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ABSTRACT
Even though term-based methods such as BM25 provide strong
baselines in ranking, under certain conditions they are dominated
by large pre-trained masked language models (MLMs) such as BERT.
To date, the source of their effectiveness remains unclear. Is it their
ability to truly understand the meaning through modeling syntactic
aspects? We answer this by manipulating the input order and posi-
tion information in a way that destroys the natural sequence order
of query and passage and shows that the model still achieves com-
parable performance. Overall, our results highlight that syntactic
aspects do not play a critical role in the effectiveness of re-ranking
with BERT. We point to other mechanisms such as query-passage
cross-attention and richer embeddings that capture word meanings
based on aggregated context regardless of the word order for being
the main attributions for its superior performance.

CCS CONCEPTS
• Information systems → Learning to rank.
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1 INTRODUCTION
Originating from the field of natural language processing (NLP)
large-scale self-supervised training yields representations that are
useful for a wide range of tasks [6, 19, 29]. Specifically, pre-training
large language models using masked language modeling (MLM)
as proposed by [6] in BERT has become a standard procedure to
achieve top performances on downstream tasks.

While in the past many ideas coming from NLP did not lead
to convincing improvements in information retrieval [1, 8, 25, 28],
somewhat surprisingly BERT did lead to the long-awaited jump in
performance (see also [14]). Nevertheless, its success comes with
the caveat of extremely complex models that are hard to interpret,
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Original Query what the best way to get clothes white
Original Passage bleach is also the best way to get white clothes

white again, and helps remove stubborn, older
stains. choose warm water for moderately soiled,
synthetic blend white clothes wash white clothes
in warm water if they’re moderately soiled, are
lined, and if they’re made of synthetic fibers or
natural and synthetic blends.
Predicted Rank: 1

Shuffled Query clothes white best get way what to the
Shuffled Passage stains ##lea moderately moderately fibers stub-

born blend blend synthetic synthetic synthetic
wash lined helps remove soil soil choose clothes
clothes clothes warm warm older natural ##ch
white white white white water water best again
get re re way ##ed ##ed made if if also or they they
are ##s for is to in and and and of the b . . , , , , , ’ ’
Predicted Rank: 1

Table 1: The same query (id: 1108651) and passage (id:
8175412) in original and perturbed order. While breaking
the natural sequence order makes it meaningless to human
readers, amodel trained on the perturbed sequence estimates
its relevance correct. Example taken from the NIST 2020 test-
set on MSMARCO.

and therefore it is hard to pinpoint the source of their effectiveness.
These rankers typically comprise millions of parameters requiring
massive amounts of training data. Only with the arrival of the large-
scale ranking dataset MS MARCO [2], did large MLMs find their
successful application in information retrieval.

With BERT’s representation of long sequences of input tokens,
providing the means to model syntactic aspects of the input, in-
formation retrieval seems to shift towards being an NLP problem.
To recap basic linguistics, understanding natural language can be
comprehended in four hierarchical steps. The NLP pyramid (Fig-
ure 1) depicts the consecutive steps from bottom up. It starts on the
word level with the morphology describing how words are formed
depending on their context (singular/plural, word inflection, etc. ).
The next step considers the relationship between multiple words
building the syntax of a sentence. Through the structure of a sen-
tence, we can understand the function of words (parts-of-speech),
identify sentence boundaries, and understand the dependency be-
tween words. With having an understanding of the syntax we can
then derive the semantics or “meaning" of a sentence. As the last
step, pragmatics describes the higher level of semiotics and spans
the text as a whole. In case the sequence embeddings of BERT
are capturing some of these higher levels, this could explain the
observed gains in ranking effectiveness observed in ranking tasks.
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Figure 1: NLP pyramid. Four hierarchical steps to describe
the understanding of natural language.

We want to focus on the second step, the syntax, and observe
that here the order of words in the sentence is of essential impor-
tance. In most cases altering the order changes the meaning or
even destroys the grammar making the meaning of the sentence
undefined. Applied to the ranking problem: consider the example
query and document in Table 1. For humans it is easy to identify
the passage in natural sequence order (top half) as relevant to the
query, however, with perturbed sequence order (bottom half) the
passage becomes meaningless and therefore it is very hard if not
impossible to estimate its relevance.

Remarkably, traditional rankers such as Query likelihood and
BM25 pose such strong baselines by solely operating on bag-of-
words representations that disregard the sequence order and there-
with the syntax entirely. One of the key differences of BERT over
these lexical rankers is the ability to go beyond the word level
and to be able to model phrase and sentence level contexts. While
such large models could potentially gain deeper semantic and syn-
tactic abstractions to understand the true meaning of documents
[5, 13] it remains unclear whether they do so. Little is known about
how BERT estimates the relevance of a query-document pair; what
features are encoded and which of those are essential for its perfor-
mance.

One possible explanation for the success of BERT is that it in-
deed learns to understand syntax. Applied to ranking, BERT could
potentially build deep interactions between queries and documents
that allow uncovering complex relevance patterns bringing us one
step closer to the vision for future retrieval systems of Metzler et al.
[17] in “Making Domain Experts out of Dilettantes”. In contrast
to this, another possible explanation could be that BERT lines up
alongside other NLP techniques [4, 18, 21] exploiting the distribu-
tional properties of natural language [11] by merely learning simple
term distributions.

In this paper, we overall aim to answer the question:
How much is modeling syntactic aspects contributing to the
success of BERT in information retrieval?

We organize our paper by answering the following research
questions:

RQ1 Does the BERT Cross-Encoder Ranker perform well due to
modeling syntactic aspects?

RQ2 What is the effect of removing position information on the
ranking performance?

RQ3 Does the model inherently lose order sensitivity while fine-
tuning on the ranking task?

RQ4 How different are models that are trained without sequence
order?

RQ5 What role does modeling syntactic aspects play in Natural
Language Understanding tasks?

To this end, we are manipulating the natural order, or how the
model perceives order in different ways. More specifically, in Sec-
tion 4 we conduct experiments manipulating the sequence order
during fine-tune training and fine-tuning evaluation. In Section
5 we alter the BERT Cross-Encoder in a way that it can not per-
ceive sequence order anymore during fine-tuning (creating a true
BOW-BERT). We later, in Section 6 analyze the models that have
been rendered order invariant by comparing their latent represen-
tations to the vanilla Cross-Encoder Ranker and the pre-trained
BERT model. Finally, in Section 7 we evaluate our manipulations
on the basic NLP tasks using GLUE.

We find that for re-ranking with the BERT Cross-Encoder the
sequence order does not play a critical role. Our main contribu-
tion lies in showing that the superior performance of the BERT
ranker cannot be attributed to syntactic abstraction and a deeper
understanding of language. We validate our findings on two tasks
(re-ranking and NLU) and several datasets (MSMARCO, Robust04,
and GLUE).

For reproducibility and to encourage further research in this
direction, we make our new order-invariant BOW-BERT model
available to the public under https://github.com/davidmrau/ictir22.

2 RELATEDWORK
In this section, We discuss related work from IR and NLP on probing
large pre-trained transformers.

Despite several efforts to open up the BERT ranker as a black-
box [3, 9, 23] the mechanisms within the model remain unclear.
More particular to ranking, the role of word-order in large MLMs
during inference has been studied recently [16, 24]. In previous
work, Ettinger [7] showed that BERT relies on the word order
during pre-training for the MLM task, finding evidence of the model
encoding syntactic information in its representations. The necessity
of doing so, however, seems to vary depending on the task. One
of the earlier works in NLP showing that the input order does not
play a crucial role in solving natural language inference (SNLI) was
carried out by Parikh et al. [20] based on LSTMs.

In later work, [10, 22, 27] investigate the sensitivity of input
order permutations during evaluation and find a varying order
of sensitivity for some NLP down-stream tasks. Sinha et al. [27]
show that different transformer models perform well on permuted
input of natural language inference tasks. Gupta et al. [10] show the
same for RoBERTa [15] on several natural language understanding
tasks (MNLI, QQP and SST-2). Pham et al. [22] conduct a more
complete study suggesting that some tasks are more sensitive to the
input order than others based on the GLUE benchmark. However,
recent work signals that the role of word order is smaller than
expected on NLP tasks Sinha et al. [26]. They carry out a wide range
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of experiments on order permutations on GLUE using RoBERTa.
Wang et al. [30] and Sinha et al. [26] study the effect of removing
the position information for a subset of the GLUE tasks.

As the work by Sinha et al. [26] was carried in parallel to ours, a
sub-set of the experiments on GLUE show similarities to ours, with
a few differences: We additionally choose to break the sentence
structure deterministically by sorting the input by id and to carry
out the experiments on all tasks of the GLUE benchmark. Further-
more, previous work has examined sequence order on a sentence
level, whereas ranking operates on a passage/document level. In
terms of text understanding this is posing quite another challenge.
Hence, compared to previous work, we are the first to examine the
role of syntactic aspects in ranking with large MLMs during learn-
ing the ranking task. Note that the analysis of the role of syntactic
structures in information retrieval is of particular importance, as
one of its main achievements was the development of effective “bag
of words” approaches over 50 years ago, and these models are still
powering almost every single search index deployed in practice.

3 EXPERIMENTAL SETUP
In this section, we detail the basic neural ranker and two test col-
lections used in the experiments.

3.1 Model
For our experiments we use a BERT Cross-Encoder (CE) which
encodes both queries and passages at the same time. Given input:

𝒙 ∈ {[𝐶𝐿𝑆], 𝑞1, . . . , 𝑞𝑛 [𝑆𝐸𝑃], 𝑝1, . . . , 𝑝𝑚, [𝑆𝐸𝑃]},
where 𝑞 represents query tokens and 𝑝 passage tokens, the activa-
tions of the CLS token are fed to a binary classifier layer to classify
a passage as relevant or non-relevant; the relevance probability is
then used as a relevance score to re-rank the passages.

3.2 Data
3.2.1 MSMARCO. We conduct our ranking experiments on the
TREC 2020 Deep Learning Track’s passage retrieval task on the MS
MARCO dataset [2]. The average passage length is 56. For training,
we use the official MS MARCO training triplets. For evaluation, we
use the NIST 2020 judgments with the official top-1,000 runs. We
evaluate using the metrics NDCG@10, MAP, and Recall@100.

3.2.2 Robust04. TREC 2004 Robust Track is a news collection of
documents with an average length of 254 words. We use this col-
lection as a zero shot re-ranking test collection with no additional
training on the dataset. We choose this additional dataset for docu-
ment retrieval due to its complete judgments allowing for unbiased
evaluation. For evaluation we use the title queries 301-450 and
601-700. BM25 with no stemming serves as a first stage ranker to
retrieve the top-1,000 ranks for each topic. Evaluation is done using
the metrics NDCG@10, MAP, and Recall@100.

3.3 Training Details
We follow the training scheme of Nogueira and Cho [19] unless
stated differently.We train our BERT ranker fromHuggingface’s [31]
bert-base-uncased. For training we use batch size 64, maximum se-
quence length 512, warm-up steps 1000, learning rate 3e-6, epoch
size 1000 and evaluate the best model within 40 epochs.

Table 2: Performance of BM25 (without stemming and default
parameters) and the BERT Cross-Encoder (CE) re-ranking
the same BM25 ranking on the MSMARCO NIST 2020 testset.

model NDCG@10 MAP R@100

BM25 47.96 28.56 55.99
CE 68.95 45.08 68.07

4 PERTURBING SEQUENCE ORDER
In this section, we conduct experiments to examine the role of
syntax understanding in the performance gain of the BERT Cross-
Encoder for passage re-ranking.

Ranking has a long history of strong baselines operating purely
on bag-of-words representations ignoring the sequence order en-
tirely. It is therefore all the more interesting to understand the
source of the large performance gains under certain conditions
(specifically on MS MARCO) compared to BM25 (Tab. 2). Is it the
potential of the MLMs to model word order? Specifically, we try to
answer our first research question:

RQ1 Does the BERT Cross-Encoder Ranker perform well due to
modeling syntactic aspects?

Being able to parse syntax is essential for extracting deeper
meaning from natural language. If the model mainly draws on
complex language understanding, breaking the sentence structure
should lead to a dramatic decrease in performance.

4.1 Experiment Design
We address RQ1 by breaking the order of the input tokens in two dif-
ferent ways: deterministically sorting input by token id in decreasing
order, and by random shuffling.

The input manipulations can be carried out during fine-tune
training and fine-tune evaluation. Forming all combinations of
the natural and the perturbed sequence order during training and
evaluation results in four coherent experiment conditions for each
manipulation. We are mainly interested in two of those conditions:

(1) Perturbing the sequence only zero-shot during evaluation. In
this scenario, the model is trained on the original input and
perturbed only during evaluation. This tells us how much
the fine-tuned ranker is sensitive to changes in the input
order. Given the model would be invariant to our input ma-
nipulation the performance would not deteriorate compared
to the natural order.

(2) Training and evaluating on the same input manipulation. In
this setting we allow the model to learn a new representation
that is potentially able to cope with unnatural sentence struc-
ture in a sense that its representation is entirely invariant to
the order.

We manipulate the input by first tokenizing the input. We then
apply the respective input manipulation where we only perturb
queries and passages within their boundaries.

The position of [SEP] and [CLS] tokens remain unchanged.

The results of the input manipulation during fine-tune training
and fine-tune evaluation can be found in Table 3 for MSMARCO
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Table 3: Performance of CE with natural-, sorted by descending token-id- and randomly shuffled- input and without position
information during different fine-tuning train and fine-tuning eval conditions. All models are trained on MSMARCO, Robust04
serves as a zero-shot evaluation dataset.

MSMARCO Robust04

model fine-tune train fine-tune eval NDCG@10 MAP R@100 NDCG@10 MAP R@100

CE baseline natural natural 68.95 45.08 68.07 44.27 23.31 40.35

So
rt CE

natural sort 52.36 32.09 64.43 39.49 21.66 37.96
sort sort 67.05 43.18 69.22 42.48 22.74 38.45
sort natural 67.14 44.05 68.85 41.23 22.75 39.25

Sh
uffl

e

CE
natural shuffle 51.78 30.48 61.00 36.66 19.41 35.76
shuffle shuffle 66.71 42.83 68.03 43.65 22.57 37.97
shuffle natural 65.33 42.30 67.49 45.61 23.48 38.93

no
po

s.

CE no pos. no pos. 66.34 43.48 68.43 46.22 24.22 40.61

and Robust04. We first report the results for the deterministically
perturbed input by sorting the input in Sec. 4.2 and for shuffling
randomly in Sec. 4.3.

4.2 Results Sorting Deterministically
The first line in Tab. 3 serves as the baseline where we fine-tune
(fine-tune train) and evaluate (fine-tune eval) on the natural se-
quence order. When we train on the natural sequence order and
sort the input we observe a performance drop on all measures for
MSMARCO. MAP drops around 30% (from 45.08 to 32.09), R@100
5% (from 68.07 to 64.43). For Robust04 we observe a slightly smaller
performance drop but follow the same pattern across metrics. The
deterioration of the performance on all measures leads to the con-
clusion that CE is sensitive to the input order by default. Despite
the performance drop, the remaining performance shows that the
model can cope with destroying the sequence order to some limited
extent.

Does this change if we fine-tune the model on the perturbed
input order? Surprisingly, when fine-tuning on the sorted input
almost the same performance as with the natural input (see Tab. 3)
can be achieved. The performance is marginally lower for precision-
based measures and slightly higher for R@100. This holds for both
datasets. When evaluating this model in turn on the natural se-
quence order the model’s performance drops only marginally show-
ing no clear preference for a particular order, thus being close to
entirely order invariant.

Regarding RQ1, our findings show that superiority in perfor-
mance compared to traditional methods can be achieved without
drawing upon the natural sequence order. Thus, the ability to model
syntactic aspects can be ruled out as a single contributing factor to
it. One might argue that the model is performing well on the sorted
input because it can reconstruct the original word order, however,
Sinha et al. [26] find evidence to reject this hypothesis.

4.3 Results Random Shuffling
Again, the results can be found in Table 3. The manipulation of
the sequence order in the previous experiment is fixed. To avoid

picking up artifacts that are based on this particular arrangement
such as preserving some syntactical order or contextual information
we repeat the experiment with random shuffling. The results can
be found as well in Table 3. We find that the perturbation using
random shuffling tightly follows the same performance patterns
for the different fine-tune and evaluation conditions. The results
support our claims made previously that the BERT CE can perform
comparably without drawing on the syntactic order of the input.
This holds for MSMARCO as well as for Robust04.

5 REMOVING POSITION INFORMATION
In this section, we conduct experimentswith a new position-ignorant
model “BOW-BERT.”

The previous experiments suggest the Cross-Encoder can achieve
good performance when fine-tuned on sorted input. While in those
experiments the model theoretically still could encode positional in-
formation, for this experiment we remove the position information
entirely. Specifically, we study our second research question:

RQ2 What is the effect of removing position information on the
ranking performance?

5.1 Experiment Design
For this experiment, we remove the position embeddings that enable
the model to perceive input order. As a consequence, the model is
not able to infer the order of the input tokens and can solely revert
to a bag-of-words representation of query and document.

In BERT each input is represented by a combination of three
embeddings: token, segment, and position embeddings. Technically,
our new model is a patch of the BERT model that completely re-
moves everything related to the position embeddings. As a result,
there is no concept of order over the entire input sequence, and we
can no longer rely on order or separator tokens to process the input.
Fortunately, the segment embeddings still allow the model to distin-
guish which tokens belong to the query or the document (or other
token types), so we can still express all crucial information needed
to estimate relevance in a ranking setting. While this change in the
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model is technically perhaps small, the conceptual differences are
very significant, and we have created a true “BOW-BERT.”

We first aim to understand howwell the model performs without
position information on MS MARCO (5.2.1) and Robust 04 (5.2.2).

5.2 Results
The results can be found at the bottom in Table 3.

5.2.1 MS MARCO. Overall, the performance of the CE without
position information is comparable to the CE baseline. The per-
formance drops marginally for precision-based metrics (4% for
NDCG@10, 5% MAP, and 2% MRR) compared to the baseline; Re-
call@100 performance is on par. None of the performance changes
is significant with respect to the CE baseline. Our results strengthen
the findings that sequence order is not crucial for the performance
of the CE to the extent that a bag-of-words representation without
any position information can lead to a comparable performance. In-
terestingly, the model without position information can match the
high precision scores of the CE baseline. From a human perspective
it is plausible to get a very rough understanding of relevance from
a bag-of-words representation, but estimating which of two highly
relevant passages is more relevant seems extremely challenging.

5.2.2 Robust 04. The performance of the CE without position in-
formation compared to the CE baseline on the Robust 04 dataset
can be found in Table 3 on the right side. The performance is for
all metrics measured comparable. More specific, precision-based
metrics are slightly higher without position information: 4% for
NDCG@10, 4% MAP, and 4% MRR. This small gain may be related
to the different requests in Robust (short keyword titles), notably
shorter than the fully verbose questions in MS Marco.

Regarding RQ2, our findings show that removing position in-
formation internally from a BERT cross-coder, a true bag-of-word
cross-encoder ranking model, obtains a ranking performance com-
parable with the standard neural cross-encoder. This finding sug-
gests novel research directions for developing new neural ranking
models on more efficient document representations containing e.g.
only characteristic words.

6 LOOKING INTO THE MODELS
In this section, we dig deeper and analyse the internal represen-
tations of the models, both in general and for the [CLS] token
determining the ranking.

6.1 Inherent Order Sensitivity in Ranking
The success of CE lies in the pre-training step where representations
are learned by masking tokens that the model has to predict cor-
rectly. During this task sequence order inarguably plays a role [26]
and syntax is learned implicitly. Our previous experiments have
shown that CE’s performance deteriorates but remains relatively
high when the input order is manipulated during zero-shot evalu-
ation. In this section we investigate whether the model becomes
more or less order sensitive when we fine-tuned on the ranking
task.

RQ3 Does the model inherently lose order sensitivity while fine-
tuning on the ranking task?

Table 4: CKA similarity between natural and shuffled hid-
den representations for the vanilla BERT and Cross-Encoder
Ranker fine-tuned on natural input order.

model fine-tune train CKA similarity

BERT - 0.4379

CE
natural 0.5389
perturbed 0.9657

In other words, how does the order sensitivity of the fine-tuned
ranker change compared to the pre-trained BERT model? It might
be that the model while being adapted to the ranking task learns to
partially ignoreword order.We argue losing order sensitivity during
fine-tuning would further support the hypothesis that sequence
order is not a crucial feature to the CE ranker.

6.1.1 Experiment Design. We address RQ3 by measuring the dif-
ference between the [CLS] representations for the same input with
and without perturbing. To quantify differences between the hid-
den representations we use Centered Kernel-Alignment (CKA) [12]
using a linear kernel that can detect meaning similarities between
high dimensional representations while being invariant to invert-
ible linear transformations. The similarity is bounded between 0
and 1, where 1 means most similar. We carry out a batch-wise com-
parison of the representations over the 2020 NIST testset and the
average over batches.

6.1.2 Results. We show the CKA similarity between the natural
and sorted input for the pre-trained BERT, CE fine-tuned on natural
sequence order and CE fine-tuned on sorted order in Table 4. First,
we observe that representations of the pre-trained BERT model are
most different (CKA similarity 0.4379). Compared to the pre-trained
BERTmodel, the representations of the CE fine-tuned on the natural
order are much more similar (CKA similarity 0.5389). We conjecture
that the CE fine-tuned ranker fine-tuned on natural input order has
lost some of its order sensitivity while being trained on the ranking
task compared to its pre-trained base. This confirms our previous
presumption in Section 4 that CE partially learns to ignore sequence
order during the fine-tuning process. The results of CE fine-tuned
on the sorted input again confirm that the model is almost entirely
invariant (CKA similarity 0.9657) to order perturbations.

Regarding RQ3, we conclude that CE is less order sensitive com-
pared to the pre-trained BERT model, suggesting that learning the
ranking task leads to focusing less on order sensitivity.

6.2 Impact on Representations
Training the model on perturbed input or without position infor-
mation could lead to a different notion of the input and therefore
to different latent representations. We are interested in quantifying
how similar the models are compared to the BERT Cross-Encoder
ranker.

RQ4 How different are models that are trained without sequence
order?

6.2.1 Experiment Design. To quantify the differences between the
two models we again apply CKA using a linear kernel. We compare
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Figure 2: Similarity index kernel-CKA of the hidden representations of different layers measured between the CE baseline and
CE trained on sorted input (left) and CE trained without position information (right).

layerwise the kernel-CKA similarity of representations of the CE
trained on the natural input to CE trained and evaluated with sorted
input. We repeat the same with the model trained without position
information. The representations are taken at the end of each layer.
We carry out a batch-wise comparison of the representations over
the 2020 NIST testset and the average over batches.

6.2.2 Results. The results for both models can be found on the left
side in Figure 2. The comparison of the representations of the CE
baseline and CE trained on sorted input shows layers (1-5) exhibit
the strongest agreement between the representations of the two
models. Representations of layers 6-11 show less agreement while
the last layer varies the most. We conclude that training the model
on perturbed input order significantly changes the learned represen-
tations, especially for later layers. We make the same observations
for CE fine-tuned without position information (see Figure 2 right).
A hypothesis to explain our findings is that word order is being
partially maintained within the vanilla CE Ranker as a legacy of
the pre-training task causing a drastic change in representations
when losing sequence order.

Regarding RQ4, although we observed similar effectiveness, our
manipulations destroying sequence order or removing position
information result in different latent representations.

7 NATURAL LANGUAGE UNDERSTANDING
In this section, after having examined the role of modeling syntactic
aspects for ranking, we want to revisit NLP tasks under the same
conditions.

We are interested in whether our findings are specific for search
or whether they are inherent in all BERT-based models. Hence, our
final research question is:

RQ5 What role does modeling syntactic aspects play in Natural
Language Understanding tasks?

To answer this research question we carry out the same input
manipulations as done in previous sections for ranking on the

GLUE dataset. We fine-tune the model on the natural, sorted after
token-id and without position information.

7.1 Experiment Design
The GLUE dataset [29] is a widely used dataset to evaluate gen-
eral natural language understanding. It consists of nine different
sentence- or sentence-pair language understanding tasks for which
a model is fine-tuned separately. We leave out CoLA as this task is
to classify whether a sentence is grammatical or not and therefore
requires intact sentence structure to be solved.

We train our BERT models from Hugginface’s [31] bert-base-
uncase with batch size 64, maximum sequence length 128, and a
learning rate 2e-5 for 3 epochs on all tasks, despite for MRPC and
WNLI we train for 5 epochs.

7.2 Results
The results of comparing fine-tuning on natural input perturbed
input, and without position, information can be found in Table 5.
Note, that the model that is trained on the sorted input is also evalu-
ated on it. Our results show that perturbing the input structure both
during fine-tuning and evaluation only yields a marginal decrease
from on average 78.2 over all tasks to 78.1 compared to the original
input. Breaking the sentence structure even performs best on tasks
RTE, STS-B, and WNLI.

The experiment fine-tuning without position information re-
sembles parts of an experiment conducted by Wang et al. [30] and
Sinha et al. [26]. We validate their results by finding that removing
positional information leads to a small drop (4%) of the average
performance for natural language understanding tasks. It is further
worth noting that tasks that are based on sentence similarity benefit
from the sorted / No position setting: RTE, STS, WNLI.

Regarding RQ5, while it is well-known that a BOW representa-
tion is effective in IR, our results suggest that syntax also does not
seem to play a crucial role to solve the GLUE tasks, consisting of
various NLP tasks based on sentence classification.
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Table 5: BERT fine-tuned on natural order, sorted by token-id
and without position information on all GLUE tasks, except
for CoLA.

Dataset Metric Natural Sorted No pos.

SST-2 acc. 91.6 85.6 86.0
MNLI acc. 84.2 79.6 79.7
MRPC F1. 83.4 84.4 81.7
QNLI acc. 90.7 86.6 87.1
QQP F1. 87.0 85.8 85.3
RTE acc. 55.2 60.2 56.6
STS-B spear. cor 84.0 86.3 81.9
WNLI acc. 43.6 56.3 45.0

All mean±std 78.2±0.19 78.1±0.14 75.4±0.19

8 CONCLUSION
In this work, we examined the impact of perturbing the sequence
order of the BERT Cross-Encoder re-ranker. We showed that the
model, when fine-tuned on destroyed sequence order, can maintain
the same performance compared to fine-tuning on natural input.
We confirmed this finding by using two different input manipula-
tion that destroys the natural sequence order. We further find that
removing the position information entirely can achieve compara-
ble, if not better, performance to the BERT Cross-Encoder ranker,
which is fully informed about the sequence structure of query and
document. We confirm our observations based on the evaluation
of two different widely used datasets: MS MARCO and Robust 04
(zero-shot document retrieval).

The fact that the models fine-tuned without access to the natural
sequence order perform on par with retaining the natural sequence
order leads us to the conclusion that syntactic abstraction can not
be attributed to performance advantages over earlier models. Our
analysis of the hidden representations for the BERT model and the
Cross-Encoder ranker further suggests that through fine-tuning
the ranking task the sensitivity to the input order is weakened.

Overall, our results point out that syntactic aspects do not play a
critical role in the effectiveness of the BERT Cross-Encoder ranker.
The performance gain over previous models can not be solely ex-
plained by the ability to model sequence order. An explanation for
the superior performance of BERT could be the embeddings may be
richer representations of meaning regardless of context, and they
may represent different word meanings based on aggregated con-
texts where word order has only a negligible influence. We further
conjecture that other aspects such as query-passage cross-attention
or deep matching may be contributors to the performance of the
model.

It would be also interesting to observe the effect of perturbing the
input and removing the position information during pre-training
of BERT. However, due to the computational very demanding pre-
training, we have limited our experimentation to fine-tuning only.
Preliminary results suggest that the self-supervised masked word
prediction pre-training task is benefiting from word order informa-
tion, and we may need to rethink the entire training setup. We have

added to the understanding of the factors responsible for the suc-
cess of the BERT model mainly by excluding plausible explanations
mirroring human text understanding. This immediately suggests
novel research directions to directly address the factors that are
key in the BERT model. Our findings give rise to the presumption
that the current pre-training task of the underlying BERT model
is over-complex for ranking and other downstream classification
tasks. Implicitly promoting to model word order and syntactic as-
pects could potentially take up a large capacity of the model. Our
findings provide a good starting point for the design of pre-training
tasks tailored specifically to ranking, possibly reducing complexity
and model size.

As a general observation, the effectiveness of recent transformer-
based rankers has frequently been characterized as “bringing NLP
into IR” because they present a departure from the text statistics-
based bag-of-word models. Our analysis may suggest that in a
way these models are “bringing IR into NLP” showcasing that
(higher-order) word statistics even solves NLP problems tradition-
ally thought to require the representation of complex syntactic
structures.
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