
For Peer Review

Learning to Rank for Multi Label Text Classification:
Combining Different Sources of Information

Journal: Natural Language Engineering

Manuscript ID NLE-ARTC-REG-18-0107.R1

Manuscript Type: Article

Date Submitted by the
Author: 30-Jul-2019

Complete List of Authors: Azarbonyad, Hosein; Universiteit van Amsterdam, Informatics Institute
Dehghani, Mostafa; Universiteit van Amsterdam, Institute for Logic,
Language, and Computation
Marx, Maarten; Universiteit van Amsterdam, Informatics Institute
Kamps, Jaap; Universiteit van Amsterdam, Institute for Logic, Language,
and Computation

Keywords: Multi-label text classification, Learning to rank, Sources of information

Cambridge University Press

Natural Language Engineering

For Peer Review

Natural Language Engineering 1 (1): 000–000. Printed in the United Kingdom

c© 1998 Cambridge University Press

1

Learning to Rank for Multi-Label Text
Classification: Combining Different Sources of

Information

H O S E I N A Z A R B O N Y A D1,

M O S T A F A D E H G H A N I2,

M A A R T E N M A R X 1,

J A A P K A M P S 2

1Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
2Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands

e-mail: {h.azarbonyad, dehghani, maartenmarx, kamps}@uva.nl

(Received 30 July 2019)

Abstract

Efficiently exploiting all sources of information such as labeled instances, classes’ representation and
relations of them has a high impact on the performance of Multi-Label Text Classification (MLTC)
systems. Most of the current approaches use labeled documents as the primary source of information
for MLTC. We investigate the effectiveness of different sources of information—such as the labeled
training data, textual labels of classes, and taxonomy relations of classes—for MLTC. More specif-
ically, first, for each document-class pair, different features are extracted using different sources of
information. The features reflect the similarity of classes and documents. Then, MLTC is considered
to be a ranking problem and a learning to rank (LTR) approach is used for ranking classes regarding
documents and selecting labels of documents. An important characteristic of many MLTC instances
is that documents can belong to multiple classes and there are implicit relations between classes. We
apply score propagation on top of LTR to incorporate co-occurrence patterns of classes in labeled
documents.

Our main findings are the following. First, using an LTR approach integrating all features, we
observe significantly better performance than previous systems for MLTC. Specifically, we show that
simple classification approaches fail when there is a high number of classes. Second, the analysis of
feature weights reveals the relative importance of various sources of evidence, also giving insight into
the underlying classification problem. Interestingly, the results indicate that the titles of documents
are more informative than all other sources of information. Third, a lean-and-mean system using only
four features is able to perform at 96% of the large LTR model that we propose in this paper. Fourth,
using the co-occurrence information of classes helps in classifying documents more accurately. Our
results show that the co-occurrence information is more helpful when the underlying classifier has a
poor performance.

Page 1 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

2 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

1 Introduction

Multi-Label Text Classification (MLTC) is a supervised machine learning task in which
the goal is to learn a classifier that assigns multiple labels to text documents (Herrera,
Charte, Rivera and del Jesus 2016). MLTC has many applications in the real world, e.g.
when a text document is about both politics and economics and we want to label it. Simple
classification approaches become computationally expensive when the number of classes
is high as for each class (in one-versus-one approach) or for each pair of classes (in one-
versus-rest approach) a different model should be trained (Bi and Kwok 2013). To achieve
a good performance in MLTC, instead of optimizing a model for each class separately,
the model should be optimized with respect to a global optimum considering all classes.
Learning to rank (LTR) has been shown to be an effective approach for MLTC (Yang and
Gopal 2012). In this approach, a model is trained to rank classes regarding the documents
and select the topk classes as labels of documents. Rather than creating and optimizing a
separate model for each class and predicting the probability of assigning each class to the
given document, the learning objective of LTR approach for MLTC is to create a global
ranking model that ranks all classes for a given document.

In this paper, we integrate a variety of sources of available information for MLTC using
an LTR approach. There are different sources of information for the selection of appropri-
ate classes for documents in the MLTC task, such as text associated with documents and
classes. The main aim of our approach is to effectively combine these sources of informa-
tion in a supervised process. For example, classes can be expanded by their textual labels,
which is useful for calculating the similarity of a class with the content of documents
(Rousu, Saunders, Szedmak and Shawe-Taylor 2006). Moreover, if there are explicit rela-
tions between classes (in the form of a hierarchy or a thesauri structure), we can use it to
find the semantic relations between classes and take these relations into account (Rousu et
al. 2006; Ren, Peetz, Liang, van Willemijn and de Rijke 2014). One of the main sources
of information is a set of annotated documents. These documents are used by supervised
approaches as training data to create a classification model (Pouliquen, Steinberger and
Ignat 2003; Nam, Kim, Gurevych and Furnkranz 2013). In this paper, using each source of
information, we define different features, each reflecting the similarity of documents and
classes in a different way. We use an LTR approach for combining different sources of in-
formation. Similar to (Yang and Gopal 2012), we consider each document to be annotated
as a query, and use all information associated with a class as a document, an approach
applied for document retrieval. We choose LTR as the combination method since it is an
effective approach for combining different types of signals. Moreover, it gives us the abil-
ity to analyze the contribution of different sources of information in the classification task.
The proposed approach can be applied on any document collection that contains the men-
tioned sources of information. Yet, the approach obtains best performance when applied to
document collections with multiple labels per document.

On top of integrating different sources of information, we model the implicit relations

Page 2 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 3

Document	collection	D		

Documents	in			
					

Documents	in			
					

Cross		
Validation	

					

Features	vectors	for	
each	document-class	
pair	for	documents	in	

T2	

An	example	additional	source	
of	information	for	classes		

T2 = Dn+1, ..., D|D|

T1 = D1, ..., Dn

Fig. 1. The general pipeline of the proposed LTR method for MLTC. First, a subset of the
dataset is used for constructing class representations. Additional class representations can
be learned using other sources of information such as hierarchy structure of classes. Sec-
ond, document representations are constructed for the documents in the remaining subset
of the dataset. Then, based on document and class representations, similarities of docu-
ments and classes are estimated and used as features. After building feature vectors, cross
validation is done to train and evaluate LTR models.

of classes based on their co-occurrence patterns in the labeled documents and study how
these patterns can help classify the documents more accurately. To do this, we propose
a score propagation approach which re-estimates the similarity of classes and documents
based on co-occurrence patterns of classes. For a class c, its similarity to a document d is
smoothed (by linear interpolation) with another score which is based on the probability of
c co-occurring with other classes c1 and the similarity of c1 to d.

The general pipeline of the proposed method is shown in Figure 1. The pipeline con-
sists of a module for constructing class representation based on a subset of documents or
other sources such as hierarchical structure of classes, a module for constructing document
representation based on title or body of documents, a module for constructing feature ex-
traction based on similarities of classes and documents, and finally a a module for building
the LTR model on top of the extracted feature vectors.

In this paper we focus on addressing two main research questions:
RQ1: How effective is an LTR approach integrating a variety of sources of information as
features for MLTC?

To answer this research question, we evaluate the performance of the proposed LTR ap-
proach on the English version of JRC-Acquis (Steinberger et al. 2006) and compare our re-
sults with JEX (the JRC EuroVoc Indexer)(Steinberger, Ebrahim and Turchi 2013), which
is one of the state of the art systems developed for classifying JRC-Acquis documents.

Page 3 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

4 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

The results show that the LTR approach improves JEX by 20% in terms of Precision@5
(precision and rank cut-off of 5).
RQ2: Is it worthwhile to use the co-occurrence patterns of classes for MLTC?

To answer our second research question, we analyze the effect of score propagation on
the performance of different approaches for MLTC and compare the results achieved by
the propagated and the non-propagated versions of each method. The results indicate that
propagated versions of all methods outperform their non-propagated counterparts.

Our main contributions are the following:

‚ We propose a framework for exploiting sources of information including labeled
documents, taxonomy relations of classes, and textual labels of classes for MLTC.
We define different features using these sources of information and instead of train-
ing a classifier per class, create a ranking model that can rank classes based on their
similarities to documents.

‚ We propose a score propagation approach to consider the co-occurrence patterns of
classes in the labeled documents. The proposed approach can be applied on top of
any classifier for MLTC.

‚ We make the designed tool publicly available1. It automatically pre-processes textual
data, constructs different representations for documents and classes, and computes
different similarity metrics for documents and classes. These similarity metrics are
used to build feature vectors for document-class pairs. The feature vectors extracted
using JRC-Acquis 2 dataset and Eurovoc concepts are in the LTR format which can
be directly used by LTR algorithms to train ranking models.

2 Related Work

Our method for multi-label text classification touches on research in multiple areas. We
review work in three directions: multi-label text classification, learning to rank for multi-
label text classification, and automatic indexing of political documents.

2.1 Multi-label text classification

Multi-Label Text Classification (MLTC) is the task of classifying text documents to multi-
ple classes (Tsoumakas, Katakis and Vlahavas 2010). A well-known approach for MLTC
is training a different classifier for each class and ranking and selecting the classes with
regards to the probability of documents belonging to them (Zhang and Zhou 2014). Us-
ing this approach, Qiu, Gao and Huang (2009) exploited the well-known SVM classifier
for training a binary classification model for each category. Then, they used these models

1 The source codes are available here: https://github.com/HoseinAzarbonyad/MLC
2 http://publications.europa.eu/resource/cellar/
9f2bd600-ae7b-11e7-837e-01aa75ed71a1.0001.07/DOC_1

Page 4 of 28

Cambridge University Press

Natural Language Engineering

https://github.com/HoseinAzarbonyad/MLC
http://publications.europa.eu/resource/cellar/9f2bd600-ae7b-11e7-837e-01aa75ed71a1.0001.07/DOC_1
http://publications.europa.eu/resource/cellar/9f2bd600-ae7b-11e7-837e-01aa75ed71a1.0001.07/DOC_1

For Peer Review

Learning to Rank for Multi Label Text Classification 5

to determine the classes that a document belongs to. Moreover, they used the hierarchical
structure of classes and tried to maximize the margin between leafs of the hierarchy. Ping
Qin and Wang (2009) further, studied the effectiveness of MLTC based on SVM classifiers.
They proposed two different classifiers based on SVMs and concluded that with small ad-
justments on SVM, it can be very effective for MLTC. In other studies, SVM classifiers are
combined with other classifiers to improve its performance (Yuan, Chen, Jin and Huang
2008). The main goal is to resolve some issues associated with SVM, such as its poor per-
formance for samples on cross zones of multi-categories, using additional classifiers (such
as a kNN). Yuan, Chen, Jin and Huang (2008), showed that the combination of kNN and
SVM boosts the performance of SVM significantly. Instead of SVM, Nam et al. (2013)
and Jiang, Pan and Li (2017) employed a neural network based model to determine the
labels of documents. They used a feed-froward network with a single hidden layer. Instead
of commonly used binary relevance based loss function, they used cross entropy as loss
function to train the network. Finally, a thresholding method on top of the estimated scores
for classes is employed to select number of classes. The results showed that a cross entropy
loss is more effective than binary relevance based loss for MLTC. Vilar, Castro and Sanchis
(2004) used a similar approach and estimated the multinomial distribution of documents
across the classes. Tree-based classifiers are also adapted and used for MLTC (Hong, Batal
and Hauskrecht 2014). Huang, Li, Huang and Wu (2016) studied the effectiveness of learn-
ing class-specific features for MLTC. The main intuition behind the proposed method is to
learn label-specific features for each class that is sparse (incorporated in the model using a
regularization), representative of samples of the class (modeled using a regular regression
loss), and takes the relation between classes into account (modeled based on interactions
of coefficients of learned regression models for classes). The results reported in this paper
showed that the learned label-specific features have a comparable performance to state-of-
the-art feature selection methods for MLTC.

Most of the mentioned approaches model MLTC as a standard classification task and
study the effectiveness of their proposed approaches on datasets with relatevely small set
of labels. Simple classification approaches become computationally expensive and infeasi-
ble when the number of classes is high (Bi and Kwok 2013). Babbar and Scholkopf (2017)
proposed a scalable approach for multi-label classification by training one-versus-rest clas-
sifiers. Although their proposed approach is computationally efficient, the trained model is
large. We consider MLTC a ranking problem and instead of using classification methods
we use an LTR approach to rank classes given a document. We create only one small model
(about 45 kilobytes) which can be used to assign classes to documents.

The main characteristic of MLTC discriminating it from single-label text classification
is that documents can have more than one label. Therefore, capturing the dependencies
between classes and incorporating them in the classification process could be useful to
improve the accuracy of classifiers (Ghamrawi and McCallum 2005; Read, Pfahringer,
Holmes and Frank 2009; Hariharan, Zelnik-manor, Vishwanathan and Varma 2010; Bi and

Page 5 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

6 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

Kwok 2011). Ghamrawi and McCallumn (2005) captured these dependencies using Con-
ditional Random Fields (CRF), obtaining better classification scores. Read et al. (2009)
chained the classifiers to use the dependency information of classes in labeling process.
Nam et al. (2014) tried to capture these dependencies using neural networks specialized
for document classification. In this paper, we use the implicit dependencies of classes
in a score propagation framework. Unlike previous work, our approach for incorporat-
ing class dependencies is independent of the underlying method and can be applied on
top of any classification method. It is noteworthy that a similar label propagation has been
used for single-label text classification when the size of training set is small (Rossi, de An-
drade Lopes and Rezende 2016; Wang and Tsotsos 2016).

To classify documents in MLTC, there is a need to first determine the number of classes
to be assigned to documents. In the single-label classification task, only one class is as-
signed to each document. This is usually done by setting a threshold on the scores esti-
mated for the documents and assigning documents with a higher score than the threshold
to the positive and rest of the documents to the negative class (Yang and Gopal 2012). This
strategy does not work for MLTC, especially in the case of ranking-based MLTC task, as
in this task we have a ranked list of classes and a document can have more than one class.
A common approach for choosing the number of classes in MLTC is calibrating the scores
generated for each class, setting a threshold on the scores, and assigning classes with a
higher score than the threshold to documents (Ioannou, Sakkas, Tsoumakas and Vlahavas
2010; Zhang and Zhou 2014). A static (fixing a threshold and using it for all documents)
or dynamic (learning from training samples and having different threshold values for dif-
ferent documents) approach can be used for setting the threshold. Some popular choices
for fixed thresholds are zero,e.g. for SVM-like classifiers, and 0.5 for probabilistic clas-
sifiers such as logistic regression (Clare and King 2001; Boutell, Luo, Shen and Brown
2004; Read et al. 2011). Another common static approach is setting a threshold on the
number of classes directly instead of setting the threshold on the scores (Steinberger et al.
2012). This is an effective approach when the variance of the number of classes for the
documents is low. The dynamic threshold is set using a training set in which samples are a
set of pairs of ranked lists with scores and, for each ranked list, an optimal threshold that
minimizes a classification loss such as false positives or false negatives given the ranked
list (Elisseeff and Weston 2001; Zhang and Zhou 2006; Yang and Gopal 2012; Quevedo,
Luaces and Bahamonde 2012). For samples in training set, the optimal threshold can be
determined, however, for test samples the threshold should be estimated. This is done by
learning a mapping function based on training samples that takes a ranked list and maps
it to a threshold. This strategy has been shown to be very effective for MLTC. Similarly,
instead of learning a mapping from ranked lists of document to a threshold, the mapping
can be learned to map ranked lists to the number of classes directly (Tang, Rajan and
Narayanan 2009). Besides these generic approaches, some ad-hoc thresholding strategies
are also used in previous studies. These strategies are specific to the learning algorithms

Page 6 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 7

(Furnkranz, Hullermeier, Mencia and Brinker 2008; Wehrmann, Barros, Dores and Cerri
2017) and cannot be applied on top of other methods. In this paper, we study the effective-
ness of a static and a dynamic methods for selecting number of classes and provide insights
on effectiveness of each method.

2.2 Learning to rank for multi-label classification

LTR was proposed in the context of ad-hoc information retrieval in which the goal is to
create a ranking model that ranks documents with respect to queries. The LTR approach
has been used for constructing a ranking model to rank classes with respect to a given
document and select the most probable classes for the document as its labels (Yang and
Gopal 2012; Ju, Moschitti and Johansson 2013; Fauzan and Khodra 2014). Yang and Gopal
(2012) mapped MLTC to the ad-hoc retrieval problem and used LTR for learning a ranking
model. When we view MLTC as a problem of ranking class labels given a document, we
can use LTR to estimate a classifier: we simply rank all classes given a document and
assign the top k classes (k to be determined by another classifier) as labels to the input
document.

Here we briefly recall the formal principles underlying the used LTR method and de-
scribe LTR in terms of our classification task. We assume that we can compute several
features which indicate, given a document d and a class c, how much discriminatory infor-
mation the feature provides to determine if c is a label of d or not. In LTR these measures
are called features. The goal is to find an optimal linear combination of these features.
Formally, given n features fi, we are searching for weights w1, . . . , wn such that the func-
tion fpc, dq defined in (1) optimally scores and ranks classes with regards to documents on
some test set.

fpc, dq “ w1 ¨ f1pc, dq ` . . .` wn ¨ fnpc, dq. (1)

Similar to (Yang and Gopal 2012), we use LTR for MLTC. Using LTR for MLTC has
many advantages compared to using traditional approaches for MLTC such as SVM’s.
Yang and Gopal (2012) showed that LTR outperforms classification-based approaches for
MLTC by a large margin on a wide variety of datasets with different types of samples,
e.g audio, image, and text. They used meta-level features for building an LTR model. The
meta-level features are defined based on the distance between classes and documents. To
compute meta-level features for a pair of document d and class c, first a kNN classifier
is used to find most closest samples from c to d and their distance to d is used to form
a feature vector. For document classification task, distances of documents estimated us-
ing TF-IDF statistics. Then, an LTR method is trained on top of these feature vectors.
While this method has been shown to have a good performance in MLTC, it does not take
the relations between classes into account in the MLTC task. Fauzan and Khodra (2014)
used the same framework for classifying documents, however, they focused on text clas-
sification and instead of using meta-level features, used typical features such as TF-IDF
weights of words for learning an LTR model. Their method also outperforms traditional

Page 7 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

8 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

classification-based approaches. Ju et al. (2013) tried to extend this idea by modeling the
hierarchical structure of labels in the LTR framework. They used LTR as a re-ranker to
re-rank the rankings created by a classifier by incorporating the structure of the categories.
They achieved similar results to (Yang and Gopal 2012) confirming the effectiveness of
LTR and modeling the hierarchical structure of labels for MLTC.

LTR can learn a global ranking function with respect to all classes, while classification-
based approaches try to optimize a classifier locally per each class. In this sense, LTR can
also take the relations between classes into account to some extent, which is a core problem
in MLTC (Yang and Gopal 2012). From efficiency point of view, the constructed model
of LTR is much smaller than the models constructed by traditional classifiers. Moreover,
when using LTR, during inference only one model is used to score instances. Traditional
classifiers build a model for each class and use all of them during inference which is less
efficient compared to LTR.

2.3 Automatic classification of political documents

In this paper, we conduct our experiments on political documents. In this section, we briefly
review previous work on multi-label classification of political documents. Supervised clas-
sification of political text including parliamentary proceedings, legislative text, and news
articles is an active research area (Steinberger, Pouliquen, Widiger, Ignat, Erjavec and Tufis
2006; Verberne, Dahondt, van den Bosch and Marx 2014; Dehghani, Azarbonyad, Kamps,
Marx 2016a; Dehghani, Azarbonyad, Kamps, Marx 2016b). While standard classification
approaches such as SVM are used for classification of news articles and parliamentary
proceedings, specialized classification tools are developed for classifying legislative texts
such as JRC-Acquis documents. Different approaches have been proposed for automati-
cally assigning labels to JRC-Acquis documents (de Campos and Romero 2009; Mencı́a
and Fürnkranz 2010). In most of these studies well-known classifiers have been combined
with NLP techniques, such as part of speech tagging (Ebrahim, Ehrmann, Turchi and Stein-
berger 2012) and segmentation (Daudaravicius 2012), to achieve a higher performance on
JRC-Acquis dataset. Steinberger et al. (2012) proposed a framework called JEX for la-
beling documents with EuroVoc concepts. They first construct a profile for each EuroVoc
concept and use the method proposed in (Pouliquen et al. 2003) for learning a classifier.
Similar to feature selection approaches for text classification, JEX first represents each
class as a bag of keywords. The keywords are extracted using TF-IDF statistics. Simi-
larly, documents are also represented as bags of keywords. Then, the similarity (cosine and
BM25) of document and class representations are used to rank the classes with respect to
the documents.

Page 8 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 9

3 Learning to Rank for Multi-Label Text Classification

In this paper, we use AdaRank (Xu and Li 2007) to learn the weights of the features.
AdaRank learns fpc, dq, introduced in Section 2.2, from a collection of training examples.
In our case, these are documents with their set of assigned labels. AdaRank optimizes the
function fpc, dq on the evaluation measure of Normalized Discounted Cumulative Gain
(NDCG) over the complete ranked list.

Note that in this setup we are not only learning a model which ranks all classes given
a document, but a function which scores classes given a document. In Section 4 we will
re-estimate this scoring function based on co-occurrence patterns of the classes. Next, we
describe the features used to construct fpc, dq.

3.1 Features for MLTC

We use different sources of information for extracting the features. The sources used for
MLTC are: 1) labeled documents, 2) textual labels of classes, and 3) the relations of classes
(thesaurus structure). We create different representations for documents and classes, and
use them to extract features.

Representations of documents are based on both title and body text of documents. The
first representation (title representation) is based on the titles of documents. We first re-
move stopwords from the titles and stem them. Then, we represent the titles as bags of
stemmed unigrams. The second representation (text representation) is the bag of stemmed
unigrams without stopwords based on all text of the document (including the title).

Similarly, we create four representations for each class c. The first two representations
(title and text representations) are the union of the title representation and text representa-
tion of all documents labeled by c, respectively. The third representation (label represen-
tation) is the bag of stemmed unigrams (without stopwords) of the label c. In our dataset
the mean and median number of tokens in the label representation of the classes are 2.12
and 2, respectively. The fourth representation (ancestors label representation) is the union
of the label representations of all ancestors of the class c in the thesaurus hierarchy.

We now use the constructed representations and define different features. These repre-
sentations lead to 8 possible combinations of a document and class representations (2 times
4). Moreover, for estimating the similarity of each combination, we employ three IR mea-
sures: a) language modeling similarity based on KL-divergence using Dirichlet smoothing,
b) the same as (a) but using Jelinek-Mercer smoothing, and c) Okapi-BM25. This leads to
24 features which are based on the textual similarity of documents and classes.

In addition to the features reflecting the textual similarity of documents and classes, we
define a number of features reflecting the characteristics of classes independent of docu-
ments. First, the statistics of the classes in the training data is considered the prior knowl-
edge for determining the likelihood of selecting a class as a label for documents. We define
the number of times a class has been selected for annotating documents in the training data
as its popularity. Second, the degree of ambiguity of a class implicitly affects its chance for

Page 9 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

10 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

Table 1. Features extracted from each document-class pair to train LTR models. Note that
for features 1 to 8, the similarity is calculated using three different methods. Therefore,
each of these features represent three features. The size of the final feature vector is 28 (24
features based on the similarity of documents and classes (features 1 to 8), and 4 features
based on the statistics of classes (features 9 to 12)).
Feature Description

1 Similarity of document’s title representation and class’ title representation
2 Similarity of document’s title representation and class’ text representation
3 Similarity of document’s title representation and class’ label representation
4 Similarity of document’s title representation and class’ ancestors label representation
5 Similarity of document’s text representation and class’ title representation
6 Similarity of document’s text representation and class’ text representation
7 Similarity of document’s text representation and class’ label representation
8 Similarity of document’s text representation and class’ ancestors label representation
9 Class popularity: the number of times a class has been selected for annotating documents
10 Class ambiguity 1: the number of parents of a class
11 Class ambiguity 2: the number of children of a class
12 Class generality: depth of the class in the thesaurus hierarchy

being assigned to documents. We have used the relations between classes in the thesaurus
hierarchy and modeled ambiguity with two different features: the number of parents of a
class and the number of its children in the thesaurus graph. Another factor for determining
the chance of a class for being selected as an annotation of a given document is its gener-
ality. We quantify the generality of a class as its depth in the thesaurus hierarchy (i.e. the
length of its shortest path to the root).

Finally, for each document-class pair d and c, we construct a feature vector of size 28
(24 features based on the similarity of d and c, and 4 features based on the statistics of c).
An overview of the features is given in Table 1. The value of each feature is normalized
using Min-Max normalization and re-scaled to the [0, 1] interval.

4 Propagation framework

In this section, we describe the score propagation framework for re-estimating the sim-
ilarities of documents and classes based on the implicit relations between classes. This
implicit information is the co-occurrence of classes in the labeled documents. Given a set
of documents D and a set of classes C, let a similarity function fpc, dq as in Section 2.2
be defined. We can represent this function as a |C| ˆ |D| matrix S. We first normalize S
by dividing each column Sd by the sum of its values, so that all columns add up to 1. Then
we will step-by-step re-estimate S by incorporating co-occurrence patterns of classes. For
that, we create a conditional probability matrix P of size of |C| ˆ |C|. Values of matrix P
are determined as Pij “ P pci|cjq. For each class c, the row Pc, is defined as follows: for
each class c1

Pcpc
1q “

$

&

%

P pc1|cq, if there is a document labeled by both c and c1 and c ‰ c1

0, otherwise

Page 10 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 11

where

P pc1|cq “
|Dc1 XDc|

|Dc|
, (2)

and Dc is the set of documents labeled with class c.
Now let S0 “ S. We re-estimate the scores using P as follows, where t indicates the

iteration.

St “ αSt´1 ` p1´ αqPSt´1. (3)

Here α is the neighborhood contribution parameter controlling how much we smooth S
with the co-occurrence matrix. After each iteration we normalize the values again by di-
viding each column by its sum.

This score propagation framework has two hyperparameters: α and the number of itera-
tions t. In Section 6 we discuss their influence and determine their optimal values.

Example 1: We give an example to illustrate how score propagation works. For sim-
plicity, we assume that we want to re-estimate scores for only one document d. Assume
that we have five classes (c1, c2, ..., c5) and the following P and S matrices:

P “

»

—

—

—

—

—

—

–

0 0.2 0 0 0

0.4 0 0.3 0.2 0

0 0.3 0 0 0

0 0.2 0 0 0.4

0 0 0 0.3 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, S “

»

—

—

—

—

—

—

–

0.1

0.3

0.2

0.2

0.2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

We can represent P matrix as the directed graph shown in Figure 2, where nodes are
classes and edges are weighted based on P . A conditional probability P pc1|cq “ w is
represented as an edge from c to c1 with weight w. Let’s assume that Sris returns ith value
from the vector S, where indexing starts from 1. In the first iteration of the algorithm, the
score of c2 will be re-estimated based on its own score and the scores of c1, c3, and c4
as they are direct neighbors of c2 (S1r2s “ αS0r2s ` p1 ´ αqp0.2S0r1s ` 0.3S0r3s `

0.2S0r4sq). The score of c4 will be re-estimated based on its own score and the scores of
c2 and c5. In the second iteration, the score of c2, again will be affected by the re-estimated
scores of its direct neighbors. Since the score of c4 is already affected by the score of c5, in
the second iteration the score of c2 will be affected by the score of c5 as well. Therefore,
in iteration t, the indirect neighbors that are reachable by t edges are used for re-estimating
scores.

5 Experimental setup

In this section we describe our research questions, the data, the experiments, and the base-
lines with which we compare our proposed methods. We recall the two main research
questions from the introduction.

RQ1 How effective is an LTR approach integrating a variety of sources of information as
features for MLTC?

Page 11 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

12 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

Fig. 2. The graph of classes for matrix P introduced in Example 1.

RQ2 Is it worthwhile to use the co-occurrence patterns of classes for MLTC?

We also perform a feature analysis. We first measure the relative importance of each feature
and then see if we can create an almost optimal performing system using only a small set of
features. We perform several analysis to understand how the score propagation works and
what kind of documents benefit the most from it. Additionally, we examine the effective-
ness of a dynamic thresholding method for selecting the number of classes for documents.
We study the effect of dataset size on the performance of different methods.

5.1 Dataset, pre-processing, and parameters

We use the English version of the JRC-Acquis dataset which contains documents of the
European Union which are mostly on legal and political topics (Steinberger et al. 2006).
This dataset contains about 25,000 documents which have been manually labeled with
EuroVoc concepts (EuroVoc). EuroVoc contains 6,796 hierarchically structured concepts,
used to annotate political documents and news within the EU and in national governments.
Since the structure of documents has changed over the years, we only use the documents of
the last five years: from 2002 to 2006. We refer to this dataset as JRC1. We use the English
version of JRC-Acquis, which contains 16,824 documents, each labeled with 5.4 concepts
on average. The median and standard deviation of the number of labels per document are 5
and 1.83, respectively. Each document has a title, body text, and EuroVoc labels assigned
to it. The mean and median length of titles of the documents are 21 and 19 words (with
stopwords), respectively. The mean and median length of the texts are 2015 and 665 words,
respectively.

Moreover, we evaluate the performance of MLTC models on another subset of the En-
glish version of the JRC-Acquis dataset, containing documents from years 1994 to 2001.
We refer to this dataset as JRC2. This subset of dataset contains 4,026 documents. The
average number of labels per document on this subset is 5.2. The median and standard
deviation of the number of labels per document are 5 and 1.41, respectively. The mean and
median length of titles of the documents are 19 and 18 words (with stopwords), respec-
tively. The mean and median length of the texts are 1846 and 537 words, respectively. The

Page 12 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 13

statistics of this subset of dataset is very similar to the statistics of JRC1 dataset, however,
the number of documents on this subset is significantly lower.

To evaluate the proposed classification methods, we order the collection chronologically
and train on the old documents and test on the newest documents. From an application
perspective this is the most natural setup. The 70% oldest documents are used to con-
struct the representations of classes (as documents in LTR) and the co-occurrence matrix
of classes. The remaining 30% of the collection is used for training and testing our LTR
models. Naturally the vocabulary and the set of classes used as labels differ in these two
parts. To have a fair measure, we have removed the classes from the documents that do
not occur in the first part. This leads to 1,639 different classes in the JRC1 dataset. The
reduction from the original 6,796 classes to 1,639 is expected as not all of them are used
for labeling documents. On top of that, we use a subset of the dataset (not full dataset)
in our experiments. Naturally, only a subset of full EuroVoc hierarchy is present in the
dataset. The number of unique labels in JRC2 is 975 labels. For our baselines, there is no
need to construct representations. Therefore, they can directly use the oldest 70% of the
data on top of the newest 30% to build their models. To have a comparable evaluation, for
5-fold cross validation on our baselines, we add the first 70% part of the collection to the
training data used in each fold and train their model. We have trained the ranking model
using different LTR algorithms (AdaRank (Xu and Li 2007), SVM-Rank (Joachims 2006),
and LambdaMART (Burges et al. 2011)). Among them, AdaRank (Xu and Li 2007) has a
slightly better performance and we report the results of this method.

We use a cut-off point of 5 and report Precision@5 as the main measure to evaluate dif-
ferent methods, since the median number of classes per document in our dataset is 5. There-
fore, Precision@5 approximately could be considered as R-Precision as well. Moreover,
we compute Recal@5, micro-averaged F-measure, and Mean Averaged Precision (MAP).
In Section 6.3, we use an approach for dynamically selecting the number of classes for
documents (instead of using a fixed cut-off point) and study its effect on the performance
of different classifiers.

We compare our approach to two baselines: JEX and SVM. JEX is one of the state of
the art systems developed for classifying JRC-Acquis documents (Steinberger et al. 2012).
Similar to feature selection approaches for text classification (Rehman, Javed and Babri
2017), this method first represents each class as a bag of keywords. The keywords are
extracted using TF-IDF statistics. The pre-processing done in this paper is the same as in
JEX: we employ the Porter stemmer and consider the 100 top frequent words in the collec-
tion as stopwords, which are removed. Similarly, documents are also represented as bags of
keywords. Then, the similarity (cosine and BM25) of document and class representations
are used to rank the classes with respect to the documents. For SVM, each document is rep-
resented by a feature vector using TF-IDF values. Each element of this vector corresponds
to a word and its value is the TF-IDF weight of the word in the document normalized by
the length of the document. Then, we train an SVM model to estimate the probability of

Page 13 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

14 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

Table 2. Performance of SVM, JEX, best single feature, and LTR methods for MLTC
on the JRC1 dataset. We report incremental improvement and significance over JEX(Ĳ

indicates t-test, one-tailed, p-value ă 0.05)
Method Precision (%Diff.) Recall (%Diff.) F1 (%Diff.) MAP (%Diff.)

SVM 0.4146 0.4612 0.4366 0.4831
JEX 0.4353 0.4863 0.4505 0.5102
BM25-TITLES 0.4798 (10%)Ĳ 0.5064 (4%)Ĳ 0.4927 (9%)Ĳ 0.5516 (8%)Ĳ

LTR 0.5206 (20%)Ĳ 0.5467 (12%)Ĳ 0.5362 (19%)Ĳ 0.6104 (20%)Ĳ

Table 3. Performance of SVM, JEX, best single feature, and LTR methods for MLTC
on the JRC2. We report incremental improvement and significance over JEX(Ĳ indicates
t-test, one-tailed, p-value ă 0.05)

Method Precision (%Diff.) Recall (%Diff.) F1 (%Diff.) MAP (%Diff.)

SVM 0.3406 0.3845 0.3612 0.3915
JEX 0.3684 0.3830 0.3755 0.4217
BM25-TITLES 0.3946 (7%)Ĳ 0.4204 (9%)Ĳ 0.4070 (8%)Ĳ 0.4762 (13%)Ĳ

LTR 0.4519 (23%)Ĳ 0.4837 (26%)Ĳ 0.4672 (24%)Ĳ 0.5441 (29%)Ĳ

assigning classes to documents and use these probability scores to rank the classes with
regard to the documents. In constructing the training set for SVM, we assume that a docu-
ment belongs to all classes it is labeled with and add the document to the training material
of those classes.

Hyperparameter settings We use default parameter settings for JEX. These are optimal
for the JRC-Acquis dataset. We use different parameters for the similarity functions used
as features in LTR. We use a validation set for setting parameters of different similarity
functions. This set contains about 2000 samples and labels assigned to them. Based on pilot
experiments, when using titles of documents for calculating the similarities, we use these
parameters: µ “ 1, 000 for LM-Dirichlet, λ “ 0.2 for LM-JM, and b “ 0.65 and k1 “ 1.2

for Okapi BM25. When we use the text of documents for calculating the similarities we
use these parameters: µ “ 2, 000 for LM-Dirichlet, λ “ 0.6 for LM-JM, and b “ 0.75 and
k1 “ 1.2 for Okapi BM25.

6 Experimental results

In this section, we first answer our two research questions described in Section 5. Then, we
study the impact of a dynamic thresholding method for selecting the number of classes for
documents on the performance of different classifiers. Afterwards, we analyze the effect of
training set size of the performance of the classifiers. Finally, we focus more on the score
propagation method and study its impact on different types of documents.

Page 14 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 15

6.1 Effectiveness of LTR integrating a variety of sources of information

In this section, we evaluate the effectiveness of the LTR approach integrating a variety of
sources of information for MLTC and look at the importance of the different features. Ta-
ble 2 shows the results of the LTR method compared to the baseline system and JEX in
terms of Precision and Recall on the JRC1 dataset. Performance of different methods on
the JRC2 dataset is also shown in Table 3. BM25-TITLES ranks the classes based on the
similarities of their title representation with the title representations of documents. This
is the best performing single feature and is significantly better than JEX (a performance
comparison of different features is presented in Figure 3). Three observations can be made
from Table 2 and Table 3. First, the LTR method significantly outperforms SVM, BM25-
TITLES, and JEX, demonstrating that the additional sources of information employed in
LTR are effective for the MLTC task. Second, the performance of SVM is the worst among
all methods. This result shows that a standard classification approach is not effective for
MLTC when there are many classes. We do an additional experiment in which we use the
scores estimated by JEX as an additional feature in the LTR approach. The performance
of this approach on JRC1 is: Precision = 0.5431 and Recall = 0.5608; and on JRC2 the per-
formance is: Precision = 0.4621 and Recall = 0.4907. Adding JEX to the LTR approach
improves the Precision of LTR by 4% on JRC1 and less than 2% on JRC2. This results
show that JEX is also providing an additional informative feature. Third, on both datasets
the LTR method outperforms JEX. However, on the JRC2 dataset the improvements are
higher. JRC2 is a smaller dataset with fewer documents. This result shows that using multi-
ple sources of information is even more effective when there are a small number of samples
to train an MLTC model.

Since JRC1 dataset is bigger than the JRC2 dataset, the results on JRC1 dataset is more
reliable. In the rest of this section, we use the JRC1 dataset to perform several analysis and
get more insights on the performance of the LTR model.

We now look at the individual features used in the LTR model.

Importance of Different Information Sources for MLTC. We use the trained model of
SVM-Rank (Joachims 2006) as well as the Precision of employing each individual feature.
Precision of each individual feature is computed by using the feature to rank classes and
computing Precision based on the rankings. For feature analysis, we assume the weight
of each feature is a reflection of its importance. We use SVM-Rank for feature analysis
because the weights it gives to the features are more smoothed. The performance of SVM-
Rank is almost the same as the performance of AdaRank. Its performance in terms of
Precision is 0.5013. AdaRank assigns very high weights to a few features and zero weights
to the others. Here, we only want to analyze the importance of features and AdaRank’s
model does not reflect it very well.

Figure 3 illustrates the importance of a selected set of exploited features. We pick only
one of the similarity methods (BM25) from each feature type since the other two get very
similar scores.

Page 15 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

16 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

titl
e D-ti

tle
C-B

M
25

tex
t D-te

xt
C-B

M
25

tex
t D-ti

tle
C-B

M
25

titl
e D-te

xt
C-B

M
25

titl
e D-la

be
l C-B

M
25

tex
t D-la

be
l C-B

M
25

tex
t D-an

c lab
el

C-B
M

25

titl
e D-an

c lab
el

C-B
M

25

Pop
ula

rit
y

Ambig
uit

y(#
Chil

de
ren

)

Ambig
uit

y(#
Pare

nts
)

Gen
era

lity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Precision
SVMRank Weight

Fig. 3. Feature importance: 1) P@5 of individual features, 2) weights in SVM-Rank
model. title D and text D are title and text representations of document, respectively.
title C, text C, label C, and anc label C are title, text, label, and ancestors’ label repre-
sentations of classes, respectively. This analysis is done on the model trained on the JRC1
dataset.

Similarity of title representations of documents and classes is the best performing fea-
ture. The performance of this feature is significantly better than the performance of the
feature defined using text representations of both classes and documents. Similarity of text
representation of the given document and title representation of the classes is also an ef-
fective feature. Therefore, title representations can be considered as a succinct predictor of
classes. JRC-Aquis is a set of political documents. Titles of political documents tend to be
directly descriptive of the content, making the title the most informative part of the doc-
ument. Body of documents contain more information, however, the amount of irrelevant
information in the body of documents is more compared to their title. In addition to this,
human annotators will pay considerable attention to the titles. Recall that the titles in this
dataset are relatively long (the median is 18 words).

All query-independent features by themselves have very low Precision. Used together

Page 16 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 17

with the other features, generality and ambiguity get a very low weight in contrast to popu-
larity. Investigating the hierarchy graph of the concepts, we see that there is little variation
in generality: the average number of levels in the hierarchy is 3.85 and its standard de-
viation is 1.29. There is a considerable difference in the ambiguity: the average number
of children is 4.94 (standard deviation is 4.96) and the average number of parents is 1.08
(standard deviation is 0.25). Ambiguity may have low importance because it is not dis-
criminative on this data. The popularity feature is weighted high because of the skewness
of the assigned class labels in JRC-Acquis (EuroVoc).

The analysis both confirms the intuitions (e.g., the importance of labeled examples) but
also highlights features of the document genre (e.g., the importance of titles given their
descriptive nature), and the human annotating behavior (e.g., the importance of popularity).

Table 4. Performance of LTR on all features compared to four selected features
(LTR-TTGP) on the JRC1 dataset.

Method Precision Recall F1 MAP

LTR 0.5206 0.5467 0.5362 0.6104
LTR-TTGP 0.5058 0.5301 0.5176 0.5947

Lean and Mean Approach. The LTR uses a rather large set of features. Can we do almost
as well with a small subset of the features?

We use our feature analysis to design a small system which uses a diverse combination
of sources of information and employs the most efficient features from each source. Our
lean-and-mean system is an LTR system trained on four selected features: the BM25 sim-
ilarities of text representation of documents with text representation, title representation,
and label representation of classes, and popularity of classes. Table 4 indicates the per-
formance of this LTR-TTGP approach using only four features. The LTR-TTGP approach
is significantly better than JEX and BM25-TITLES. Although the performance of LTR
is significantly better than the LTR-TTGP method, the performance of LTR-TTGP is 96%
of the large LTR system. Moreover, based on our analysis, the computation time of the
selected features is less than 50% of the time needed for computing whole features. There-
fore, making the selective LTR approach a computationally attractive alternative to the full
LTR approach.

6.2 Effectiveness of score propagation

In this section we evaluate the use of co-occurrence patterns of classes in our classifiers. We
will see that this method is indeed effective, although the gain diminishes for better classi-
fiers. Table 5 shows the results of propagating scores for the previously used approaches.
In all cases we use the same hyperparameter setting: the neighborhood contribution pa-
rameter α is equal to 0.7 and the number of iterations of the propagation approach is 2.
These parameters are tuned on a validation set containing 2000 samples. Re-estimating

Page 17 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

18 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

Table 5. Performance of the score propagation approach on the JRC1 dataset. We report
incremental improvement and significance of each score propagation approach over its
non-propagated version (Ĳ indicates t-test, one-tailed, p-value ă 0.05)
Method Precision (%Diff.) Recall (%Diff.) F1 MAP

Propagated SVM 0.4758 (15%)Ĳ 0.5023 (9%)Ĳ 0.4880 (12%)Ĳ 0.5356 (11%)Ĳ

Propagated JEX 0.4912 (13%)Ĳ 0.5246 (8%)Ĳ 0.5073 (13%)Ĳ 0.5483 (7%)Ĳ

Propagated BM25-TITLES 0.5263 (10%)Ĳ 0.5489 (8%)Ĳ 0.5373 (9%)Ĳ 0.5911 (7%)Ĳ

Propagated LTR-TTGP 0.5334 (5%) 0.5593 (6%) 0.5460 (5%) 0.6203 (4%)
Propagated LTR 0.5470 (6%)Ĳ 0.5719 (5%)Ĳ 0.5591 (4%)Ĳ 0.6320 (4%)Ĳ

the scores using classes’ co-occurrence patterns improves performance for all classifiers.
Moreover, the results show that the propagation has the highest positive impact on SVM
scores. SVM (without propagation) has the lowest performance among all methods. This
indicates that when the classifier has a low quality, re-estimating the scores by propagation
is more useful.

To gain additional insights into the score propagation approach, we analyze the effect of
the parameters on the performance: α and the number of iterations. We use JRC1 dataset
to perform this analysis. Figure 4 shows the Precision of different approaches for different
values of α. The value of α has a great impact on the performance of all systems. The
best performance is achieved for 0.7 ď α ď 0.8 which indicates that although the co-
occurrence information is useful for annotating documents more accurately, the similarity
of classes and documents is still much more important.

Figure 5 shows the Precision of different classifiers in different iterations of score prop-
agation. All methods achieve their best performance with a few iterations. With only one
iteration, the score of a class c is affected by the scores of its direct neighbors (a class c1

is a neighbor of c if there is a document labeled by both c and c1). Therefore, low number
of iterations corresponds to using only the scores of co-occurring classes to re-estimate the
score of c. With high number of iterations, the score of c is affected by the scores of the
classes that are indirect neighbors of c and might not be related to c. Therefore, the results
are better with a few iterations where only close neighbors contribute to the score of a class
and documents.

6.3 The impact of using a dynamic threshold for choosing the number of classes

All the results reported so far are achieved by ranking classes for documents and choosing
top 5 classes as labels of documents. In other words, we use the median number of classes
in the training set (which is 5) as the number of classes for every document. In this section,
we relax this assumption and use a dynamic threshold for choosing the number of classes
and study its impact of the performance in MLTC.

To choose the number of classes for documents, we use the approach proposed in (Elis-
seeff and Weston 2001; Yang and Gopal 2012). This method tries to learn a mapping from
a ranked list of classes to its optimal number of classes using a training set. The training

Page 18 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 19

0.0 0.2 0.4 0.6 0.8 1.0

α

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

P
re

ci
si

o
n

SVM

JEX

Okapi

LTR

Fig. 4. The effect of α parameter on Precision achieved by propagating the scores of
different text classification approaches. The number of iterations is set to 2.

0 1 2 3 4 5
iteration

0.40

0.45

0.50

0.55

P
re

ci
si

o
n

SVM

JEX

Okapi

LTR

Fig. 5. Precision achieved in different iterations of score propagation method for different
text classification approaches. The value of α is set to 0.7.

data for this approach is a set of ranked lists of classes (sorted by their scores regarding a
document) and an optimal threshold for each ranked list which is achieved by minimizing
a classification loss. Given this training set, the thresholding method tries to find a mapping
from the space of ranked lists to the space of thresholds. After selecting a threshold for a
document, classes with a score higher than the threshold are assigned to the document. As
in (Yang and Gopal 2012), the classification loss is defined as the sum of false negatives
and false positives. Therefore, the training set for learning the mapping is automatically
constructed by using a ranker to rank classes regarding the documents and assigning a
threshold to the ranked list that minimizes the classification loss. After creating this set,
an optimal mapping is learned based on a linear-least-square-fit solution (Yang and Gopal

Page 19 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

20 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

2012) using the following equation:

min
w˚,b˚

m
ÿ

i“1

ppw˚rpdiq ` b
˚q ´ spdiqq

2 (4)

where m is the number of documents in the training set, rpdiq is a list of scores cor-
responding to the ranked list of classes with regards to a document di and spdiq is the
optimal threshold for rpdiq determined by minimizing the classification loss. The goal of
the linear-least-square-fit is to determine the parameters of the linear mapping (w˚ and b˚)
and use them to determine the thresholds for new instances. Note that the dimensions of the
operands are: w˚

|1|ˆ|C|, rpdiq|C|ˆ|1|, and b˚ and spdiq are scalars. We use the same set of
documents used for creating the classifier for learning the thresholding method. After hav-
ing the learned thresholding model, we use it to select the number of classes for documents
in test set.

Table 6 shows the results of this experiment using different classifiers (note that we do
not report MAP for this experiment as it is the same as the ones reported in Table 2). Again,
we use the JRC1 dataset to do the set of experiments in this section. Dynamic thresholding
improves performance on both Recall and Precision for all classifiers. The improvements
are significant for Recall but not for Precision (see Table 6). Figure 6 shows the distribution
of number of classes for documents in the dataset. The distribution is almost normal with a
mean of 5. This explains why a static threshold of 5 has a reasonable performance. Based
on the results, on the best performing method (Propagated LTR), for 89% of documents
with more than 5 classes, the dynamic thresholding picks a number higher than 5. For
documents with less than 5 classes, only in 69% of times a number less than 5 is picked.
This gives us more insights on why Recall is improved more than Precision, as the dynamic
thresholding in general tends to work better for documents with more classes.

Table 7 shows the root mean squared error (RMSE) and the mean absolute error (MAE)
between the true number of classes and the estimated number of classes for different meth-
ods. Moreover, in this table, the accuracy of dynamic thresholding in choosing the correct
number of classes for documents is shown. The results indicate that in general dynamic
thresholding performs better in terms of all metrics when the underlying classifier has a
good performance. The main reason for this is that when the underlying classifier has a
poor performance, the optimal threshold for the ranked list which is obtained by mini-
mizing the classification loss is not reliable. The optimal performance for the thresholding
method will be achieved with a perfect classifier which ranks all true classes on top of the
ranked list, as in this case the optimal threshold will correspond to the actual number of
classes. However, as the performance of the classifier degrades, the ranked lists used for
creating the training set for thresholding get more unreliable.

Overall, based on the results in this section, we conclude that dynamic thresholding is
an effective approach for selecting the number of classes and it can have a big impact of
the performance of classifier in MLTC task.

Page 20 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#classes

0

1

2

3

4

5

6

7

8

#d
oc

um
en

ts
 in

 lo
g-

sc
al

e

Fig. 6. The distribution of number of classes in documents. X-axis corresponds to the
number of classes assigned to documents in the ground-truth and Y-axis corresponds to the
number of documents. Y-axis is in log-scale.

Table 6. Performance of SVM, JEX, BM25-TITLES, and LTR, and Propagated LTR
methods for MLTC using a dynamic threshold for selecting the number of classes. The
significance tests are done on the improvements of each method using a dynamic threshold
over its corresponding method which uses a static threshold, e.g. setting number of classes
to 5.

Method Precision (%Diff.) Recall (%Diff.) F1 (%Diff.)

SVM 0.4201 (1%) 0.4816 (4%)Ĳ 0.4487 (3%)Ĳ

JEX 0.4424 (2%) 0.5012 (3%)Ĳ 0.4699 (4%)Ĳ

BM25-TITLES 0.4874 (2%) 0.5194 (3%)Ĳ 0.5028 (3%)Ĳ

LTR 0.5248 (1%) 0.5687 (4%)Ĳ 0.5459 (2%)Ĳ

Propagated LTR 0.5510 (1%) 0.5952 (4%)Ĳ 0.5722 (2%)Ĳ

6.4 The impact of dataset size on the performance of different classifiers

In this section, we study the impact of size of training set per class on the performance
of different classifiers. To do this, we use JRC1 dataset and select the classes which at
least have 20 training samples. Afterwards, we balance the dataset by taking an equal
number of instances per class. Then, we vary the number of samples per class and report
the performance of using different number of instances per class. Figure 7 shows the results
of this experiment. This subset of the dataset contains 4381 classes. Again, we use 70%
oldest documents for creating the representation of classes and the remaining 30% for
training and testing the models.

The performance of the LTR method is better than the performance of other classifiers
for different number of samples per class. This result, again, indicates that the LTR method
is the most effective method for MLTC. As the results show, the performance of all meth-

Page 21 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

22 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

Table 7. The root mean squared error (RMSE) and mean absolute error (MAE) between the
assigned number of classes and the actual number of classes for documents and the accu-
racy of the thresholding method in choosing the correct number of classes for documents
for SVM, JEX, BM25-TITLES, and LTR, and Propagated LTR methods for MLTC. The
accuracy is calculated by dividing the number of documents for which the thresholding
method picked a correct number of classes by total number of documents. We also report
RMSE, MAE, and accuracy for the fixed threshold method (choosing top 5 classes)

Method RMSE MAE Accuracy

Fixed threshold 1.87 1.39 0.23
SVM 1.62 1.21 0.26
JEX 1.51 1.07 0.28
BM25-TITLES 1.47 0.99 0.30
LTR 1.33 0.83 0.34
Propagated LTR 1.26 0.75 0.36

ods is getting improved by increasing the number of samples per class. However, the rate
of the improvement is different for different models. The rate is quite high for SVM and
this method can benefit more from more samples. This is expected as adding more sam-
ples helps SVM learn a better decision boundary for classes and generalize better. This
effect is similar for JEX and this method also benefits a lot from more samples. The LTR
method achieves a good performance with 100 examples per class and the performance
does not change much by increasing the number of instances. The impact of increasing
the number of samples on the performance of BM25-TITLES is similar to this effect on
LTR. Both LTR and BM25-TITLES are ranking-based classifiers. This results indicate
that, first, ranking-based methods are more stable with regard to the number of samples
compared to classification approaches. These models create a profile for each class and
even with a few samples the created profiles are good enough for computing the similarity
of classes and documents. Second, LTR which tries to combine different sources of infor-
mation is the most stable method. This shows the impact of using all available information
on the performance in MLTC. An intelligent combination model can achieve a reasonable
performance even when there are only a few samples per class.

6.5 What kind of documents benefit the most from score propagation?

In this section, we analyze the effect of score propagation on the performance achieved
for different types of documents. To do this, we first bin the documents on JRC1 dataset
based on the number of classes assigned to them in the ground-truth data. Then, we use
the LTR method to assign classes to the documents and measure the Precision for each
bin. Our running hypothesis is that the score propagation method should have a better
performance on documents with more classes, as in this case, there is more information
from neighboring classes available for assigning classes.

Figure 8 shows the results of this experiment. The results show that with a low number

Page 22 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 23

100 200 300 400 500 600
#samples per class

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

P
re

ci
si

o
n

SVM

JEX

Okapi

LTR

Fig. 7. Precision achieved using different sample sizes for classes. X-axis corresponds to
the number of samples used per class for training the classifiers.

of iterations, the performance for documents with a low number of classes is higher. For
example, for documents with only three or four classes, the best performance is achieved
when we do not use the score propagation method at all (Iteration=0). In this case, increas-
ing the propagation effect (number of iterations) results in a lower Precision. On the other
hand, for documents with a high number of classes (documents with more than six classes),
by increasing the number of iterations, the Precision keeps getting improved.

These results indicate that when there is more information provided by neighboring
classes, the score propagation method can exploit it to re-assign classes to documents more
accurately. The score propagation method tries to re-assign the classes based on their co-
occurrence information in the training set. For documents with more classes, it can use
the scores assigned by the LTR method to co-occurring classes, which are true labels
of documents, to increase their scores. When the number of true classes is low, the score
propagation still tries to use the information provided by co-occurring classes to re-estimate
the scores but in this case it results in adding more noise as these kind of documents are
focused on a few topics and there is no need to disambiguate them using scores provided
by relevant classes.

Our score prorogation method has an exploratory behavior. With low number of itera-
tions the exploration effect is low. However, when we increase the number of iterations it
tries to explore more and use the information provided by indirect neighbors. The results
presented in this section indicate that this exploration has a positive impact on documents
with a high number of classes and getting more information from even indirect neighbors
can help classify these kind of documents. For documents a low number of classes, the
score propagation method is not helpful indicating that there is no need for exploration for
these kind of documents. Therefore, we conclude that it is best to use the score propagation
method when there is a need for exploration and documents have a high number of classes.

Page 23 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

24 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

3 4 5 6 7 8 9 10 11
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

Iteration=0

Iteration=1

Iteration=2

Fig. 8. Precision achieved for different bins of documents in JRC1 dataset based on their
actual number of classes in the ground-truth data. X-axis corresponds to the number of
classes per document.

7 Conclusion

Simple classification approaches (such as binary classification methods) for Multi-Label
Text Classification (MLTC) fail when there is a high number of classes. In this paper, we
considered MLTC a ranking problem and proposed learning to rank as a solution. Our ap-
proach is based on combining different sources of information for MLTC. We found that
LTR can effectively exploit several sources of evidence, leading to significant improve-
ments over the state of the art. The LTR approach is rather brute force, but is able to infer
many complexities of human class assignment based on the observed data. It can also be
viewed as a (soft) upperbound on performance, also taking into account the inter-indexer
agreement, e.g. (Livonen 1995). Our findings mostly confirmed the intuitions with the la-
beled examples as the key source of evidence. The title evidence was remarkably important,
due to its descriptive nature and high precision. Interestingly, popularity is a feature with-
out any power in isolation, but very effective in combination in order to capture important
aspects of human labeling behavior.

The proposed LTR approach is built on top of the method proposed in (Yang and Gopal
2012). While our results confirmed the main findings in (Yang and Gopal 2012), we ex-
tended the use of LTR for MLTC is various aspects: (1) We used LTR in an MLTC setting
with a very high number of labels. (2) Our approach combines various signals coming from
different sources in a unique way using LTR. (3) We employed a score propagation method
on top of the LTR method to directly use implicit relations between classes.

We proposed to use the co-occurrence patterns of classes in the labeled documents to
improve the accuracy of the MLTC classifier. This is more effective when the underlying
classifier has a low accuracy, indicating that co-occurrence patterns of classes are important
signals for classifying documents in MLTC task.

The findings of this research have several theoretical implications. First, the fact that the
ranking based MLTC classifiers perform better than traditional classification approaches
implies that more effective MLTC systems can be designed by defining and optimizing for

Page 24 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

Learning to Rank for Multi Label Text Classification 25

a ranking loss rather than a classification loss. Second, rather than just using a set of training
samples, utilizing various sources of information leads to better performances in MLTC.
LTR is an effective approach for unifying and utilizing different information sources for
MLTC. An interesting future research direction can be designing MLTC systems using
various sources of information and by adapting a ranking loss into the MLTC framework.
The findings of this research have also practical implications on designing MLTC systems.
The identification of a subset of effective features from all sources of information opens
up the possibility to design efficient MLTC systems. Also, our analysis on the importance
of different features can help human annotators to concentrate their focus on the important
parts of documents while assigning labels to them. Moreover, our findings imply that it
is more important to use other sources of information such as co-occurrence patterns of
classes for hard classification problems. The designed classifier can be adapted in vari-
ous applications such as exploratory search, automatic indexing of textual documents, text
summarization, and mapping text collection to ontologies. As our analysis showed, most
discriminatory feature in our setting is the title of a document. An interesting future direc-
tion would be applying the proposed approach for a short-text classification task. In this
work, we explored the effectiveness of the proposed method on classifying the English
version of JRC-Acquis dataset. As an additional work, this method can be also explored in
other versions (languages) of the EuroVoc and JRC-Acquis collection. Moreover, the prop-
agation framework has potential to be explored even with other sources of information that
are not part of the data such as Wikidata or DBpedia. It would be interesting to explore its
effectiveness on these kind of information sources.

Acknowledgements This research was supported by the Netherlands Organization for
Scientific Research (ExPoSe project, NWO CI # 314.99.108; DiLiPaD project, NWO Dig-
ging into Data # 600.006.014) and by the European Community’s Seventh Framework
Program (FP7/2007-2013) under grant agreement ENVRI, number 283465.

References

Azarbonyad, H., Dehghani, M., Kenter, T., Marx, M., Kamps, J., and de Rijke, M. 2017. Hierarchical
re-estimation of topic models for measuring topical diversity. In Proceedings of the 39th European
Conference on IR Research, ECIR, pp. 68–81

Babbar, R., and Schölkopf, B. 2017. Dismec: Distributed sparse machines for extreme multi-label
classification. In Proceedings of the Tenth ACM International Conference on Web Search and
Data Mining, WSDM, pp. 721–729

Bi, W., and Kwok, J.T. 2011. Multi-label classification on tree and dag-structured hierarchies. In
Proceedings of the 28th International Conference on Machine Learning, ICML, pp 17–24

Bi, W., and Kwok, J.T. 2013. Efficient multi-label classification with many labels. In Proceedings of
the 30th International Conference on Machine Learning, ICML, pp. 405–413

Boutell, M.R., Luo, J., Shen, X. and Brown, C.M. 2004. Learning multi-label scene classification. in
Pattern recognition, 37(9): 1757–1771

Burges, C.J.C., Svore, K. M., Bennet, P. N., Andersec, P., and Wu, Q. 2011. Learning to Rank using

Page 25 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

26 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

an Ensemble of Lambda Gradient Models in Journal of Machine Learning Research: Workshop
and Conference Proceedings, 14: 25–35

Clare, A. and King, R.D. 2001. Knowledge discovery in multi-label phenotype data. In Proceedings
of European Conference on Principles of Data Mining and Knowledge Discovery, pp. 42–53

Daudaravicius, V. 2012. Automatic multilingual annotation of eu legislation with eurovoc descrip-
tors. In Proceedings of Exploring and Exploiting Official Publications Workshop Programme,
EEOP2012, pp. 14–20

de Campos, L.M., and Romero, A.E. 2009. Bayesian network models for hierarchical text classifica-
tion from a thesaurus. International Journal of Approximate Reasoning, 50(7): 932–944

Dehghani, M., Azarbonyad, H., Kamps, J., and Marx, M. 2016. Two-way parsimonious classification
models for evolving hierarchies. In Proceedings of the 7th International Conference of the CLEF
Association, CLEF, pp. 69–82

Dehghani, M., Azarbonyad, H., Kamps, J., and Marx, M. 2016. On horizontal and vertical separation
in hierarchical text classification. In Proceedings of the 2016 ACM International Conference on
the Theory of Information Retrieval, ICTIR, pp. 185–194

Ebrahim, M., Ehrmann, M., Turchi, M., and Steinberger, R. 2012. Multi label eurovoc classification
for eastern and southern eu languages. Cambridge Scholars Publishing

Elisseeff A., and Weston, Jason. 2001. A Kernel Method for Multi-labelled Classification. Proceed-
ings of the 14th International Conference on Neural Information Processing Systems: Natural and
Synthetic, NIPS, pp. 681–687

EuroVoc. 2014. Multilingual thesaurus of the european union. http://eurovoc.europa.eu/
Fauzan, A., and Khodra, M.L. 2014. Automatic multilabel categorization using learning to rank

framework for complaint text on bandung government. In Proceedings of the International Con-
ference of Advanced Informatics: Concept, Theory and Application, ICAICTA, pp. 28–33

Furnkranz, J., Hullermeier, E., Mencia, E.L. and Brinker, K. 2008. Multilabel classification via cali-
brated label ranking. in Machine learning, 73(2): 133–153

Ghamrawi, N., and McCallum, A. 2005. Collective multi-label classification. In Proceedings of the
14th ACM International Conference on Information and Knowledge Management, CIKM, pp.
195–200

Hariharan, B., Zelnik-manor, L., Vishwanathan, S.V.N.m and Varma, M. 2010. Large scale max-
margin multi-label classification with priors. In Proceedings of the 27th International Conference
on Machine Learning, ICML, pp. 423–430

Herrera, F., Charte, F., Rivera, A.J., and del Jesus, M.J. 2016. Multilabel Classification : Problem
Analysis, Metrics and Techniques, Springer International Publishing, pp. 17–31

Hong, C., Batal, I., and Hauskrecht, M. 2014. A mixtures-of-trees framework for multi-label classi-
fication. In Proceedings of the 23rd ACM International Conference on Conference on Information
and Knowledge Management, CIKM, pp. 211–220

Huang, J., Li, G., Huang, Q., and Wu, X. 2016. Learning label-specific features and class-dependent
labels for multi-label classification. IEEE Transactions on Knowledge and Data Engineering,
28(12): 3309–3323

Ioannou, M., Sakkas, G., Tsoumakas, G. and Vlahavas, I. 2010. Obtaining bipartitions from score
vectors for multi-label classification. In Proceedings of the 22nd IEEE International Conference
on Tools with Artificial Intelligence, ICTAI, pp. 409–416)

Jiang, M., Pan, Z., and Li, N. 2017. Multi-label text categorization using l21-norm minimization
extreme learning machine. Neurocomputing

Joachims, T. 2006 Training linear svms in linear time. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, SIGKDD, pp. 217–226

Page 26 of 28

Cambridge University Press

Natural Language Engineering

http://eurovoc.europa.eu/

For Peer Review

Learning to Rank for Multi Label Text Classification 27

Ju, Q., Moschitti, A., and Johansson, R. 2013. Learning to rank from structures in hierarchical text
classification. In Proceedings of the 35th European Conference on Advances in Information Re-
trieval, ECIR, pp. 183–194

Livonen, M. 1955. Consistency in the selection of search concepts and search terms. Information
Processing & Management, 31(2): 173 – 190

Mencı́a E. L., and Fürnkranz, J. 2010. Efficient multilabel classification algorithms for large-scale
problems in the legal domain. Semantic Processing of Legal Texts: Where the Language of Law
Meets the Law of Language, pp. 192–215

Nam, J., Kim, J., Gurevych, I., and Furnkranz, J. 2014. Large-scale multi-label text classification -
revisiting neural networks. In Proceedings of the European Conference on Machine Learning &
Principles and Practice of Knowledge Discovery, ECML PKDD, pp. 437–452

Ping Qin, Y., and Wang, X.K. 2009. Study on multi-label text classification based on svm. In Pro-
ceedings of the Sixth International Conference on Fuzzy Systems and Knowledge Discovery, pp.
300–304

Pouliquen, B., Steinberger, R., and Ignat, C. 2003. Automatic annotation of multilingual text collec-
tions with a conceptual thesaurus. In Proceedings of the Ontologies and Information Extraction
Workshop, EUROLAN

Qiu, X., Gao, W., and Huang, X. 2009. Hierarchical multi-class text categorization with global mar-
gin maximization. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, ACL, pp.
165–168

Quevedo, J.R., Luaces, O. and Bahamonde, A. 2012. Multilabel classifiers with a probabilistic thresh-
olding strategy. in Pattern Recognition, 45(2): 876–883

Read, R., Pfahringer, B., Holmes, G., and Frank, E. 2011. Classifier chains for multi-label classifica-
tion. Machine Learning, 85(3): 333–359

Rehman, A., Javed, K., and Babri, H.A. 2017. Feature selection based on a normalized difference
measure for text classification. Information Processing & Management, 53(2): 473 – 489

Ren, Z., Peetz, M.H., Liang, S., van Willemijn, D., and de Rijke, M. 2014. Hierarchical multi-label
classification of social text streams. In Proceedings of the 37th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR, pp. 213–222

Rossi, R.G., de Andrade Lopes, A., and Rezende, S.O. 2016. Optimization and label propagation
in bipartite heterogeneous networks to improve transductive classification of texts. Information
Processing & Management, 52(2): 217 – 257

Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J. 2006. Kernel-based learning of hierar-
chical multilabel classification models. Journal of Machine Learning Research, 7: 1601–1626

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., and Tufis, D. 2006. The JRC-
Acquis: A multilingual aligned parallel corpus with 20+ languages. In Proceedings of the 5th
International Conference on Language Resources and Evaluation, LREC

Steinberger, R., Ebrahim, M., and Turchi, M. 2012. JRC EuroVoc indexer JEX-A freely available
multi-label categorisation tool. In Proceedings of the 5th International Conference on Language
Resources and Evaluation, LREC

Tang, L., Rajan, S. and Narayanan, V.K. 2009. Large scale multi-label classification via metalabeler.
In Proceedings of the 18th international conference on World wide web, pp. 211–220

Tsoumakas, G., Katakis, I., and Vlahavas, I. 2010. Mining multi-label data. Data Mining and Knowl-
edge Discovery Handbook, Springer US, pp. 667–685

Verberne, S., Dahondt, E., van den Bosch, A., and Marx, M. 2014. Automatic thematic classification
of election manifestos. Information Processing & Management, 50(4): 554 – 567

Vilar, D., Castro, M., and Sanchis, E. 2004. Multi-label text classification using multinomial models.
In In Proceedings of Advances in Neural Information Processing Systems 17, NIPS, pp. 220–230

Page 27 of 28

Cambridge University Press

Natural Language Engineering

For Peer Review

28 Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx and Jaap Kamps

Wang, B., and Tsotsos, J. 2016. Dynamic label propagation for semi-supervised multi-class multi-
label classification. Pattern Recognition, 52: 75 – 84

Wehrmann, J., Barros, R.C., Dores, S.N.D. and Cerri, R. 2017. Hierarchical multi-label classification
with chained neural networks. In Proceedings of the Symposium on Applied Computing, pp. 790–
795

Xu, J., and Li, H. 2007. Adarank: A boosting algorithm for information retrieval. In Proceedings of
the 30th Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR, pp. 391–398

Yang, Y., and Gopal, S. 2012. Multilabel classification with meta-level features in a learning-to-rank
framework. Machine Learning, 88: 47–68

Yuan, P., Chen, Y., Jin, H., and Huang, L. 2008. Msvm-knn: Combining svm and k-nn for multi-class
text classification. In Proceedings of the IEEE International Workshop on Semantic Computing
and Systems, WSCS, pp. 133–140

Zhang, M.L. and Zhou, Z.H. 2006. Multilabel neural networks with applications to functional
genomics and text categorization. in IEEE transactions on Knowledge and Data Engineering,
18(10): 1338–1351

Zhang, M.L., and Zhou, Z.H. 2014. A review on multi-label learning algorithms. IEEE Transactions
on Knowledge and Data Engineering, 26(8): 1819–1837

Page 28 of 28

Cambridge University Press

Natural Language Engineering

