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ABSTRACT
BCubed is a mathematically clean, elegant and intuitively well
behaved external performance metric for clustering tasks. BCubed
compares a predicted clustering to a known ground truth through
elementwise precision and recall scores. For each element, the
predicted and ground truth clusters containing the element are
compared, and the mean over all elements is taken. We argue that
BCubed overestimates performance, for the intuitive reason that the
clustering gets credit for putting an element in its own cluster. This
is repaired, andwe investigate the repaired version, called "Elements
Like Me (ELM)". We extensively evaluate ELM and conclude that it
retains all positive properties of BCubed and gives a minimum 0
zero score when it should.
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1 INTRODUCTION
We review the external clustering performancemetric BCubed [1, 2],
show a flaw and propose a repair. We then evaluate the repair
theoretically and experimentally and show that the proposed repair
yields more intuitive results, particularly for the F1 score.

To keep this paper short, we refrain from reviewing clustering
methods and clustering evaluation measures. For these, we refer to
[8] and [1], respectively.

In essence clustering and (single label) classification perform the
same task: given a set of items 𝐷 , they partition 𝐷 . But when it
comes to evaluation with comparison to a gold standard, things are
very different.

With classification, the number of blocks in the partition is
known (the set of labels), and a mapping exists between the true

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICTIR ’22, July 11–12, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9412-3/22/07. . . $15.00
https://doi.org/10.1145/3539813.3545121

blocks and the predicted blocks (namely the identity mapping on
the labels). So, counting errors is straightforward by making the
cross table of predicted and gold truth values (the confusion table),
and computing precision and recall as the diagonal divided by the
two margins, respectively.

With clustering, there is (at prediction time) no known number
of blocks (as the label set is unknown), and there is no mapping be-
tween the predicted blocks and the true labels. This makes counting
errors much less straightforward, witnessed by the numerous pro-
posals on how to do this, nicely surveyed and classified by Amigó
et. al. [1].

1.1 BCubed P, R and F1
The most natural and easy to use and understand measure is the
BCubed measure, proposed by Bagga and Baldwin [2]. Besides that,
Amigó et. al. [1] define four intuitive desiderata for a clustering
performance metric and BCubed is the only one satisfying all of
them.

BCubed is defined as follows. Let 𝐷 be a set of items and 𝑓 :
𝐷 −→ P(𝐷) a partition with the property that 𝑒 ∈ 𝑓 (𝑒) for all 𝑒 ∈
𝐷 . Thus 𝑓 assigns to each element 𝑒 in D a subset of 𝐷 containing
𝑒 , subsets do not overlap, and together cover 𝐷 . Note that 𝑓 can be
seen as a clustering, or as a labelling of elements in 𝐷 with the sets
in 𝑟𝑎𝑛𝑔𝑒 (𝑓 ).

Assume we have two partitions: the predicted 𝑓𝑝 , and the gold
standard truth 𝑓𝑡 . For each 𝑒 ∈ 𝐷 , define the precision, recall and
harmonic mean F1 of 𝑒 as usual:

𝑃 (𝑒) =
|𝑓𝑝 (𝑒) ∩ 𝑓𝑡 (𝑒) |

|𝑓𝑝 (𝑒) |
(1)

𝑅(𝑒) =
|𝑓𝑝 (𝑒) ∩ 𝑓𝑡 (𝑒) |

|𝑓𝑡 (𝑒) |
(2)

The harmonic mean of P and R is usually defined as 2𝑃𝑅/(𝑃 + 𝑅),
but we use here the equivalent direct definition in terms of the
quadrants in the confusion table.

Let 𝑇𝑃 = |𝑓𝑝 (𝑒) ∩ 𝑓𝑡 (𝑒) |, 𝐹𝑃 = |𝑓𝑝 (𝑒) \ 𝑓𝑡 (𝑒) | and 𝐹𝑁 = |𝑓𝑡 (𝑒) \
𝑓𝑝 (𝑒) |.

𝐹1(𝑒) = 𝑇𝑃

𝑇𝑃 + (𝐹𝑃+𝐹𝑁 )
2

(3)

We can use the symmetric difference 𝐴 ⊖ 𝐵 to give an equivalent
definition, from another intuitive angle, of the number of misclassi-
fications, and obtain this definition of the F1 score per element:

𝐹1(𝑒) =
|𝑓𝑝 (𝑒) ∩ 𝑓𝑡 (𝑒) |

|𝑓𝑝 (𝑒) ∩ 𝑓𝑡 (𝑒) | +
|𝑓𝑝 (𝑒)⊖𝑓𝑡 (𝑒) |

2

(4)

The BCubed precision, recall and F1 values of the predicted partition
are simply the means over all elements in 𝐷 .
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2 FLAW OF BCUBED
The intuitive interpretation of the evaluation measures restricted
to an element 𝑒 is that they indicate how well the classifier is able
to find the elements similar to 𝑒 . The precision 𝑃 (𝑒) equals 1 if it did
not assign wrong elements to the block of 𝑒 and the recall is 1 if it
assigned all elements in the true block of 𝑒 to the predicted block
of 𝑒 .

However, if one thinks of BCubed in this way it becomes clear
that the measure is giving too much credit. 𝑃 (𝑒) and 𝑅(𝑒) should
measure how well the other elements in 𝐷 are assigned to the block
of 𝑒 . But the definition also counts 𝑒 itself, which by definition is
assigned to the (correct) block of 𝑒 .

This flaw is exemplified by the observation that because 𝑒 is
always an element of 𝑓𝑝 (𝑒) and 𝑓𝑡 (𝑒), the numerator |𝑓𝑝 (𝑒) ∩ 𝑓𝑡 (𝑒) |
is never equal to 0, and thus none of 𝑃 (𝑒), 𝑅(𝑒) and 𝐹1(𝑒) can ever
be equal to zero.

Now consider this simple concrete example: 𝐷 = {1, 2} and 𝑓𝑡
assigns each element to 𝐷 . Now let 𝑓𝑝 partition 𝐷 into {1} and
{2}. This is the only other partition that can be made, and it is
wrong. However, for both elements 𝑒 , 𝑃 (𝑒) = 1, as it makes no
mistakes, 𝑅(𝑒) = .5, as half of the true elements of the block of 𝑒
are in its predicted block, and so 𝐹1(𝑒) = .66. Taking the mean over
all elements, we get an 𝐹1 value of .66 for this prediction. Having
only two outcomes for the prediction, correct and wrong, we see
here that BCubed F1 does not nicely separate these two predictions.
The dual example on the same set 𝐷 yields 𝑃 (𝑒) = .5, 𝑅(𝑒) = 1
and again 𝐹1(𝑒) = .66 for each 𝑒 , and thus also for the predicted
partition. It is desirable that the two extreme clusterings (assign
nobody and assign everybody) receive the same score, but it would
be better if they both received a much lower 𝐹1 score, preferably 0.
Note that if we put the two examples together in one testset, and
average over the scores per test-items, both extreme clusterings
again receive the same scores of 𝑃 = 𝑅 = .75 and 𝐹1 = .66. This
example can be generalized to sets 𝐷 of cardinality 𝑛. Then the
"singleton clustering" has 𝑃 = 1, 𝑅 = 1/𝑛 and 𝐹1 = 2

𝑛+1 , and the "all
in one clustering" the dual 𝑃 = 1/𝑛, 𝑅 = 1 and 𝐹1 = 2

𝑛+1 .
We can repair this by not counting the element 𝑒 itself, forcing

the recall in the singleton clustering example to become 0, as it
should be, because the classifier failed to find any similar element to
𝑒 . Then 𝐹1 becomes 0 as well, resulting in a much better and fairer
estimate of the quality of this prediction. To repair this we only
need to subtract the set {𝑒} in both numerator and denominator in
the above definitions:

𝑃 (𝑒) =
|𝑓𝑝 (𝑒) ∩ 𝑓𝑡 (𝑒) \ {𝑒}|

|𝑓𝑝 (𝑒) \ {𝑒}|
(5)

We have to account for the case when 𝑓𝑝 (𝑒) = {𝑒}, which would
result in a division by zero. Naturally, we set 𝑃 (𝑒) equal to 1 in
this case (no others are assigned to the cluster of 𝑒 , so no mistakes
have been made). We do the same for recall, setting 𝑅(𝑒) = 1 if
𝑓𝑡 (𝑒) = {𝑒}.

𝑅(𝑒) =
|𝑓𝑝 (𝑒) ∩ 𝑓𝑡 (𝑒) \ {𝑒}|

|𝑓𝑡 (𝑒) \ {𝑒}|
(6)

And for 𝐹1 we only change the definition of the true positives
TP into |𝑓𝑝 (𝑒) ∩ 𝑓𝑡 (𝑒) \ {𝑒}|, and stipulate that 𝐹1(𝑒) equals 1 if
𝑓𝑡 (𝑒) = 𝑓𝑝 (𝑒) = {𝑒}.

It is immediate that a perfect prediction still receives only ones.
The wrong singleton clustering on any one block ground truth still
has a precision of 1 (because it does nothing, so makes no mistakes),
but now a recall and thus also F1 of 0. The dual "all in one class"
prediction on the singleton gold truth has maximal recall but at
the cost of zero precision and thus also zero F1. Thus this simple
repair gives the two extreme "baseline" clusterings on all extreme
examples exactly the same minimal 𝐹1 value of zero. Much nicer
than the diminishing sequence for sets of increasing cardinality.

2.1 A new name
In the rest of the paper, we further evaluate this repair. But let us
first give it a name. The BCubed measure was introduced by Bagga
and Baldwin [2]. In a footnote they attribute the idea of BCubed to
Bierman, and thus the cubed Bs. We opted for ELM, an abbreviation
of Elements Like Me, which is a good mnemonic of the way we
compute the repaired BCubed measure.

3 EVALUATION
We evaluate our ELM metric in four ways:

(1) We show that ELM is conservative: ELM is always less than
or equal to BCubed.

(2) We compare ELM to BCubed on a number of fixed baselines
on a real world clustering test set.

(3) We do the same comparison but now using hierarchical
clustering.

(4) We show that ELM still satisfies the four constraints satisfied
by BCubed introduced in [1].

The totality of tests show that ELM retains all good properties
of BCubed, but is better in separating good from bad clustering
methods.

3.1 ELM is conservative
We compare the BCubed and ELM versions of 𝑃, 𝑅 and 𝐹1 using
superscripts 𝑃𝐵, 𝑃𝐸𝐿𝑀 , etc.

Claim. Let 𝐷 be a set and 𝑓𝑡 and 𝑓𝑝 be the ground truth and
predicted partition of 𝐷 , respectively. Then for each 𝑒 ∈ 𝐷 , for
each metric 𝑂 ∈ {𝑃, 𝑅, 𝐹1}, 𝑂𝐸𝐿𝑀 (𝑒) is strictly smaller than 𝑂𝐵 (𝑒),
except when both are equal to 1, and that is when 𝑓𝑡 (𝑒) = 𝑓𝑝 (𝑒)
or the condition in the definition of ELM to avoid zero division
applies.

Proof. The claim follows from the following fact:
if𝑚 < 𝑛 ≠ 1, then 𝑚−1

𝑛−1 < 𝑚
𝑛 (*).

Let 𝐷, 𝑓𝑡 and 𝑓𝑝 be as in the claim and 𝑒 ∈ 𝐷 arbitrary. We show
the claim for precision. The arguments for recall and 𝐹1 are similar.
If 𝑓𝑡 (𝑒) = 𝑓𝑝 (𝑒) or 𝑓𝑝 (𝑒) = {𝑒}, 𝑃𝐵 (𝑒) = 𝑃𝐸𝐿𝑀 (𝑒) = 1. So assume
otherwise. Then |𝑓𝑝 (𝑒) | > 1 and |𝑓𝑝 (𝑒) ∩ 𝑓𝑡 (𝑒) | < |𝑓𝑝 (𝑒) |. In this
situation the sole difference in the definitions of BCubed and ELM
is that we subtract 1 from both the numerator and the denominator.
The claim now follows from (*).

3.2 ELM vs BCubed on a real testset
We take a clustering dataset for which we have ground truth and
compare ELM and BCubed scores for a number of predictions. We
first look at simple fixed cluster size baselines and observe what
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Figure 1: Difference of mean average P, R and F1 between BCubed and ELM (left) and mean average P, R and F1 scores for
BCubed and ELM (right) for the experiment with clusters of a fixed number of pages (N=75).

happens when we vary the cluster size. Then we look at hierarchical
clustering and compare the scores of BCubed and ELM over the
whole dataset for a specific version of a hierarchical clustering
algorithm

Following [1, 2], we report the mean average F1 scores. Thus for
every sample 𝐷 in our testset, we take the average over the 𝐹1(𝑒)
for each 𝑒 ∈ 𝐷 , and then we take the mean over all samples in the
testset.

We have a (test)set 𝐶 of samples 𝑆 each consisting of items
which need to be clustered. This specific set has 75 samples with
in total 2.508 true clusters over in total 20.618 elements. The mean
and median cluster size is 33 and 17, respectively. Each sample is a
sequence of pages of text divided into documents. Thus each cluster
consists of a document, which is a continuous sequence of pages.
The elements are thus the pages. This scenario is common in the
field of Page Stream Segmentation [7, 9].

3.2.1 Fixed baselines. For the comparison of the P, R and F1 scores
of BCubed and ELM for a fixed baseline, we used the dataset de-
scribed above, and varied the size of the clusters from 1 to 15 pages.
We also compare BCubed and ELM in the case of the two extreme
clusterings: only singleton clusters and putting all elements in the
same cluster.

Table 1 shows the results of evaluating the extremes. We can see
that ELM gives lower scores for both of these extremes, with the
difference for recall, and hence also for F1, of the ’singleton clusters’
variant being large. This is because for all non singleton clusters
in the gold standard, no similar elements are found if all predicted
clusters are singletons because of the exclusion of the item itself. So
for most elements the ELM recall will be equal to zero. In fact for
this prediction, the ELM recall is equal to the proportion of single
page clusters in the dataset.

Table 1: Mean average BCubed and ELM precision, recall and
F1 scores for the two extreme clusterings: all elements are
put into one cluster, and each singleton is a cluster (N=75).

All Singletons

Precision Recall F1

BCubed 1.0 (𝜎 = 0.0) 0.26 (𝜎 = 0.20) 0.34 (𝜎 = 0.22)
ELM 1.0 (𝜎 = 0.0) 0.10 (𝜎 = 0.13) 0.10 (𝜎 = 0.13)

All in one cluster

Precision Recall F1

BCubed 0.26 (𝜎 = 0.28) 1.0 (𝜎 = 0.0) 0.34 (𝜎 = 0.28)
ELM 0.24 (𝜎 = 0.27) 1.0 (𝜎 = 0.0) 0.31 (𝜎 = 0.28)

The difference in mean and standard deviation is much smaller
for the ’one giant cluster’ prediction. This also holds when we
consider the distribution of all scores (Figure 2). Also notice that the
distribution for the singleton clusters prediction has less variance
and skew for ELM.

Figure 1 shows that the difference between BCubed and ELM
is largest for the F1 score on the fixed page baseline. For all three
metrics the difference decreases as the fixed number of elements in
the cluster increases, but for F1 the difference remains large. This
further proves the point that the ELM score is more conservative
than the BCubed score.

3.2.2 Hierarchical clustering. We now expand on the comparison
of fixed baselines conducted in the previous section by using a
constrained (clusters must consist of consecutive pages) hierar-
chical clustering algorithm, employing cosine similarity between
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Figure 2: Kernel density estimation plots for mean average
ELM and BCubed metrics computed for the two extreme
clusterings (N=75).

Table 2: Mean average P, R and F1 scores for the constrained
hierarchical clustering approach (N=52).

P R F1

BCubed 0.69 0.69 0.51
ELM 0.65 0.66 0.44

elements. Pages are represented as character 2- and 3-grams fre-
quency vectors1. The number of predicted clusters is determined
by the distance between two clusters compared to the distances at
the same and possible lower levels of the dendrogram. This method
is known as the inconsistency coefficient and many variants exist
for determining a threshold.

For our dataset, we found that a coefficient of 1.5 times the mean
of the lower level distances worked best, with the mean taken over
all distances below the cluster decision in the dendrogram. Results
in Table 2 show little difference between BCubed and ELM precision
and recall, but quite a large difference in their harmonic mean.
The density plots in Figure 3 show that the variance in difference
between the scores is also the largest for F1.

Figure 4 shows that the difference between the mean F1 score per
document of BCubed and ELM decreases as the average cluster size
in the gold standard increases. This is expected as the subtraction
of {𝑒} in ELM has a larger effect when the denominator / cluster
size is smaller. When we used the median cluster size instead of the
mean, the plot was even more skewed towards large differences
with a low median number of clusters.

3.3 ELM satisfies the constraints of Amigó et al
We show that the constraints presented by Amigó et. al. [1] hold
for the ELM F1 metric. This paper shows that the family of BCubed
like cluster evaluation metrics is the only one satisfying all their 4
constraints. For a thorough explanation and motivation of the four
constraints we refer to the original paper. We follow the same line
of reasoning as in [1] and also use their informative pictures.
1For this experiment, we needed the text of the documents, which was only available
for 52 of the 75 streams.

Figure 3: Density plots for difference between BCubed and
ELM (BCubed - ELM) for average P, R and F1 for the hierarchi-
cal clustering experiment (N=52). The dotted lines represent
the means of the respective difference and the colored areas
the standard deviations.

Figure 4: Scatter plot showing BCubed F1 - ELM F1 plotted
against the mean number of pages in a document (N=52).

3.3.1 Homogeneity. The homogeneity constraint states that a clus-
ter assignment 𝐷1 that splits samples into homogeneous subgroups
should be scored higher than an assignment 𝐷2 that mixes samples
of different subgroups together, like in Figure 5 in Appendix A.1.

The ELM recall for each element is the same in 𝐷1 and 𝐷2, but
the precision is lower for the elements in the mixed cluster in 𝐷2,
than in the homogeneous clusters in 𝐷1. Hence, the mean ELM 𝐹1
score of 𝐷1 is higher.

3.3.2 Completeness. The cluster completeness states that a cluster
assignment 𝐷1 that groups items belonging to the same cluster
together should receive a higher score than a clustering 𝐷2 that
subdivides items from a homogeneous cluster, like in Figure 7 in
Appendix A.3.
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The argument is the dual of the previous. Here precision is max-
imal for all elements in both partitions as all clusters are homoge-
neous. But ELM recall is lowered for those elements in the separate
𝐶2 and 𝐶3. In fact, recall is with ELM even 0 for singleton clusters.
Thus the mean ELM 𝐹1 is higher for the partition𝐷1 with the joined
clusters.

3.3.3 Rag Bag. The Rag Bag constraint states that adding a single-
ton cluster to a cluster consisting of all differently labeled elements,
a rag-bag, should score better than an assignment adding this sin-
gleton to a homogeneous cluster, as in Figure 6 in Appendix A.2. In
this example, this means that 𝐷1 should score better than 𝐷2.

First observe that all elements have the same recall in both clus-
terings. Now the element in 𝐶3 has the same precision of 0 when it
is added to 𝐶1 or to 𝐶2. The elements in the rag-bag 𝐶2 also keep
the same precision (namely 0) irrespective whether 𝐶3 is joined or
not. But those in the homogeneous𝐶1 see a drop in precision (from
1 to 3

4 ) when 𝐶3 is joined. Thus 𝐷1 has a higher mean 𝐹1.

3.3.4 Cluster Size vs. Quantity. The clustering size vs. quantity
constraint states that making a small error in a big cluster should
be favorable to makingmany small mistakes in small(er) clusters. To
show it, consider a set 𝐷 containing a subset of 4 special elements.
In case 1, all these 4 have the same label and these are the only 4
with that label, and can be either all in one cluster or divided into a
3 size cluster and a singleton. If they are all together, all 4 elements
have recall of 1. If they are divided, the singleton has recall 0, and
the other 3 all recall of 2

3 . The precision of all 4 equals 1. Thus
when the 4 elements are in one cluster, the F1 of each equals 1. But
when divided, the singleton has F1 score of 0, and the other three
(2 · 1 · 23 )/(1 +

2
3 ) = 4/5, so the sum of F1 scores drops with 4 − 12

5 .
On the other hand, consider that these 4 elements are labeled

2 by 2 with 2 labels, and these 4 are the only elements with these
labels. Then also if the clustering is correct all 4 elements have
recall of 1. If we split both clusters, all elements have recall of 0.
Again in both cases all elements have a precision of 1. So here the
the numerator in the mean F1 score drops with 4 − 0 = 4. And thus
the mean F1 score of the first case, a small error in a big cluster, is
larger than the score in the second case, two errors in two small
clusters.

4 OTHER REFINEMENTS OF BCUBED
Since the introduction of BCubed, several refinements have been
proposed to adapt the metric for specific use cases. Moreno and Dias
[6] proposed two adjustments to the BCubed F1 metric that is more
suited for usage with highly unbalanced datasets, such as image
clustering of ambiguous search terms on the web. They argue that
the standard version of BCubed is less suited for this, because the
larger clusters (of the non interesting class) have an unreasonable
effect on the total score, comparable to the unreasonableness of
accuracy in such cases. Both proposed alterations have the effect
of weighting precision more than recall. The most straightforward
one is not to use the harmonic mean F1, but a differently weighted
average.

In addition to proposing the adjustment to the BCubed metric,
the authors also show that it satisfies the unbalanced constraint
from [4]. This constraint states that cluster assignments misplacing

elements from small clusters into large clusters should be penalized
more than cluster assignments misplacing elements from a large
cluster into smaller clusters. In their work, they also propose an
adjustment to the Rand index that satisfies this constraint.

The original BCubed metric is not well suited to cases where
elements can simultaneously belong in multiple clusters, for ex-
ample clustering news articles into different categories, where a
news article might be associated with multiple topics or tags. An
extension to BCubed that handles the case of overlapping clusters
is proposed in [1], but this extension might assign the maximum F1
score to a clustering that is not exactly equal to the gold standard.
The ELM metric suffers from the same problem as BCubed in the
case of overlapping clusters, because in this case the numerator
and denominator in BCubed are always equal, leading to a perfect
score. Obviously in this situation, subtracting 1 from both numera-
tor and denominator still yields a perfect score. Morena and Dias
[6] propose CICE-BCubed, which fixes the aforementioned issue for
BCubed by also checking for pair occurrences in different classes.

5 CONCLUSION
We indicated that the BCubed F1measure gives an overestimation of
the performance of a clustering method, repaired the definition, and
evaluated the result positively. The new ELM measure retains all
the positive properties of BCubed, is a better performance indicator,
and is better able to separate different approaches tested on the
same testbed.

We end with looking at the problem from the perspective of
network science [3, 5]. If we view a clustering not as a set of subsets
on some domain 𝐷 but as a binary relation on 𝐷 , we take a network
perspective. A clustering or partition then corresponds to an equiv-
alence relation 𝐸. The neighbor function 𝑓 (𝑒) = {𝑒 ′ ∈ 𝐷 | 𝑒𝐸𝑒 ′}
then is the clustering function used to define BCubed. In network
science, it is customary to work with simple (that is, irreflexive),
and if possible, undirected relations. If we replace the equivalence
relation with this irreflexive undirected relation, we end up with
the same partition (in network science the blocks are called cliques).
But on this network, the same neighbor function defines ELM, sim-
ply because no element is a neighbor of itself. We can speculate
how BCubed would have been defined if one of the three B’s had
been a network scientist.
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A FIGURES FOR ELM CONSTRAINT PROOFS
A.1 Homogeneity Constraint

C2

C3

C1

Figure 5: Homogeneity constraint: black nodes belong to one
cluster and the white nodes belonging to another cluster.
Shown are two partitions: the homogeneous 𝐷1 : {𝐶1,𝐶2,𝐶3}
and the mixed 𝐷2 : {𝐶1,𝐶2 ∪𝐶3}

.

A.2 Rag Bag Constraint

C3

C1 C2

Figure 6: Rag Bag constraint: black nodes belong to one clus-
ter and all other nodes are singleton clusters. Shown are two
cluster assignments:𝐷1 = {𝐶1,𝐶2∪𝐶3} and𝐷2 = {𝐶1∪𝐶3,𝐶2}.

A.3 Completeness Constraint

C2

C3

C1

Figure 7: Completeness constraint: All nodes belong to the
same cluster. Shown are two partitions: 𝐷1 = {𝐶1,𝐶2∪𝐶3} and
𝐷2 = {𝐶1,𝐶2,𝐶3}
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