyad, Jaap Kamps, and Maarten de Rijke.
2019. Learning to Transform, Combine, and Reason in Open-Domain Ques-
tion Answering. In The Twelfth ACM International Conference on Web Search

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5940-5/19/02. . . $15.00
https://doi.org/10.1145/3289600.3291012

and Data Mining (WSDM ’19), February 11–15, 2019, Melbourne, VIC, Aus-
tralia. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3289600.
3291012

1 INTRODUCTION
Open-domain question answering aims to satisfy users who are
looking for a direct answer to a complex information need. This re-
quires querying large open-domain knowledge sources like theWeb.
Inferring the answer to a question given multiple documents that
potentially contain the answer, is at the heart of the open-domain
question answering task. Most open-domain question answering
systems described in the literature first retrieve relevant documents
or passages, select one or a few of them as the context, and then feed
the question and the context to a reading comprehension system
to extract the answer [3, 4, 13, 29]. However, information needed
to answer complex questions is not always contained in a single,
directly relevant document that is ranked high. In many cases, there
is a need to read multiple documents, combine them, and reason
over the facts from these documents to be able to give the correct
answer to the question.

For example, in Figure 1, in order to infer the correct answer
to the question: “Who is the Spanish artist, sculptor and
draughtsman famous for co-founding the Cubist movement?”
given the top-ranked document, a reading comprehension system
most likely will extract “Georges Braque” as the answer, which is
not the correct answer. In this example, in order to infer the correct
answer, one has to go down the ranked list, gather and encode facts,
even those that are not immediately relevant to the question, like
“Malaga is a city in Spain,” which can be inferred from a document at
rank 66, and then in a multi-step reasoning process, infer some new
facts, including “Picasso was a Spanish artist” given documents at
ranks 12 and 66, and “Picasso, who was a Spanish artist, co-founded
the Cubist” given the previously inferred fact and the document
ranked third.

In this example, and in general in many cases in open-domain
question answering, a piece of information in a low-ranked docu-
ment that is not immediately relevant to the question, may be useful
to fill in the blanks and complete information extracted from the top
relevant documents and eventually support inferring the correct
answer. However, most open-domain question answering methods
focus on only one or a few candidate documents by filtering out
the less relevant documents to avoid dealing with noisy informa-
tion and operate over the selected set of documents to extract the
answer [26, 34, 35].

https://doi.org/10.1145/3289600.3291012
https://doi.org/10.1145/3289600.3291012
https://doi.org/10.1145/3289600.3291012

…
…

… Picasso was
born in Spain

Picasso, who was a
Spanish artist co-
founded Cubism

D3. […] and through this artistic collaboration, Pablo Picasso and Georges Braque founded Cubism, a
style of painting that shattered traditional forms of artistic representation […]

D1. […] Georges Braque, a major 20th-century artist, sculptor and collagist who co-founded the
Cubist movement, was mobilized into the army in 1914 and […]

D12.[…] Picasso is a notable painter, sculptor, printmaker, and decorative artist who was born in
the city of Málaga […]

D66.[…] When the Spanish city of Malaga wanted to clean up its sleazy portside district, it called
in D*Face, the big street artist […]

Q. Who is the Spanish artist, sculptor and draughtsman famous for co-founding the Cubist movement?

Answer Pablo Picasso

Figure 1: Example complex question answering that requires that information from multiple documents be combined and
some amount of reasoning over the information extracted from those documents. (Best viewed in color.)

In this paper, we propose TraCRNet (pronounced Tracker Net)
to improve open-domain question answering by explicitly oper-
ating on a larger set of candidate documents during the whole
question answering process and learning how to aggregate and
reason over information from these documents in an effective way
while trying not to be distracted by noisy documents. Given the
candidate documents and the question, to generate the answer,
TraCRNet first Transforms them into vectors by applying a stack
of Transformer [32] blocks with self-attention over words in each
document in a layer called Input Encoding. Then, it updates the
learned representations from the first stage by Combining and en-
riching them through a multihop Reasoning process by applying
multiple steps of the Universal Transformer [11] in a layer called
Multihop Reasoning.

Returning to the example in Figure 1, after learning representa-
tions for each top-ranked document and the question, TraCRNet
updates them by applying multiple steps of the Universal Trans-
former. Given the self-attention mechanism and inductive bias of
the Universal Transformer, in the first step, TraCRNet can update
the representation of document D#12 by attending to D#66 (as they
are related by both mentioning Malaga) and augment the infor-
mation in D#12 with the fact that “Malaga is city in Spain,” so the
updated vector of D#12 has the fact that “Picasso is a Spanish artist”
encoded in itself. Then, in the next step of reasoning, TraCRNet
can update the representation of D#3 by attending over the vector
representing D#12 estimated in the previous step, and enrich the
information in D#3 with the fact that “Picasso is a Spanish artist,”
and the updated vector of D#3 has the fact that “Picasso, who was
a Spanish artist co-founded Cubism” encoded in it. After that, dur-
ing answer generation, the decoder can attend to the final vector
representing D#3 and give the correct answer.

TraCRNet has a number of desirable features. First, all the build-
ing blocks of TraCRNet are based on self-attentive feed-forward
neural networks, hence per-symbol hidden state transformations
are fully parallelizable, which leads to an enormous speedup during
training and a super fast input encoding during inference time com-
pared to RNN based models. Second, while there is no recurrence in
time in our model, the recurrence in depth in the Universal Trans-
former used in the Multihop Reasoning layer, adds the inductive
bias to the model that is needed to go beyond understanding each
document separately and combine their information in multiple

steps. Third, TraCRNet has the global receptive field of the Trans-
former based models [11, 32], which helps it to better encode a long
document during Input Encoding as well as perform better inference
over a rather large set of documents during Multihop Reasoning.
And fourth, the hierarchical usage of a self-attention mechanism,
first over words and then over documents, helps TraCRNet to con-
trol its attention both at word and document levels, making it less
fragile to noisy input, which is of key importance while encoding
many documents. All these properties of TraCRNet come together
and lead to an effective and efficient architecture for open-domain
question answering.

We employ TraCRNet on two public open-domain question an-
swering datasets, SearchQA and Quasar-T, and achieve results that
meet or exceed the state-of-the-art.

2 RELATEDWORK
Open-domain question answering aims at answering a user’s ques-
tion using open and available external sources [17]. Different ex-
ternal knowledge sources such as individual textual documents [6]
and collections of documents [33] have been used for answering
questions in open-domain question answering settings.

With the advent of publicly available datasets such as the Stan-
ford QA dataset [28] and the TREC question answering collec-
tions [33], the task of question answering has attracted a lot of
attention. Here, the task is given a question and a passage, to
extract the answer to the question. Neural network based mod-
els [25, 27, 36, 43] are the most successful approaches in this area.
The overall idea behind most of these models is chunking the pas-
sage (locating the boundary where the answer lies) and extracting
the answer. Although these approaches are related to ours, the main
difference is that in our setting instead of one passage, we are given
a set of documents from which the answer should be extracted.

2.1 Machine reading comprehension
Machine reading comprehension based models [4, 10, 13, 22, 24,
34] are the most used methods for extracting an answer in the
question answering task. These models mostly use an attention
mechanism to find themost relevant parts of the given documents to
the question and try to combine these parts and extract the answer
to the question. Most of the existing systems for open-domain QA
rely on a search&read approach in which first a retrieval system
is used for extracting potentially relevant documents (passages)

and then a model is used to infer the answer from the retrieved
documents [4, 8, 14, 15, 21, 34, 35].

Chen et al. [4] are the first who attempt to use the search&read
approach and use a reading comprehension system for reading and
comprehending. It is argued that retrieving documents based on
simple similarity metrics (TF-IDF) can result in a noisy set of docu-
ments (partially relevant documents) and this can have a negative
effect on the performance of the QA system [8, 34]. To overcome this
problem, Choi et al. [8] and Wang et al. [34] try to divide the ques-
tion answering part into paragraph selection and answer selection
steps in which first the most relevant paragraphs are determined
and then an answer is extracted from them.

To avoid neglecting useful information contained in the para-
graphs that are not selected in the paragraph selection step, Wang
et al. [35] weight the paragraphs based on the expected information
included in them and aggregate the information extracted from
different paragraphs.

A similar approach is used by Lin et al. [26] in which first a
paragraph selector is used to filter out noisy paragraphs and then
a paragraph reader is employed to extract essential information
from paragraphs. Finally, all information extracted from different
paragraphs is aggregated to form the answer. The main focus of
this approach is on rapidly skimming all available paragraphs and
focusing more on the selected paragraphs.

We also try to aggregate information included in documents to
answer open-domain questions. However, instead of RNNs as in
Wang et al. [35], we use the Universal Transformer and the recur-
rence in depth for multihop reasoning and add inductive bias to
the model to be able to capture all the complementary information
in several documents. Moreover, instead of filtering out documents,
we let the model attend to all documents and extract information
from them.

2.2 Multihop reasoning
Multihop reasoning is one of the key requirements for reading
comprehension [13, 30, 40]. The main intuition behind multihop
reasoning is extracting essential information needed to answer a
question in multiple steps. Our method also extracts answers of
questions in multiple steps, however, our setting is different as our
task is open-domain questions answering and the input to our task
is a ranked list of relatively long documents.

Using the Universal Transformer [11] as a multihop reasoning
layer in our model allows us to have a notion of temporal states,
similar to the idea of dynamic memory networks [23], and our
model updates its states (memory) in each step based on the output
of previous steps, and this chain of updates can be viewed as steps
in a multihop reasoning process. It is worth mentioning that the
idea of multi-step inference has previously been used in other tasks
such as document summarization [7] and classification [41].

Most of the previous approaches focused on removing noise in
the retrieval steps of the question answering pipeline [4, 14, 15, 19,
34]. However, in our proposed model, we assume that the retrieval
step is fixed and the main challenge is to generate an answer for the
question given a set of documents that can potentially contain the
answer or relevant facts that support understanding the question.

3 TRACRNET
In the setup we consider here, the model is given a question q
and a set of n relevant documents Cq = {D

q
1 ,D

q
2 , . . .D

q
n } retrieved

from the web using a search engine as the input, and the goal is to
“generate” the answer aq to the question q based on the supporting
document(s) in the set Cq .

This is different from the standard Reading Comprehension (RC)
tasks [18, 39]. First of all, in RC a single document (passage) is
given, fromwhich the answer should be extracted. Secondly, in RC a
strong supervision on the positions of the answer spans is available
during training. We also assume that the utilized information or
techniques to retrieve relevant documents are not available to the
model, therefore there is no leverage for getting better-supporting
documents.

In this paper, we propose TraCRNet, which adapts a Transformer
based architecture [11, 32] to the open-domain question answer-
ing setup. TraCRNet is based on the encoder-decoder architecture,
where we have a hierarchy of transformer-based models in the
encoder, where the model can attend first over words and then over
documents [12]. At the bottom, in the Input Encoding layer, we en-
code each document inCq as well as the question with transformer
blocks with tied parameters that are fed by word-level embeddings.
Then, we feed the encoded documents and the question from this
layer to the Multihop Reasoning layer which is, in fact, a univer-
sal transformer block where representations of all documents and
the question get iteratively updated using multiple steps of self-
attention. Then, we use a stack of transformer decoder blocks as
the Output Decoder layer to generate the answer.

The general schema of TraCRNet is depicted in Figure 2. Below,
we explain the details of each of these layers in the model.1

3.1 Input encoding
The Input Encoding layer is in charge of encoding each of the
documents and the question to single vectors given their words’
embeddings. To do so, given matrix H0 ∈ Rm×d , wherem is the
number of tokens in the document/question and each row is a
d-dimensional embedding of the token at each position of the se-
quence, we add a positional embedding PE to encode a notion of
the order in the sequence to the embedding of each token. PE can
be learned during training, but similar to [32], we compute the
sinusoidal position embedding vectors for the position p separately
for each dimension v :

PEp, 2v = sin(p/10, 0002v/d)

PEp, 2v + 1 = cos(p/10, 0002v/d).
(1)

After adding PE to H0, we transform this matrix through a stack
of N Transformer Encoder [32] blocks. In each block we compute
a representation Hi for allm positions in parallel by applying the
multiheaded dot-product self-attention mechanism, followed by a
feed forward network function on Hi−1. We wrap each of these
functions by residual connections and apply dropout [31] and layer
normalization [1] (see the Transformer Encoder in Figure 2.).

1We encourage reading the description of Transformer [32] and Universal Trans-
former [11] models for better understanding of the TraCRNet.

Input Embedding

Transformer
Encoder

Transformer
Encoder

Transformer
Encoder

Universal Transformer Encoder

Document 1 Document 2 Query…

…

Transformer Decoder

Ti
ed

pa

ra
m

et
er

s

Architecture Transformer Encoder

Multi-Head
Self-Attention

input

Word Position
Embedding

Add & Norm

Add & Norm

Feed Forward

N×

SepConv + Pooling

Universal Transformer Encoder

Multi-Head
Self-Attention

Add & Norm

Add & Norm

Transition
Function

T×

Rank
Embedding

Step
Embedding

Transformer Decoder

Masked
Multi-Head

Self-Attention

Input

Word Position
Embedding

Add & Norm
N×

Encoded document/query Encoded input

Multi-Head
Attention

Add & Norm

Add & Norm

Feed Forward

input

Answer

Output probabilities

Linear

Softmax

Input

Encoding

Multi-hop

Reasoning

Output

Decoding

Figure 2: An overview of the TraCRNet architecture.

In the attention function, we use the scaled dot-product attention:

Attention(Q,K,V) = softmax
(
QKT
√
d

)
V , (2)

where Q , K , and V , denote attention query, attention key, and
attention value matrices, respectively. We use multi-head attention
with k heads, as introduced in [32],

MultiHeadSelfAttention(H) = Concat(head1, . . . , headk)WO , (3)
where

headj = Attention(HWQ
j ,HW

K
j ,HW

V
j),

with different projections using trainable parameter matricesWQ ∈

Rd×d/k ,W K ∈ Rd×d/k ,WV ∈ Rd×d/k andWO ∈ Rd×d , which is
a linear projection. So in each block, we update the representation
of the input tokens as follows:

Hi = LayerNorm(Ai−1 + FFN(Ai)), (4)
where

Ai = LayerNorm(Hi−1 +MultiHeadSelfAttention(Hi−1)) (5)
and FFN(·) is a fully connected feed-forward network, which is
applied to each position separately and identically:

FFN(x) = max(0, x .W1 + b1)W2 + b2. (6)
This stack of N Transformer Encoder blocks is followed by a depth-
wise separable convolution [9, 20] and then a pooling function
to get a single vector representation for the whole document (or
the question). Depth-wise separable convolution is defined by a
convolution on each of the feature channels separately, followed
by a point-wise convolution that is applied to project them to a
feature vector with the desirable depth (see [9] for more details).

3.2 Multihop reasoning
Multihop Reasoning is the layer in which the Universal Trans-
former [11] is employed to combine evidence from all documents
with respect to the question within a multi-step process with the
capacity of multihop reasoning. The Universal Transformer is an
extension of the Transformer that has a strong inductive bias by

introducing recurrency in depth. It iteratively refines the represen-
tation for all the input vectors in different positions overT steps. In
our model, the input of the Universal Transformer Encoder is the
set of vectors each representing a document in Cq or the question,
that are computed by the Input Encoding layer.

In each step of the Universal Transformer, givenHt ∈ R(|Cq |+1)×d

and the dimension d of the input vectors, we add two embeddings
toH t : a Rank Embedding that encodes the rank of documents given
by the retrieval system (also used to distinguish the question from
documents) and a Step Embedding that shows the model how many
recurrent steps in depth have been taken so far. We compute both
of these embeddings at time-step t as a single matrix, RSEt , where
its elements are computed as follows:

RSEtr ,2v = sin(r/10, 0002v/d) ⊕ sin(t/10, 0002v/d)

RSEtr ,2v+1 = cos(r/10, 0002v/d) ⊕ cos(t/10, 0002v/d),
(7)

where ⊕ is the elementwise summation, r is the rank of the docu-
ment if the input vector represents a document, and r = 0 if the
input vector represents the question. Following [11], we then ap-
ply multi-head self-attention and the transition function, where
each of these modules is wrapped by residual connections with
dropout [31] and layer normalization [1] on top of them (see the
Universal Transformer Encoder in Figure 2):

H t = LayerNorm(At + Transition(At)), (8)
where

At = LayerNorm((H t−1 + RSEt) +

MultiHeadSelfAttention(H t−1 + RSEt)).
(9)

In our experiments, we use depthwise separable convolution [9] as
the Transition(·) function. The MultiheadSelfAttention(·) function
we used here is described in Equation 3.

In the multihop reasoning layer, the representations of all the
documents and question learned from the previous layer get up-
dated during T steps of iterating over the Universal Transformer
Encode block. Self-attention in this layer allows the model to under-
stand each of the documents based on the information in all the as

well as the question. In addition, the depth-wise recurrency in the
Universal Transformer establishes connections among documents
at each step and lays the ground for performing multihop reasoning
to solve cases similar to what we have shown in Example 1.

3.3 Output decoder
After T steps of refining the representations of documents and the
question in the Universal Transformer Encoder, the final output is
a matrix of d-dimensional vector representations H ∈ R(|Cq |+1)×d

for all the documents in Cq and the question q.
Given this, we use a stack of Transformer Decoder blocks that

share the basic architecture of the Transformer Encoder blocks used
in the Input Encoding. However, first of all, masking is applied to the
self-attention function to prevent attending to the feature tokens
during decoding. Second, after the self-attention function, there is
an Encoder-Decoder attention (which is equivalent to the normal
attention introduced in [2]), where the decoder attends to the output
of the Multihop Reasoning layer, i.e., H , using the same multi-head
dot-product attention function fromEquation 3, butwithQ obtained
from projecting the Transformer Decoder representations, and K
andV obtained from projecting the Universal Transformer Encoder
representations.

The output of the stack of Transformer Decoders is passed
through a linear projection to transform from final decoder state
to the output vocabulary size. Then a softmax is applied to get
the per-token target distributions, yielding a (m ×V)-dimensional
output matrix that is normalized over its rows.

To generate answer from the model at inference time, we run
the model autoregresively [16], where the model consumes the
previously generated symbols at each time step in order to generate
the distribution over the vocabulary for the next symbol. From this
distribution, we select the symbol with highest probability as the
next symbol.

3.4 Architectural choices
Transformer-based models have been shown to achieve impres-
sive results on many sequence modeling tasks [5, 11, 32, 42] and
they are easily parallelizable, making them an attractive alterna-
tive for RNNs. Besides their strength at sequence modeling and
parallelizability, there are properties associated with them that are
particularly helpful in our setup.

In TraCRNet, we use a Transformer [32] at the Input Encoding
layer that receives token-level embeddings of documents/question
and learns a single vector representation for them. In this level,
first of all, dealing with long documents/passages is desirable and
the global receptive field of the transformer model helps them to
encode long sequences. In addition, although generalization is of
key importance in all machine learning-based approaches, having
a model with large capacity can help the model to memorize the
meaning of infrequent words and improve the quality of the an-
swers. We can simply train a relatively large transformer model in
a really efficient time.

In theMultihop Reasoning layer, we use a Universal Transformer
[11], which not only has the ability to generalize due to recurrence
in depth but also possesses a strong inductive bias that enables
the model to learn iterative or recursive transformations. On top
of this, the Universal Transformer is Turing complete. These two

Table 1: Statistics of the datasets

Dataset #train #dev #test

SearchQA 99,811 13,893 27,247
Quasar-T 28,496 3,000 3,000

properties can be crucial for tasks in which learning multi-step
reasoning is needed. In the Multihop Reasoning layer, we already
have representations of all documents and the question that are
learned independently and a relatively light Universal Transformer
model can do a great job in combining the information in different
documents and reason about them, over multiple steps.

From an even broader point of view, the combination of the
Transformer to encode local information and the Universal Trans-
former to combine global information will bring the model enough
memorization as well as the ability of generalization.

We use depth-wise separable convolution on top of the Trans-
former model in the Input Encoding layer and as the transition func-
tion in the Universal Transformer in Multihop Reasoning layer. The
main reason is that depthwise separable convolutions reduce the
number of parameters and computation used in convolutional oper-
ations while increasing representational efficiency. We observed a
better performance compared to the case of using a fully connected
feed-forward network instead of depthwise separable convolution
while it has a lower number of trainable parameters.

4 EXPERIMENTAL SETUP
4.1 Datasets
We have conducted experiments on two publicly available open-
domain question answering datasets: SearchQA [15] and Quasar-
T [14]. In both of these datasets, candidate documents (passages)
for each question have already been retrieved using a search engine
and we do not add any extra documents to these result sets. On
both datasets, the human performance is evaluated in a setup where
the human subjects try to find the answers to the given question
from the same documents retrieved by the IR model.

4.1.1 SearchQA. SearchQA2 is a dataset of 140k question-answer
pairs crawled from J! Archive, and augmented with text snippets
retrieved using the Google search engine. For each question-answer
pair, on average, about 50 web page snippets have been collected.
In our experiments, we do not use the additional meta-data in the
dataset like the snippet’s URL.

4.1.2 Quasar-T. Quasar-T3 consists of 43k open-domain trivia
questions and their answers obtained from various internet sources.
The set of candidate documents for each question is retrieved using
“Lucene” from the ClueWeb09 corpus as the background corpus.
In this dataset, for each question-answer pair, a set of 100 unique
passages were collected as candidate documents.

4.2 Model configuration and experimental
setup

We useWordPiece embeddings [38] with a 32k token vocabulary. In
both Input Encoder and Output Decoder layers, we use a stack of 6
Transformer blocks with hidden_size = 512, num_attention_heads
2https://github.com/nyu-dl/SearchQA
3https://github.com/bdhingra/quasar

https://github.com/nyu-dl/SearchQA
https://github.com/bdhingra/quasar

= 8, and batch_size = 2, 048. The rest of the hyper-parameters are
set to the default values of the Transformer model. In the Multihop
Reasoning layer, we have a Universal Transformer Encoder with hid-
den_size = 512 and num_attention_heads = 4. We set the number
of recurrent steps in depth to 12. The rest of the hyper-parameters
are set to the default values of the Universal Transformer model. We
train with batch size of 4, 096 tokens. We use Adam with learning
rate of 1 × 10−9, β1 = 0.9, β2 = 0.98, L2 weight decay of 1 × 10−4,
learning rate warmup over the first 16, 000 steps, and linear decay
of the learning rate. We use a dropout probability of 0.1 on all lay-
ers. Since in our model answers are generated using the decoder
instead of extracting from the context (detecting spam), to improve
the quality of generation, we pretrain all the parameters of the
Transformer decoder downstream of the task of language modeling.
The embeddings are shared between encoder and decoder, thus the
Input Embedding layer also enjoys the pretraining. This helps to im-
prove the performance especially in terms of metrics that consider
the exact match of the generated answer with the ground truth.
During the training of the model, we use teacher-forcing, i.e., the
decoder input is the gold target, shifted to the right by one position
which is the usual setup for training autoregressive models [37].

In our experiments, TraCRNet and its variants are trained on 8
P100 GPUs for 800k training steps. For both datasets, a prepared
version by Wang et al. [34] is used in our experiments to train and
evaluate the TraCRNet as well as all the baselines. The statistics of
the datasets are presented in Table 1. As theCq , we consider top-50
top documents for the SearchQA, and top-100 for the Quasar-T.
Following previous work on reading comprehension and open-
domain question answering [3, 26, 30, 34, 35] as our evaluation
metrics we adopt the F1 score, that loosely measures the average
overlap between the predicted answer and the ground truth answer,
and Exact Match (EM) that measures the percentage of predictions
that match one of the ground truth answers exactly.4

5 RESULTS AND DISCUSSION
5.1 Baselines
We compare our results with the best reading comprehension and
open-domain question answering models as well as research that
achieves state-of-the-art on the SearchQA andQuasar-T datasets. To
have a true apples-to-apples comparison, we only consider baselines
that use no additional resources to solve the task for these datasets.
We use the following methods as baselines:

(1) BiDAF [29], which is a reading comprehension model with bi-
directional attention flow network that uses the concatenation
of top-ranked candidate documents as the context.

(2) R3 [34], which is a reinforcement learning approach that uses a
ranker for selecting the most confident paragraph to train the
reading comprehension model.

(3) Wang et al. [35]’s model, which learns to re-rank the answers
extracted by applying an R3 model onmultiple documents based
on coverage and strength of each of the documents given the
question.

(4) Lin et al. [26]’s model, which is the most recent paper achiev-
ing state-of-the-art performance on the datasets we use for

4We use the tool from SQuAD [28] for evaluation.

Table 2: Performance of TraCRNet compared to the baseline
models

model SearchQA Quasar-T

EM F1 EM F1

BiDAF [29] 28.6 34.6 25.9 28.5
R3 [34] 49.0 55.3 35.3 41.7
Wang et al. [35] 57.0 63.2 42.3 49.6
Lin et al. [26] 58.8 64.5 42.2 49.3
TraCRNet 52.9 65.1 43.2 54.0

Human Performance 43.9 – 51.5 60.6

evaluation. They propose to decompose the process into a doc-
ument selection to filter out noisy paragraphs, and a paragraph
reader to extract the correct answer from the filtered docu-
ments. Finally, they aggregate multiple answers to obtain the
final answer.

Table 2 presents the results of the baseline models, TraCRNet, and
the human performance on both datasets.

5.2 Main results
TraCRNet outperforms all the baselines and achieves a new state-of-
the-art (to the best of our knowledge) on the Quasar-T dataset and
performs as good as the best performing baseline on the SearchQA
dataset. The main advantage of TraCRNet over the baselines is
that it makes “full” use of the information of “all” the candidate
documents inCq . The models proposed by Lin et al. [26] and Wang
et al. [35] are the strongest baselines on these datasets. Although
they try to capture evidence from multiple sources by reranking or
aggregating answers extracted from different documents, they filter
out documents that are less likely to help at the beginning of the
process. In this fashion, they lose the chance of using information
from documents that are not directly relevant, like documents #12
or/and #66 in Example 1. However, TraCRNet keeps operating on
the full set of candidate documents during the whole process and
learns to which extent each document contributes to infer the final
answer.

In SearchQA, we notice that for most of the questions, the answer
can be extracted given a single document and in many cases, no
multi-document multihop reasoning is required. Therefore, since
TraCRNet generates the answer, as opposed to the baseline models
that extract the answer from context, it gets a lower EM score.
However, in terms of F1 score, TraCRNet slightly improves over
the best baseline.

5.3 Effect of multihop reasoning
In order to investigate the effect of the Multihop Reasoning layer,
we handicap TraCRNet by removing this layer and evaluate it in
two cases:

(1) TraCRNetdno-mhr, in which the decoder has access to document-
level representations from the encoder, and

(2) TraCRNetwno-mhr where pooling operation is removed and the
decoder has access to word-level representations from the en-
coder.

Table 3 presents the results of the model in these situations.

(a) Attention distribution when transforming the document at rank 12, in step#3 of multihop reasoning.

(b) Attention distribution when transforming the question, in step#7 of multihop reasoning.

Figure 3: Visualization of multi-head self-attention on Multihop Reasoning layer of TraCRNet. (Best viewed in color.)

Table 3: Performance of TraCRNet with and without the
Multihop Reasoning layer; numbers in parenthesis indicate
percentage of performance loss

model SearchQA Quasar-T

EM F1 EM F1

TraCRNet 52.9 65.1 43.2 54.0
TraCRNetdno-mhr 48.6 (−8%) 61.7 (−5%) 36.4 (−16%) 43.6 (−19%)
TraCRNetwno-mhr 50.2 (−5%) 59.3 (−9%) 38.1 (−12%) 40.2 (−25%)

On all measures and datasets, the performance drops when we
remove the Multihop Reasoning layer. The drop in the performance
is larger on the Quasar-T dataset than on the SearchQA dataset. We
noticed that trivia questions in Quasar-T, in many cases, contain
clauses that should be considered together with and/or operations
to be able to give the correct answer. For instance, to answer the
question “What Australian food was discovered by John McAdam,”
we should consider that “the food is Australian” and “the food is
discovered by JohnMcAdam.” In this situation, the chance of having
multiple documents each containing one of these facts increases.
Thus, having multiple supporting documents and the need for rea-
soning (similar to Example 1) will be the exact point where the
advantage of the Multihop Reasoning layer kicks in.

Another observation here is that when we remove the Multihop
Reasoning layer, passing word-level embeddings from the encoder
to the decoder leads to better EM scores, but not to improved F1
scores. The main reason is that, in this situation, access to the input
words from the decoder is more explicit. This helps the model to
get closer to answer extraction than pure answer generation.

For the test example that is presented in Figure 1, we observed
that all baseline models output “Georges Braque” which is extracted
from the document at rank 1. However, unlike all the baselines,
TraCRNet returns the correct answer. We looked into the atten-
tion distributions in the Multihop Reasoning layer of TraCRNet
at different steps (of the employed Universal Transformer with
12 depth-wise recurrent steps). We were able to find a relation
between attention distributions and the reasoning steps that are
needed to give the correct answer to this question. We illustrate
this in Figure 3.

Figure 3a presents the attention distribution over all documents
and the question while encoding the document at rank 12 at step 3.
TraCRNet has a high level of attention for the document at rank 66
using heads 1 and 4 (blue and red) as well as for the question using
head 3 (green) while transforming the document at rank 12. This
is in accordance with the fact that the model first needs to update
the information encoded in the document at rank 12 with the fact
that “Malaga is a city in Spain” from the document at rank 66.
Later, at step 7, while encoding the question (Figure 3b), TraCRNet
attends over document 12, which has information about “Picasso
who is a Spanish artist” (updated in step 3) using heads 1 and 4
and document 3, which contains information about “Picasso as a
co-founder of Cubism” using head 2 (green).

5.4 Impact of the number of documents
As we explained before, unlike most of the previous work that fil-
ters candidate documents and narrows down the set of documents
under consideration to either a single document or a small set of
highly relevant documents before applying an answer extractor to

Figure 4: Performance in terms of F1 of TraCRNet and base-
lines (R3 [34] and Lin et al. [26]’s model) with different num-
bers of candidate documents on Quasar-T dataset.

them, TraCRNet uses the full set of candidate documents retrieved
by the search engine during the entire process of generating the
answer. This is of great advantage as our analysis shows that, for
some questions, the correct answer can only be extracted when
considering information from low-ranked documents that are not
immediately relevant to the question. However, this can poten-
tially come at the cost of (1) efficiency, as we need to process a
larger input, and of (2) performance, as there will be more noisy
and non-relevant documents when we go down the ranked list of
candidate documents. Making use of self-attentive feed-forward
neural networks as building blocks of TraCRNet brings the ability
of full per-symbol parallelization and leads to an enormous speedup
on encoding the input documents. This lets the model encode a
larger set of candidate documents efficiently.

To study how the performance of TraCRNet is affected by the
number of candidate documents, we train and evaluate TraCRNet
as well as R3 [34] and Lin et al. [26]’s model on the Quasar-T dataset,
using different numbers of candidate documents associated with
each question.5 Figure 4 presents the performance of these models
when they are fed with the top-5, top-10, . . . , top-100 retrieved docu-
ments. As can be seen, although Lin et al. [26]’s model is pretty good
at staying robust when noise increases (it is designed to learn from
distant supervision), increasing the number of candidate documents
eventually leads to a small drop in performance of both baselines
due to the noise in the low-ranked documents. However, TraCR-
Net not only controls the effect of noisy low-ranked documents by
calibrating their effect on inferring the final answer through self-
attention, but it also keeps improving as we increase the number
of documents as it can exploit any useful information contained
in low-ranked documents which can help better understand the
question or perform reasoning.

6 CONCLUSIONS
We have proposed TraCRNet, a method for inferring answers to
questions in an open-domain question answering setting. TraCR-
Net is built around the Transformer to both encode long sequences
5In this experiment, we just change the initial number of candidates, but we train
baseline models with their original setups and do not impose any assumption (e.g.,
fixing the candidate list) on them.

of words and extract the answer from multiple documents which
are potentially relevant to the question. TraCRNet empowers the
encoder-decoder architecture used for reading comprehension with
(1) a powerful multihop reasoning step which can aggregate the
information inferred from multiple documents and the question,
and (2) the inductive bias of the Universal Transformers which lets
the model reason over multiple documents during multiple steps
and go beyond understanding single documents. We have shown
that TraCRNet has a stronger reasoning power than previous ap-
proaches for open-domain question answering and can outperform
the state-of-the-art on two publicly available datasets for this task,
i.e., SearchQA and Quasar-T.

In general, having more supporting documents associated with
questions helps to find high-quality answers [35]. However, adding
more documents can lower the performance due to the noise intro-
duced by non-relevant documents. Hence, an effective open-domain
question answering system should have a mechanism to handle
noise effectively. Our analysis shows that, for some questions, the
answer can only be extracted using information from low-ranked
documents. However, most of the existing approaches focus on
high-ranked documents and either do not consider the documents
at lower ranks or even if they consider low-ranked documents, they
do not have an effective mechanism to remove noise introduced
by them. We showed that TraCRNet can both consider documents
at lower ranks and remove noise when necessary. Besides that,
multihop reasoning has a very high impact on the performance in
the open-domain question answering task. This indicates that to
achieve a good performance, it is very important to reason over
multiple documents and have an effective approach to aggregate
the evidence inferred from them to form the answers of questions,
and TraCRNet excels at this.

There are multiple possible directions to extend the work done in
this paper. In this research, we assumed that a set of documents from
which the answer for a question should be extracted is available and
given. The retrieval step can have a great impact on the performance.
Here, in this paper, we viewed the retrieval step as a black box and
focused on extracting the answer from given documents. In the
end, by exploiting the available documents as much as possible
TraCRNet outperformed the existing baselines that try to optimize
both retrieval and reasoning steps [26, 34, 35]. To achieve even
more improvements, it would be interesting to extend TraCRNet to
jointly optimize both retrieval and reasoning steps.

Furthermore, we limited TraCRNet’s decoder to attend over
hidden states of the encoder at the document-level. An interesting
line of future work would be to also let the model have access to
the hidden states of the encoder at the token-level during decoding.
This can improve the quality of generated answers as the decoder
will have more explicit access to the individual tokens in the input.

Code
The code for re-running all of the experiments in the paper is
available at https://github.com/MostafaDehghani/TraCRNet

Acknowledgments
This research was supported in part by the Netherlands Organiza-
tion for Scientific Research through the Exploratory Political Search
project (ExPoSe, NWO CI # 314.99.108), by the Digging into Data

https://github.com/MostafaDehghani/TraCRNet

Challenge through the Digging Into Linked Parliamentary Data
project (DiLiPaD, NWO Digging into Data # 600.006.014).

This research was also supported by Ahold Delhaize, the Bloom-
berg Research Grant program, Elsevier, the Google Faculty Research
Awards program, the Innovation Center for Artificial Intelligence
(ICAI), the Netherlands Institute for Sound and Vision, and the
Netherlands Organization for Scientific Research (NWO) under
project nrs CI-14-25, 652.002.001, 612.001.551, 652.001.003,

All content represents the opinion of the authors, which is not
necessarily shared or endorsed by their respective employers and/or
sponsors.

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer Normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In International Conference
on Learning Representations.

[3] Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, An-
drea Gesmundo, Neil Houlsby, and Wei Wang. 2018. Ask the Right Questions:
Active Question Reformulation with Reinforcement Learning. In International
Conference on Learning Representations.

[4] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading
Wikipedia to Answer Open-domain Questions. In 55th Annual Meeting of the
Association for Computational Linguistics. 1870–1879.

[5] Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey,
George Foster, Llion Jones, Niki Parmar, Mike Schuster, Zhifeng Chen, and others.
2018. The Best of Both Worlds: Combining Recent Advances in Neural Ma-
chine Translation. In 56th Annual Meeting of the Association for Computational
Linguistics. 76–86.

[6] Tongfei Chen and Benjamin Van Durme. 2017. Discriminative Information
Retrieval for Question Answering Sentence Selection. In 15th Conference of the
European Chapter of the Association for Computational Linguistics. 719–725.

[7] Jianpeng Cheng and Mirella Lapata. 2016. Neural Summarization by Extracting
Sentences andWords. In 54th Annual Meeting of the Association for Computational
Linguistics. 484–494.

[8] Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia Polosukhin, Alexandre Lacoste,
and Jonathan Berant. 2017. Coarse-to-fine Question Answering for Long Docu-
ments. In 55th Annual Meeting of the Association for Computational Linguistics.
209–220.

[9] François Chollet. 2017. Xception: Deep Learning with Depthwise Separable
Convolutions. In Conference on Computer Vision and Pattern Recognition.

[10] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. 2017.
Attention-over-attention Neural Networks for Reading Comprehension. In 55th
Annual Meeting of the Association for Computational Linguistics. 593–602.

[11] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz
Kaiser. 2018. Universal Transformers. arXiv preprint arXiv:1807.03819 (2018).

[12] Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca, and Pascal Fleury. 2017.
Learning to attend, copy, and generate for session-based query suggestion. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement. 1747–1756.

[13] Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W Cohen, and Ruslan
Salakhutdinov. 2017. Gated-attention Readers for Text Comprehension. In 55th
Annual Meeting of the Association for Computational Linguistics. 1832–1846.

[14] Bhuwan Dhingra, Kathryn Mazaitis, and William W Cohen. 2017. Quasar:
Datasets for Question Answering by Search and Reading. arXiv preprint
arXiv:1707.03904 (2017).

[15] Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur Guney, Volkan Cirik, and
Kyunghyun Cho. 2017. SearchQA: A New Q&ADataset Augmented with Context
from a Search Engine. arXiv preprint arXiv:1704.05179 (2017).

[16] Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850 (2013).

[17] Bert F Green Jr, Alice K Wolf, Carol Chomsky, and Kenneth Laughery. 1961. Base-
ball: an Automatic Question-answerer. In Western Joint IRE-AIEE-ACM computer
conference. 219–224.

[18] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching Machines to Read and
Comprehend. In Advances in Neural Information Processing Systems. 1693–1701.

[19] Phu Mon Htut, Samuel R Bowman, and Kyunghyun Cho. 2018. Training a
Ranking Function for Open-Domain Question Answering. In Conference of the
North American Chapter of the Association for Computational Linguistics: Student
Research Workshop. 120–127.

[20] Lukasz Kaiser, Aidan N Gomez, and Francois Chollet. 2018. Depthwise Separable
Convolutions for Neural Machine Translation. In International Conference on

Learning Representations.
[21] Tom Kenter and Maarten de Rijke. 2017. Attentive memory networks: Efficient

machine reading for conversational search. In 1st International Workshop on
Conversational Approaches to Information Retrieval (CAIR’17). ACM.

[22] Tom Kenter, Llion Jones, and Daniel Hewlett. 2018. Byte-level Machine Reading
across Morphologically Varied Languages. In Proceedings of the The Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI-18).

[23] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask Me
Anything: Dynamic Memory Networks for Natural Language Processing. In
International Conference on Machine Learning. 1378–1387.

[24] Souvik Kundu and Hwee Tou Ng. 2018. A Question-Focused Multi-Factor Atten-
tion Network for Question Answering. arXiv preprint arXiv:1801.08290 (2018).

[25] Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur Parikh, Dipanjan Das, and
Jonathan Berant. 2016. Learning Recurrent Span Representations for Extractive
Question Answering. In International Conference on Learning Representations.

[26] Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun. 2018. Denoising Distantly
Supervised Open-Domain Question Answering. In 56th Annual Meeting of the
Association for Computational Linguistics. 1736–1745.

[27] Kezban Dilek Onal, Ye Zhang, Ismail Sengor Altingovde, Md Mustafizur Rah-
man, Pinar Karagoz, Alex Braylan, Brandon Dang, Heng-Lu Chang, Henna Kim,
Quinten McNamara, Aaron Angert, Edward Banner, Vivek Khetan, Tyler Mc-
Donnell, An Thanh Nguyen, Dan Xu, Byron C. Wallace, Maarten de Rijke, and
Matthew Lease. 2018. Neural information retrieval: At the end of the early years.
Information Retrieval Journal 21, 2–3 (June 2018), 111–182.

[28] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad:
100,000+ Questions for Machine Comprehension of Text. In Conference on Empir-
ical Methods in Natural Language Processing. 2383–2392.

[29] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2017.
Bidirectional Attention Flow for Machine Comprehension. In International Con-
ference on Learning Representations.

[30] Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. 2017. Reasonet:
Learning to Stop Reading in Machine Comprehension. In 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 1047–1055.

[31] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In Advances in Neural Information Processing Systems. 5998–6008.

[33] Ellen M Voorhees and others. 1999. The TREC-8 Question Answering Track
Report.. In Text Retrieval Conference, Vol. 99. 77–82.

[34] Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang,
Shiyu Chang, Gerald Tesauro, Bowen Zhou, and Jing Jiang. 2018. R3: Reinforced
Reader-Ranker for Open-Domain Question Answering. In The Thirty-Second
AAAI Conference on Artificial Intelligence. 5981–5988.

[35] Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaoxiao Guo, Shiyu Chang,
ZhiguoWang, TimKlinger, Gerald Tesauro, andMurray Campbell. 2018. Evidence
Aggregation for Answer Re-Ranking in Open-Domain Question Answering. In
International Conference on Learning Representations.

[36] Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. 2017. Gated
Self-Matching Networks for Reading Comprehension and Question Answering.
In 55th Annual Meeting of the Association for Computational Linguistics. 189–198.

[37] Ronald J Williams and David Zipser. 1989. A learning algorithm for continually
running fully recurrent neural networks. Neural computation 1, 2 (1989), 270–280.

[38] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, and
others. 2016. Google’s Neural Machine Translation System: Bridging the Gap
betweenHuman andMachine Translation. arXiv preprint arXiv:1609.08144 (2016).

[39] Caiming Xiong, Victor Zhong, and Richard Socher. 2017. Dynamic Coatten-
tion Networks for Question Answering. In International Conference on Learning
Representations.

[40] Yichong Xu, Jingjing Liu, Jianfeng Gao, Yelong Shen, and Xiaodong Liu. 2017. To-
wards Human-level Machine Reading Comprehension: Reasoning and Inference
with Multiple Strategies. arXiv preprint arXiv:1711.04964 (2017).

[41] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical Attention Networks for Document Classification. In
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 1480–1489.

[42] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Moham-
mad Norouzi, and Quoc V Le. 2018. QANet: Combining Local Convolution with
Global Self-Attention for Reading Comprehension. In International Conference on
Learning Representations.

[43] Yang Yu, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xiang, and Bowen Zhou. 2016.
End-to-end Answer Chunk Extraction and Ranking for Reading Comprehension.
In International Conference on Learning Representations.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Machine reading comprehension
	2.2 Multihop reasoning

	3 TraCRNet
	3.1 Input encoding
	3.2 Multihop reasoning
	3.3 Output decoder
	3.4 Architectural choices

	4 Experimental Setup
	4.1 Datasets
	4.2 Model configuration and experimental setup

	5 Results and Discussion
	5.1 Baselines
	5.2 Main results
	5.3 Effect of multihop reasoning
	5.4 Impact of the number of documents

	6 Conclusions
	References

