
Under review at the ICLR 2019 workshop on Learning from Limited Labeled Data

LEARNING FROM SAMPLES OF VARIABLE QUALITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Training labels are expensive to obtain and may be of varying quality, as some
may be from trusted expert labelers while others might be from heuristics or other
sources of weak supervision such as crowd-sourcing. This creates a fundamental
quality-versus-quantity trade-off in the learning process. Do we learn from the
small amount of high-quality data or the potentially large amount of weakly-labeled
data? We argue that if the learner could somehow know and take the label-quality
into account, we could get the best of both worlds. To this end, we introduce
“fidelity-weighted learning” (FWL), a semi-supervised student-teacher approach
for training deep neural networks using weakly-labeled data. FWL modulates the
parameter updates to a student network, trained on the task we care about on a
per-sample basis according to the posterior confidence of its label-quality estimated
by a teacher, who has access to limited samples with high-quality labels.

1 INTRODUCTION
“All samples are equal, but some samples are more equal than others.”

—Inspired by George Orwell quote, Animal Farm, 1945

The success of deep neural networks to date depends strongly on the availability of labeled data and
usually it is much easier and cheaper to obtain small quantities of high-quality labeled data and large
quantities of unlabeled data. For a large class of tasks, it is also easy to define one or more so-called
“weak annotators” (Ratner et al., 2016), additional (albeit noisy) sources of weak supervision based on
heuristics or weaker, biased classifiers trained on e.g. non-expert crowd-sourced data or data from dif-
ferent domains that are related. While easy and cheap to generate, it is not immediately clear if and how
these additional weakly-labeled data can be used to train a stronger classifier for the task we care about.

Assuming we can obtain a large set of weakly-labeled data in addition to a much smaller training
set of “strong” labels, the simplest approach is to expand the training set simply by including the
weakly-supervised samples (all samples are equal). Alternatively, one may pretrain on the weak
data and then fine-tune on strong data, which is one of the common practices in semi-supervised
learning. We argue that treating weakly-labeled samples uniformly (i.e. each weak sample contributes
equally to the final classifier) ignores potentially valuable information of the label quality. Instead,
we introduce Fidelity-Weighted Learning (FWL), a Bayesian semi-supervised approach that leverages
a small amount of data with true labels to generate a larger training set with confidence-weighted
weakly-labeled samples, which can then be used to modulate the fine-tuning process based on the
fidelity (or quality) of each weak sample. By directly modeling the inaccuracies introduced by the
weak annotator in this way, we can control the extent to which we make use of this additional source
of weak supervision: more for confidently-labeled weak samples close to the true observed data, and
less for uncertain samples further away from the observed data.

2 FIDELITY-WEIGHTED LEARNING (FWL)

In this section, we describe FWL. We assume we are given a large set of unlabeled data samples, a
heuristic labeling function called the weak annotator, and a small set of high-quality samples labeled
by experts, called the strong dataset, consisting of tuples of training samples xi and their true labels
yi, i.e. Ds={(xi,yi)}. We consider the latter to be observations from the true target function that we
are trying to learn. We use the weak annotator to generate labels for the unlabeled samples. Generated
labels are noisy due to the limited accuracy of the weak annotator. This gives us the weak dataset
consisting of tuples of training samples xi and their weak labels ỹi, i.e. Dw = {(xi,ỹi)}. Note that
we can generate a large amount of weak training dataDw at almost no cost using the weak annotator.
In contrast, we have only a limited amount of observations from the true function, i.e. |Ds|�|Dw|.
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Figure 1: Illustration of Fidelity-Weighted Learning: Step 1: Pre-train student on weak data, Step 2: Fit teacher to observations
from the true function, and Step 3: Fine-tune student on labels generated by teacher, taking the confidence into account. Red
dotted borders and blue solid borders depict components with trainable and non-trainable parameters, respectively.

Our proposed setup comprises a neural network called the student and a Bayesian function approxima-
tor called the teacher. The training process consists of three phases which we summarize in Figure 1.

Step 1 Pre-train the student onDw using weak labels generated by the weak annotator.

The main goal of this step is to learn a task dependent representation of the data as well as pretraining
the student. The student function is a neural network consisting of two parts. The first part ψ(.) learns
the data representation and the second part φ(.) performs the prediction task (e.g. classification).
Therefore the overall function is ŷ = φ(ψ(xi)). The student is trained on all samples of the weak
dataset Dw = {(xi,ỹi)}. For brevity, in the following, we will refer to both data sample xi and its
representation ψ(xi) by xi when it is obvious from the context.

Step 2 Train the teacher on the strong data (ψ(xj), yj) ∈ Ds represented in terms of the stu-
dent representation ψ(.) and then use the teacher to generate a soft dataset Dsw consisting of
〈sample,predicted label, confidence〉 for all data samples.

We use a Gaussian process as the teacher to capture the label uncertainty in terms of the student
representation, estimated w.r.t the strong data. A prior mean and covariance function is chosen for GP .
The learned embedding function ψ(·) in Step 1 is then used to map the data samples to dense vectors
as input to the GP . We use the learned representation by the student in the previous step to compensate
lack of data in Ds and the teacher can enjoy the learned knowledge from the large quantity of the
weakly annotated data. This way, we also let the teacher see the data through the lens of the student.

The GP is trained on the samples from Ds to learn the posterior mean mpost (used to generate
soft labels) and posterior co-variance Kpost(., .) (which represents label uncertainty) 1. We then
create the soft dataset Dsw = {(xt, ȳt)} using the posterior GP , input samples xt from Dw ∪Ds,
and predicted labels ȳt with their associated uncertainties as computed T (xt) = g(mpost(xt)) and
Σ(xt) = h(Kpost(xt,xt)). The generated labels are called soft labels. Therefore, we refer to Dsw
as a soft dataset. g(.) transforms the output of GP to the suitable output space. For example in
classification tasks, g(.) would be the softmax function to produce probabilities that sum up to
one. For multidimensional-output tasks where a vector of variances is provided by the GP , the
vectorKpost(xt,xt) is passed through an aggregating function h(.) to generate a scalar value for the
uncertainty of each sample. Note that we train GP only on the strong dataset Ds but then use it to
generate soft labels ȳt=T (xt) and uncertainty Σ(xt) for samples belonging toDsw=Dw∪Ds.
Step 3 Fine-tune the weights of the student network on the soft dataset, while modulating the magnitude
of each parameter update by the corresponding teacher-confidence in its label.

The student network of Step 1 is fine-tuned using samples from the soft datasetDsw={(xt,ȳt)}where
ȳt=T (xt). The corresponding uncertainty Σ(xt) of each sample is mapped to a confidence value, and
this is then used to determine the step size for each iteration of the stochastic gradient descent (SGD).
So, intuitively, for data points where we have true labels, the uncertainty of the teacher is almost zero,
which means we have high confidence and a large step-size for updating the parameters. However, for
data points where the teacher is not confident, we down-weight the training steps of the student. This
means that at these points, we keep the student function as it was trained on the weak data in Step 1.

1In practice, we use cluster-GP, see Appendix B.
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Table 1: Descriptions of baseline models.

WA The weak annotator, i.e. the unsupervised method used for annotating the unlabeled data.

NNS Full Supervision Only, i.e. the student trained only on strong labeled data (Ds).

NNW Weak Supervision Only, i.e. the or the student trained only on weakly labeled data (Dw).

NNW/S+ Weak Supervision + Oversampled Strong Supervision, i.e. thestudent trained on samples that are alternately drawn from Dw

without replacement, andDs with replacement. Since |Ds|�|Dw|, it oversamples the strong data.

NNW→S Weak Supervision + Fine Tuning, i.e. the student trained on weak datasetDw and fine-tuned on strong datasetDs.

NNWω→NNS The student trained on the weak data, but the step-size of each weak sample is weighted by a fixed value 0≤ω≤1, and fine-tuned
on strong data. As an approximation for the optimal value forω, we have used the mean of η2 of our model (below).

FWL \Σ The student trained on the weakly labeled data and fine-tuned on examples labeled by the teacher without taking the confidence
into account. This baseline is similar to (Veit et al., 2017).

More specifically, we update the parameters of the student by training onDsw using SGD:

www∗ = argmin
www∈W

1

N

∑
(xt,ȳt)∈Dsw

l(www,xt,ȳt)+R(www),

wwwt+1 = wwwt−ηt(∇l(www,xt,ȳt)+∇R(www))

where l(·) is the per-example loss, ηt is the total learning rate, N is the size of the soft datasetDsw,
www is the parameters of the student network, andR(.) is the regularization term.

We define the total learning rate as ηt = η1(t)η2(xt), where η1(t) is the usual learning rate of our
chosen optimization algorithm that anneals over training iterations, and η2(xt) is a function of the label
uncertainty Σ(xt) that is computed by the teacher for each data point. Multiplying these two terms gives
us the total learning rate. In other words, η2 represents the fidelity (quality) of the current sample, and is
used to multiplicatively modulate η1. Note that the first term does not necessarily depend on each data
point, whereas the second term does. We propose η2(xt)=exp[−βΣ(xt)] to exponentially decrease
the learning rate for data point xt if its corresponding soft label ȳt is unreliable (far from a true sample).
In practice, when using mini-batches, we implement this by multiplying the loss of each example in the
batch by its fidelity score and average over these fidelity-weighted losses in the batch when calculating
the batch gradient based on that loss. β is a positive scalar hyper-parameter that controls the contribution
of weak and strong data to the training procedure. A small β results in a student which listens more
carefully to the teacher and copies its knowledge, while a large β makes the student pay less attention to
the teacher, staying with its initial weak knowledge. Hence, β gives a handle to control the bias-variance
trade-off. In Appendix A, we apply FWL to a one-dimensional toy problem to illustrate its various steps.

3 EXPERIMENTS
Ranker
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Figure 2: The student.

In this section, we apply FWL to document ranking task and evalu-
ate its performance compared to the baselines presented in Table 1.
Document Ranking is the core information retrieval problem and is
challenging as the ranking model needs to learn a representation for
long documents and capture the complex notion of relevance between
queries and documents. Furthermore, the size of publicly available
datasets with query-document relevance judgments is unfortunately
quite small (∼ 250 queries). We employ a state-of-the-art pairwise
neural ranker architecture as the student (Dehghani et al., 2017b) in
which the ranking is cast as a regression task. Given each training
sample x as a triple of query q, and two documents d+ and d−, the
goal is to learn a functionF :{<q,d+,d−>}→R, which maps each
data sample x to a scalar output value y indicating the probability of
d+ being ranked higher than d− with respect to q.

The student follows the architecture proposed in (Dehghani et al., 2017b). The first layer of the
network, i.e. representation learning layer ψ :{<q,d+,d−>}→Rm maps each input sample to anm-
dimensional real-valued vector. In general, besides learning embeddings for words, function ψ learns
to compose word embedding based on their global importance in order to generate query/document
embeddings. The representation layer is followed by a simple fully-connected feed-forward network
with a sigmoidal output unit to predict the probability of ranking d+ higher than d−. The general
schema of the student is illustrated in Figure 2. More details are provided in Appendix C.1.

The teacher is implemented by clustered GP algorithm. See Appendix C.2 for more details. The
weak annotator is BM25 (Robertson & Zaragoza, 2009), a well-known unsupervised method for
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Table 2: Performance of FWL approach and baseline methods for ranking task. Ĳi indicates that the improvements with
respect to the baseline i are statistically significant at the 0.05 level using the paired two-tailed t-test with Bonferroni correction.

Method Robust04 ClueWeb

MAP nDCG@20 MAP nDCG@20

WABM25 0.2503Ĳ37 0.4102Ĳ37 0.1021Ĳ37 0.2070Ĳ37

NNW (Dehghani et al., 2017b) 0.2702Ĳ137 0.4290Ĳ137 0.1297Ĳ137 0.2201Ĳ137

NNS 0.1790 0.3519 0.0782 0.1730

NNS+/W 0.2763Ĳ1237 0.4330Ĳ1237 0.1354Ĳ1237 0.2319Ĳ1237

NNW→S 0.2810Ĳ1237 0.4372Ĳ1237 0.1346Ĳ1237 0.2317Ĳ1237

NNWω→S 0.2899Ĳ123457 0.4431Ĳ123457 0.1320Ĳ12347 0.2309Ĳ12347

FWL \Σ 0.2980Ĳ123457 0.4516Ĳ123457 0.1386Ĳ123457 0.2340Ĳ123457

FWL 0.3124Ĳ12345678 0.4607Ĳ12345678 0.1472Ĳ12345678 0.2453Ĳ12345678

scoring query-document pairs based on statistics of the matched terms. More details are provided in
Appendix C.3. Description of the data with weak labels and data with true labels as well as the setup of
the document-ranking experiments is presented in Appendix C.4 in more details.

Results and Discussions. We conducted k-fold cross-validation onDs (the strong data) and report
two standard evaluation metrics for ranking: mean average precision (MAP) of the top-ranked 1,000
documents and normalized discounted cumulative gain calculated for the top 20 retrieved documents
(nDCG@20). Table 2 shows the performance on both datasets. As can be seen, FWL provides a
significant boost on the performance over all datasets. In the ranking task, the student is designed in
particular to be trained on weak annotations (Dehghani et al., 2017b), hence training the network only
on weak supervision, i.e. NNW performs better than NNS. This can be due to the fact that ranking is a
complex task requiring many training samples, while relatively few data with true labels are available.

Alternating between strong and weak data during training, i.e. NNS+/W seems to bring little (but
statistically significant) improvement. However, we can gain better results by the typical fine-tuning
strategy, NNW→S. We can gain improvement by fine-tuning the NNW using labels generated by the
teacher without considering their confidence score, i.e. FWL \Σ. This means we just augmented the
fine-tuning process by generating a fine-tuning set using teacher which is better thanDs in terms of
quantity andDw in terms of quality. This baseline is equivalent to setting β=0. However, we see a big
jump in performance when we use FWL to include the estimated label quality from the teacher, leading
to the best overall results.

Figure 3: Performance of FWL versus perfor-
mance of the corespondence weak annotator.

Sensitivity of the FWL to the Quality of the Weak An-
notator. Our proposed setup in FWL requires defining a so-
called “weak annotator” to provide a source of weak super-
vision for unlabelled data. In this section, we study how the
quality of the weak annotator may affect the performance
of the FWL on the Robust04 dataset. To do so, besides
BM25 (Robertson & Zaragoza, 2009), we use three other
weak annotators: vector space model (Salton & Yang, 1973)
with binary term occurrence (BTO) weighting schema and
vector space model with TF-IDF weighting schema, which
are both weaker than BM25, and BM25+RM3 (Abdul-
jaleel et al., 2004) that uses RM3 as the pseudo-relevance
feedback method on top of BM25, leading to better labels. Figure 3 illustrates the performance of
these four weak annotators in terms of their mean average precision (MAP) on the test data, versus the
performance of FWL given the corresponding weak annotator. As it is expected, the performance of
FWL depends on the quality of the employed weak annotator. The percentage of improvement of FWL
over its corresponding weak annotator on the test data is also presented in Figure 3. As can be seen, the
better the performance of the weak annotator is, the less the improvement of the FWL would be.

4 CONCLUSION
Training neural networks using large amounts of weakly annotated data is an attractive approach in
scenarios where an adequate amount of data with true labels is not available, a situation which often
arises in practice. In this paper, we introduced fidelity-weighted learning (FWL), a new student-teacher
framework for semi-supervised learning in the presence of weakly labeled data. We applied FWL to
document ranking and empirically verified that FWL speeds up the training process and improves over
state-of-the-art semi-supervised alternatives.
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APPENDICES

A TOY EXAMPLE

To better understand FWL, we apply FWL to a one-dimensional toy problem to illustrate the various steps.
Let ft(x) = sin(x) be the true function (red dotted line in Figure 4a) from which a small set of observations
Ds ={xj ,yj} is provided (red points in Figure 4b). These observation might be noisy, in the same way that labels
obtained from a human labeler could be noisy. A weak annotator function fw(x) = 2sinc(x) (magenta line in
Figure 4a) is provided, as an approximation to ft(.).

The task is to obtain a good estimate of ft(.) given the set Ds of strong observations and the weak annotator
function fw(.). We can easily obtain a large set of observationsDw ={xi,ỹi} from fw(.) with almost no cost
(magenta points in Figure 4a).

As the teacher, we use standard Gaussian process regression2 with this kernel:

k(xi,xj)=kRBF(xi,xj)+kWhite(xi,xj) (1)

where,

kRBF(xi,xj)=exp

(
‖xi−xj‖2

22

)
kWhite(xi,xj)=constant value, ∀x1 =x2 and 0 otherwise

We fit only one GP on all the data points (i.e. no clustering). Also during fine-tuning, we set β=1. The student is
a simple feed-forward network with the depth of 3 layers and width of 128 neurons per layer. We have used tanh
as the nonlinearity for the intermediate layers and a linear output layer. As the optimizer, we used Adam (Kingma
& Ba, 2015) and the initial learning rate has been set to 0.001. We randomly sample 100 data points from the weak
annotator and 10 data points from the true function. We introduce a small amount of noise to the observation of the
true function to model the noise in the human labeled data.

(a) Training student on 100 examples from the weak function. (b) Fitting teacher based on 10 observations from the true function.

(c) Fine-tuning the student based on observations from the true function. (d) Fine-tuning the student based on label/confidence from teacher.

Figure 4: Toy example: The true function we want to learn is y=sin(x) and the weak function is y=2sinc(x).

We consider two experiments:

1. A neural network trained on weak data and then fine-tuned on strong data from the true function, which is the
most common semi-supervised approach (Figure 4c).

2. A teacher-student framework working by the proposed FWL approach.

As can be seen in Figure 4d, FWL by taking into account label confidence, gives a better approximation of the true
hidden function. We repeated the above experiment 10 times. The average RMSE with respect to the true function
on a set of test points over those 10 experiments for the student, were as follows:

2http://gpflow.readthedocs.io/en/latest/notebooks/regression.html
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Algorithm 1 Clustered Gaussian processes.

1: LetN be the sample size, n the sample size of each cluster,K the number of clusters, and ci the center of
cluster i.

2: Run K-means withK clusters over all samples with true labelsDs ={xi,yi}.

K-means(xi)→c1,c2,...,cK

where ci represents the center of clusterCi containing samplesDci
s ={xi,1,xi,2,...xi,n}.

3: Assign each of K clusters a Gaussian process and train them in parallel to approximate the label of each
sample.

GPci(m
ci
post,K

ci
post) = GP(mprior,Kprior)|Dci

s ={(ψ(xs,ci),ys,ci)}
Tci(xt) = g(mci

post(xt))

Σci(xt) = h(Kci
post(xt,xt))

where GPci is trained onDci
s containing samples belonging to the cluster ci. Other elements are defined in

Section 2
4: Use trained teacher Tci(.) to evaluate the soft label and uncertainty for samples fromDsw to compute η2(xt)

required for step 3 of FWL. We use T (.) as a wrapper for all teachers {Tci}.

1. Student is trained on weak data (blue line in Figure 4a): 0.8406,
2. Student is trained on weak data then fine tuned on true observations (blue line in Figure 4c): 0.5451,
3. Student is trained on weak data, then fine tuned by soft labels and confidence information provided by the

teacher (blue line in Figure 4d): 0.4143 (best).

B DETAILED DESCRIPTION OF CLUSTERED GP

We suggest using several GP={GPci} to explore the entire data space more effectively. Even though inducing
points and stochastic methods makeGPs more scalable we still observed poor performance when the entire dataset
was modeled by a single GP . Therefore, the reason for using multiple GPs is mainly empirically inspired by
(Shen et al., 2006) which is explained in the following:
We used the Sparse Gaussian Process implemented in GPflow. The algorithm is scalable in the sense that it is not
O(N3) as original GP is. It introduces inducing points in the data space and defines a variational lower bound
for the marginal likelihood. The variational bound can now be optimized by stochastic methods which make the
algorithm applicable in large datasets. However, the tightness of the bound depends on the location of inducing
points which are found through the optimization process. The pseudo-code of the clustered GP is presented in
Algorithm 1. When the main issue is computational resources (when the number of inducing points for each GP is
large), we can first choose the number nwhich is the maximum size of the dataset on which our resources allow to
train a GP , then find the number of clustersK=N/n accordingly. The rest of the algorithm remains unchanged.

C DETAILED SETUP OF THE MODEL AND EXPERIMENTS

C.1 DETAILED ARCHITECTURE OF THE STUDENTS

The employed student is proposed in (Dehghani et al., 2017b). The first layer of the network models functionψ
that learns the representation of the input data samples, i.e. (q,d+,d−), and consists of three components: (1)
an embedding function ε : V →Rm (where V denotes the vocabulary set and m is the number of embedding
dimensions), (2) a weighting function ω :V→R, and (3) a compositionality function� : (Rm,R)n→Rm. More
formally, the functionψ is defined as:

ψ(q,d+,d−)=[�|q|i=1(ε(tqi ),ω(tqi )) ||

�|d
+|

i=1 (ε(td
+

i ),ω(td
+

i )) ||

�|d
−|

i=1 (ε(td
−

i ),ω(td
−

i )) ],

(2)

where tqi and tdi denote the ith term in query q respectively document d. The embedding function εmaps each term
to a densem- dimensional real value vector, which is learned during the training phase. The weighting function ω
assigns a weight to each term in the vocabulary. It has been shown that ω simulates the effect of inverse document
frequency (IDF), which is an important feature in information retrieval (Dehghani et al., 2017b).
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The compositionality function� projects a set of n embedding-weighting pairs to anm- dimensional representa-
tion, independent from the value of n:

n⊙
i=1

(ε(ti),ω(ti))=

∑n
i=1exp(ω(ti))·ε(ti)∑n

j=1exp(ω(tj))
, (3)

which is in fact the normalized weighted element-wise summation of the terms’ embedding vectors. Again, it has
been shown that having global term weighting function along with embedding function improves the performance
of ranking as it simulates the effect of inverse document frequency (IDF). In our experiments, we initialize the
embedding function εwith word2vec embeddings (Mikolov et al., 2013) pre-trained on Google News and the
weighting function ω with IDF.

The representation layer is followed by a simple fully connected feed-forward network with l hidden layers
followed by a softmax which receives the vector representation of the inputs processed by the representation
learning layer and outputs a prediction ỹ. Each hidden layer zk in this network computes zk =α(Wkzk−1+bk),
whereWk and bk denote the weight matrix and the bias term corresponding to the kth hidden layer and α(.) is the
non-linearity. These layers follow a sigmoid output. We employ the cross entropy loss:

Lt =
∑
i∈B

[−yilog(ŷi)−(1−yi)log(1−ŷi)], (4)

whereB is a batch of data samples.

C.2 DETAILED ARCHITECTURE OF THE TEACHERS

We use Gaussian Process as the teacher and pass the mean of GP through the same function g(.) that is applied
on the output of the student network. h(.) is an aggregation function that takes variance over several dimensions
and outputs a single measure of variance. As a reasonable choice, the aggregating function h(.) in our sentiment
classification task (three classes) is mean of variances over dimensions. In the teacher, linear combinations of
different kernels are used in our experiments.

We use sparse variational GP regression3 (Titsias, 2009) with this kernel:

k(xi,xj)=kMatern3/2(xi,xj)+kLinear(xi,xj)+kWhite(xi,xj) (5)

where,

kMatern3/2(xi,xj)=

(
1+

√
3‖xi−xj‖

l

)
exp

(
−
√

3‖xi−xj‖
l

)
kLinear(xi,xj)=σ2

0+xi.xj

kWhite(xi,xj)=constant value, ∀x1 =x2 and 0 otherwise

We empirically found l=1 satisfying value for the length scale of Matern3/2 kernels. We also set σ0 =0 to obtain
a homogeneous linear kernel. The constant value ofKWhite(.,.) determines the level of noise in the labels. This is
different from the noise in weak labels. This term explains the fact that even in true labels there might be a trace of
noise due to the inaccuracy of human labelers. We set the number of clusters in the clustered GP algorithm for the
ranking task to 50.

C.3 WEAK ANNOTATORS

The weak annotator is BM25 (Robertson & Zaragoza, 2009), a well-known unsupervised retrieval method. This
method heuristically scores a given pair of query-document based on the statistics of their matched terms. In
the pairwise document ranking setup, ỹi for a given sample xj = (q,d+,d−) is the probability of document d+

being ranked higher than d−: ỹi =Pq,d+,d−=s
q,d+/sq,d++s

q,d− , where sq,d is the score obtained from the weak
annotator.

C.4 DATA COLLECTION, PARAMETERS AND SETUP

Collections We use two standard TREC collections for the task of ad-hoc retrieval: The first collection (Robust04)
consists of 500k news articles from different news agencies as a homogeneous collection. The second collection

3http://gpflow.readthedocs.io/en/latest/notebooks/SGPR_notes.html
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(ClueWeb) is ClueWeb09 Category B, a large-scale web collection with over 50 million English documents,
which is considered as a heterogeneous collection. Spam documents were filtered out using the Waterloo spam
scorer 4 (Cormack et al., 2011) with the default threshold 70%.

Data with true labels We take query sets that contain human-labeled judgments: a set of 250 queries (TREC
topics 301–450 and 601–700) for the Robust04 collection and a set of 200 queries (topics 1-200) for the experiments
on the ClueWeb collection. For each query, we take all documents judged as relevant plus the same number of
documents judged as non-relevant and form pairwise combinations among them.

Data with weak labels We create a query setQ using the unique queries appearing in the AOL query logs (Pass
et al., 2006). This query set contains web queries initiated by real users in the AOL search engine that were sampled
from a three-month period from March 2006 to May 2006. We applied standard pre-processing Dehghani et al.
(2017b;a) on the queries: We filtered out a large volume of navigational queries containing URL substrings (“http”,
“www.”, “.com”, “.net”, “.org”, “.edu”). We also removed all non-alphanumeric characters from the queries. For
each dataset, we took queries that have at least ten hits in the target corpus using our weak annotator method.
Applying all these steps, We collect 6.15 million queries to train on in Robust04 and 6.87 million queries for
ClueWeb. To prepare the weakly labeled training setDw, we take the top 1,000 retrieved documents using BM25
for each query from training query setQ, which in total leads to∼|Q|×106 training samples.

Setup For the evaluation of the whole model, we conducted 3-fold cross-validation. However, for each dataset,
we first tuned all the hyper-parameters of the student in the first step on the set with true labels using batched GP
bandits with an expected improvement acquisition function (Desautels et al., 2014) and kept the optimal parameters
of the student fixed for all the other experiments. The size and number of hidden layers for the student is selected
from {64,128,256,512}. The initial learning rate and the dropout parameter were selected from {10−3,10−5}
and {0.0,0.2,0.5}, respectively. We considered embedding sizes of {300,500}. The batch size in our experiments
was set to 128. We use ReLU (Nair & Hinton, 2010) as a non-linear activation function α in student. We use
the Adam optimizer (Kingma & Ba, 2015) for training, and dropout (Srivastava et al., 2014) as a regularization
technique.

At inference time, for each query, we take the top 2,000 retrieved documents using BM25 as candidate documents
and re-rank them using the trained models. We use the Indri5 implementation of BM25 with default parameters
(i.e., k1 =1.2, b=0.75, and k3 =1,000).

4http://plg.uwaterloo.ca/˜gvcormac/clueweb09spam/
5https://www.lemurproject.org/indri.php
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